Mocht u de informatie op kanker-actueel waarderen dan wilt u misschien ons ondersteunen met een donatie. We zijn en blijven een ANBI organisatie, ook in 2019 dus uw donatie is in principe aftrekbaar voor de belastingen. Ook kunt u korting krijgen bij verschillende bedrijven op voedingssupplementen.

15 december 2019: lees ook dit artikel: 

https://kanker-actueel.nl/car-t-celtherapie-is-zeer-succesvol-bij-kankerpatienten-maar-loopt-in-nederland-vast-op-te-strenge-milieueisen-stellen-4-nederlandse-top-wetenschappers-copy-1.html

30 maart 2021: Hier een recenter artikel over hoe CAR-T cellen werken. Klik op de titel voor het volledige studieverslag.

Empirical and Rational Design of T Cell Receptor-Based Immunotherapies


27 december 2018: Bron: JAMA

In gerelateerde artikelen staan enkele studiepublicaties met CAR-T cel therapie. En allemaal geven ze hele goede resultaten bij verschillende vormen van kanker. In JAMA verscheen een overzichtstudie over de stand van zaken van CAR-T celtherapie in de klinische praktijk (toepassing in ziekenhuizen bij kankerpatienten). 

Hier uit die publicatie een grafiek hoe CAR-T cellen werken:

1. Afweercellen (T-cellen) worden bij de patiënt afgenomen via bloed en lymfklieren
2. In het laboratorium wordt een zogeheten CAR = Chimeric Antigen Receptor toegevoegd aan de T-cellen van de patiënt.

De hoop is dan als de T-cellen terug worden gegeven aan de patiënt dat de gemoduleerde T-cellen nu wel de kankercellen herkennen en het immuunsysteem activeren om deze te vernietigen.

Image description not available.

Meestal gaat het wel goed met deze vorm van immuuntherapie en zoals gezegd zijn de resultaten echt hoopgevend. Maar CAR-T cellen kunnen ook ernstige bijwerkingen veroorzaken. Daarom worden CAR-T cellen altijd in het ziekenhuis toegediend waar de patiënt nauwlettend kan worden gevolgd.

Een van de bijwerkingen die vaak optreden is dat een patiënt lagere waarden van witte bloedlichaampjes krijgt, met als gevolg ernstige vermoeidheid en grotere kans op infecties. Soms is zelfs een bloedtransfusie nodig. 

Bij sommige patiënten kunnen ook normale immuuncellen, de zogenoemde B-cellen, worden aangetast, Als dat geberut wordt dit  B-celaplasie genoemd. Omdat B-cellen normale antilichamen aanmaken om mensen tegen infecties te beschermen, moeten mensen met B-celaplasie antistoffen krijgen die periodiek intraveneus worden toegediend.

Daarnaast zijn er nog twee 2 effecten die ernstig kunnen zijn na een behandeling met CAR T-celtherapie, Dat zijn het zogeheten cytokine-release syndroom (CRS) en neurologische complicaties. 
Patiënten met CRS ontwikkelen doorgaans koorts, uitslag, hoofdpijn en veranderingen in de bloeddruk. De symptomen van neurologische toxische effecten variëren van hoofdpijn tot verwarring, delirium en toevallen.

Hoewel deze symptomen zich snel na toediening van de CAR-T cellen kunnen voordoen en ze ook wel beheersbaar zijn als er op tijd ingegrepen wordt zijn er ook enkele gevallen bekend waarbij die bijwerkingen pas later optraden.

De mogelijke nadelige effecten van CRS kunnen zijn cardiale disfunctie, bloedingen en nier- en / of leverfalen. Het beheersen van ernstige CRS of neurotoxische effecten kan het gebruik van specifieke medicijnen met zich meebrengen om deze symptomen het hoofd te bieden.

Zie verder in gerelateerde artikelen enkele studiepublicaties.

Het artikel in JAMA: Chimeric Antigen Receptor (CAR) T-Cell Therapy is tegen betaling of als u een registratie doet te downloaden.

Voor meer informatie over CAR-T celtherapie klik op de volgende links:

Hier het abstract van de studie uit JAMA:

JAMA Oncology Patient Page
November 2017

Chimeric Antigen Receptor (CAR) T-Cell Therapy

JAMA Oncol. 2017;3(11):1595. doi:10.1001/jamaoncol.2017.2989
related articles icon
Related
Articles

CAR T-cell therapy uses the patient’s own immune cells to personalize cancer immunotherapy.

What Is CAR T-Cell Therapy?

CAR T-cell therapy is a cancer treatment that uses a patient’s own immune system cells, called T cells, after these cells have been modified to better recognize and kill the patient’s cancer. The T cells are engineered in the laboratory and then expanded to large numbers and infused back into the patient. This type of treatment transfers an immune system into the patient that is capable of immediately killing the cancer. CAR stands for chimeric antigen receptor, which represents the genetically engineered portion of the T cell. The CAR part of the T cell contains proteins that allow the T cells to recognize the specific cancer cells as well as become highly activated to kill the cancer cells.

Once in the body, the CAR T cells can further grow to large numbers, persist for long periods of time, and provide ongoing tumor control and possible protection against recurrence.

How Are CAR T Cells Made for Each Individual Patient and Administered?

The first step is to collect the patient’s T cells from their blood using an outpatient procedure known as leukapheresis. These T cells are shipped to the laboratory for modification and manufacturing. The CAR-containing T cells are then returned for reinfusion into the patient. This process takes about 2 weeks. During the time that the cells are being developed, the patient will typically receive specific chemotherapy that can help prepare the immune system to support the CAR T cells once they are given back to the patient.

Possible Adverse Effects of CAR T-Cell Therapy

CAR T cells are administered in the hospital, where the patient can be monitored closely. Patients receiving CAR T-cell therapy typically develop temporarily low blood cell counts from the treatment, with fatigue, risk of infection, and need for transfusion support. Some patients may also have some of their normal immune cells, called B cells, destroyed as bystanders of the treatment, causing a condition called B-cell aplasia. Because B cells normally make antibodies to protect people from infections, people with B-cell aplasia need to have antibodies periodically given by vein.

In addition, there are 2 significant adverse effects that can occur after CAR T-cell therapy, both potentially serious: cytokine release syndrome (CRS) and neurologic complications. Patients with CRS typically develop a fever, rash, headache, and changes in blood pressure. The symptoms of neurologic toxic effects range from headaches to confusion, delirium, and seizures. Though the onset of the symptoms can occur within minutes or hours, they can be seen days to weeks later. The adverse effects are usually reversible, but rare cases of long-term symptoms have been noted. The possible long-term adverse effects may include cardiac dysfunction, bleeding, and kidney and/or liver failure. The management of severe CRS or neurotoxic effects may involve the use of specific drugs to reverse these symptoms.

Current Role

CAR T-cell therapy has received preliminary approval for treatment of children and young adults with a specific form of leukemia that has not been cured with initial chemotherapy treatment. It is being studied in many other cancer treatment settings and may become more widely used based on the results of ongoing clinical research.

Section Editor: Howard (Jack) West, MD.
The JAMA Oncology Patient Page is a public service of JAMA Oncology. The information and recommendations appearing on this page are appropriate in most instances, but they are not a substitute for medical diagnosis. For specific information concerning your personal medical condition, JAMA Oncology suggests that you consult your physician. This page may be photocopied noncommercially by physicians and other health care professionals to share with patients. To purchase bulk reprints, call (312) 464-0776.
Back to top
Article Information

Published Online: September 7, 2017. doi:10.1001/jamaoncol.2017.2989

Conflict of Interest Disclosures: None reported.

 

References CAR-T cel therapy for solid tumors

References

1. Bouhassira DC, Thompson JJ, Davila ML. Using gene therapy to manipulate the immune system in the fight against B-cell leukemias. Expert opinion on biological therapy. 2015;15:403–16. [PMC free article] [PubMed]
2. Han EQ, Li X, Wang C, Li T, Han S. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6:47. [PMC free article] [PubMed]
3. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123:2625–35. [PMC free article] [PubMed]
4. Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in immunology: Elsevier; 2015. [PubMed]
5. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H. T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. The Journal of Immunology. 2004;173:7647–53. [PubMed]
6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144:646–74. [PubMed]
7. Whilding LM, Maher J. CAR T-cell immunotherapy: The path from the by-road to the freeway? Molecular oncology. 2015;9:1994–2018. [PMC free article] [PubMed]
8. Shi H, Sun M, Liu L, Wang Z. Chimeric antigen receptor for adoptive immunotherapy of cancer: latest research and future prospects. Molecular cancer. 2014;13:219. [PMC free article] [PubMed]
9. Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, The non-signaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer immunology research; 2014. canimm.0127.2014. [PMC free article] [PubMed]
10. Harris DT, Kranz DM. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends in Pharmacological Sciences; 2015. [PMC free article] [PubMed]
11. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunological reviews. 2014;257:107–26. [PMC free article] [PubMed]
12. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of clinical investigation. 2011;121:1822. [PMC free article] [PubMed]
13. Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. The Journal of Immunology. 2010;184:6938–49. [PubMed]
14. Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clinical & Translational Immunology. 2014;3:e16. [PMC free article] [PubMed]
15. Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer research. 2014;74:6383–9. [PubMed]
16. Zhong X-S, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric Antigen Receptors Combining 4-1BB and CD28 Signaling Domains Augment PI3kinase/AKT/Bcl-XL Activation and CD8+ T Cell-mediated Tumor Eradication. Molecular Therapy. 2010;18:413–20. [PMC free article] [PubMed]
17. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature medicine; 2015. [PMC free article] [PubMed]
18. Catalán E, Charni S, Jaime P, Aguiló JI, Enríquez JA, Naval J. et al. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncoimmunology. 2015;4:e985924. [PMC free article] [PubMed]
19. Hillerdal V, Essand M. Chimeric Antigen Receptor-Engineered T Cells for the Treatment of Metastatic Prostate Cancer. BioDrugs. 2015;29:75–89. [PMC free article] [PubMed]
20. Duong CP, Yong CS, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Molecular immunology; 2015. [PubMed]
21. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine. 2014;371:1507–17. [PMC free article] [PubMed]
22. Boulassel M-R, Galal A. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors: From antigen choice to clinical implementation. Sultan Qaboos University medical journal. 2012;12:273. [PMC free article] [PubMed]
23. Singh N, Liu X, Hulitt J, Jiang S, June CH, Grupp SA. et al. Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol Res. 2014;2:1059–70. [PMC free article] [PubMed]
24. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X. et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer immunology research. 2013;1:26–31. [PMC free article] [PubMed]
25. Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M. et al. The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clinical Cancer Research. 2006;12:6170–8. [PubMed]
26. Kandalaft LE, Powell Jr DJ, Coukos G. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer. J Transl Med. 2012;10:157. [PMC free article] [PubMed]
27. Park JR, DiGiusto DL, Slovak M, Wright C, Naranjo A, Wagner J. et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Molecular Therapy. 2007;15:825–33. [PubMed]
28. Lamers CH, Langeveld SC, Groot-van Ruijven CM, Debets R, Sleijfer S, Gratama JW. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo. Cancer Immunology, Immunotherapy. 2007;56:1875–83. [PubMed]
29. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature medicine. 2008;14:1264–70. [PMC free article] [PubMed]
30. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6. [PMC free article] [PubMed]
31. Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S, Stahel R. et al. Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1) BMC cancer. 2012;12:615. [PMC free article] [PubMed]
32. Peinert S, Prince H, Guru P, Kershaw M, Smyth M, Trapani J. et al. Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther. 2010;17:678–86. [PubMed]
33. Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K. et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Molecular Therapy. 2013;21:2122–9. [PMC free article] [PubMed]
34. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy. 2010;18:843–51. [PMC free article] [PubMed]
35. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL. et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer research. 2010;70:9053–61. [PMC free article] [PubMed]
36. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119:3940–50. [PMC free article] [PubMed]
37. Guest RD, Kirillova N, Mowbray S, Gornall H, Rothwell DG, Cheadle EJ. et al. Definition and application of good manufacturing process-compliant production of CEA-specific chimeric antigen receptor expressing T-cells for phase I/II clinical trial. Cancer immunology, immunotherapy: CII. 2014;63:133–45. [PubMed]
38. Sadelain M. T-cell engineering for cancer immunotherapy. The Cancer Journal. 2009;15:451–5. [PubMed]
39. Gill S, Porter DL. CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert opinion on biological therapy. 2014;14:37–49. [PubMed]
40. Trifilio S, Bennett C, Yarnold P, McKoy J, Parada J, Mehta J. et al. Breakthrough zygomycosis after voriconazole administration among patients with hematologic malignancies who receive hematopoietic stem-cell transplants or intensive chemotherapy. Bone marrow transplantation. 2007;39:425–9. [PubMed]
41. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews. 2011;63:136–51. [PubMed]
42. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release. 2000;65:271–84. [PubMed]
43. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie J-J. et al. Human solid tumors contain high endothelial venules: association with T-and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer research. 2011;71:5678–87. [PubMed]
44. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. New England Journal of Medicine. 2005;353:2654–66. [PubMed]
45. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. [PMC free article] [PubMed]
46. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New England Journal of Medicine. 2003;348:203–13. [PubMed]
47. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proceedings of the National Academy of Sciences. 2007;104:3360–5. [PMC free article] [PubMed]
48. Yin H, Liao L, Fang J. Enhanced permeability and retention (EPR) effect based tumor targeting: the concept, application and prospect. JSM Clin Oncol Res. 2014;2:1010–4.
49. Rahir G, Moser M. Tumor microenvironment and lymphocyte infiltration. Cancer Immunology, Immunotherapy. 2012;61:751–9. [PubMed]
50. Slaney CY, Kershaw MH, Darcy PK. Trafficking of T Cells into Tumors. Cancer research. 2014;74:7168–74. [PubMed]
51. Martinet L, Le Guellec S, Filleron T, Lamant L, Meyer N, Rochaix P. et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology. 2012;1:829–39. [PMC free article] [PubMed]
52. Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature medicine. 2008;14:28–36. [PubMed]
53. Dirkx AE, oude Egbrink MG, Kuijpers MJ, van der Niet ST, Heijnen VV, Bouma-ter Steege JC. et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer research. 2003;63:2322–9. [PubMed]
54. Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological reviews. 2000;52:237–68. [PubMed]
55. Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer research. 1996;56:1111–7. [PubMed]
56. J Tuorkey M, K Abdul-Aziz K, A Zidan A-A. Active immunization against tumor necrosis factor-alpha decreases proinflammatory cytokines, oxidative stress mediators and adhesion molecules risk factors in streptozotocin-induced diabetic rats. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 2013;13:269–74. [PubMed]
57. Karin N, Wildbaum G. The Role of Chemokines in Shaping the Balance Between CD4+ T Cell Subsets and Its Therapeutic Implications in Autoimmune and Cancer Diseases. Frontiers in immunology; 2015. p. 6. [PMC free article] [PubMed]
58. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. cell. 1994;76:301–14. [PubMed]
59. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM. et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther. 2002;13:1971–80. [PubMed]
60. Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM. et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. Journal of immunotherapy (Hagerstown, Md: 1997) 2010;33:780. [PMC free article] [PubMed]
61. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE. et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113:6392–402. [PMC free article] [PubMed]
62. Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. The journal of gene medicine. 2012;14:405–15. [PMC free article] [PubMed]
63. Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V. et al. Armed Oncolytic Virus Enhances Immune Functions of Chimeric Antigen Receptor-Modified T Cells in Solid Tumors. Cancer research. 2014;74:5195–205. [PMC free article] [PubMed]
64. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science translational medicine. 2014;6:261ra151–261ra151. [PMC free article] [PubMed]
65. Choi BD, Suryadevara CM, Gedeon PC, Herndon II JE, Sanchez-Perez L, Bigner DD. et al. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. Journal of Clinical Neuroscience. 2014;21:189–90. [PMC free article] [PubMed]
66. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119:4133–41. [PMC free article] [PubMed]
67. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z. et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer research. 2010;70:6725–34. [PMC free article] [PubMed]
68. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological reviews. 2014;257:83–90. [PubMed]
69. Chmielewski M, Kopecky C, Hombach AA, Abken H. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer research. 2011;71:5697–706. [PubMed]
70. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP. et al. Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Molecular Therapy. 2011;19:751–9. [PMC free article] [PubMed]
71. Gargett T, Brown MP. Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. Cytotherapy. 2015;17:487–95. [PubMed]
72. Porter DL, Levine BL, Bunin N, Stadtmauer EA, Luger SM, Goldstein S. et al. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood. 2006;107:1325–31. [PubMed]
73. Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New England Journal of Medicine. 2013;369:134–44. [PMC free article] [PubMed]
74. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol. 2006;24:657–79. [PubMed]
75. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123:3750–9. [PMC free article] [PubMed]
76. Caserta S, Alessi P, Basso V, Mondino A. IL-7 is superior to IL-2 for ex vivo expansion of tumour-specific CD4+ T cells. European journal of immunology. 2010;40:470–9. [PubMed]
77. Shen H, Laird PW. Interplay between the cancer genome and epigenome. cell. 2013;153:38–55. [PMC free article] [PubMed]
78. Roessler S, Budhu A, Wang XW. Deciphering cancer heterogeneity: the biological space. Frontiers in cell and developmental biology; 2014. p. 2. [PMC free article] [PubMed]
79. Panousis C, Rayzman V, Johns T, Renner C, Liu Z, Cartwright G. et al. Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumours expressing de2-7 EGFR or amplified EGFR. British journal of cancer. 2005;92:1069–77. [PMC free article] [PubMed]
80. Ohno M, Natsume A, Ichiro Iwami K, Iwamizu H, Noritake K, Ito D. et al. Retrovirally engineered T-cell-based immunotherapy targeting type III variant epidermal growth factor receptor, a glioma-associated antigen. Cancer science. 2010;101:2518–24. [PubMed]
81. Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proceedings of the National Academy of Sciences. 1990;87:8602–6. [PMC free article] [PubMed]
82. Yamazaki H, Ohba Y, Tamaoki N, Shibuya M. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Cancer science. 1990;81:773–9. [PMC free article] [PubMed]
83. Eshhar Z. The T-body approach: redirecting T cells with antibody specificity. Therapeutic Antibodies. Springer; 2008. p. 329-42. [PubMed]
84. Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M. et al. Target Antigen Density Governs the Efficacy of Anti-CD20-CD28-CD3 ζ Chimeric Antigen Receptor-Modified Effector CD8+ T Cells. The Journal of Immunology. 2015;194:911–20. [PubMed]
85. Veomett N, Dao T, Liu H, Xiang J, Pankov D, Dubrovsky L. et al. Therapeutic efficacy of an Fc-enhanced TCR-like antibody to the intracellular WT1 oncoprotein. Clinical Cancer Research. 2014;20:4036–46. [PMC free article] [PubMed]
86. Krug LM, Dao T, Brown AB, Maslak P, Travis W, Bekele S. et al. WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunology, Immunotherapy. 2010;59:1467–79. [PMC free article] [PubMed]
87. Dohi S, Ohno S, Ohno Y, Takakura M, Kyo S, Soma G-I. et al. WT1 peptide vaccine stabilized intractable ovarian cancer patient for one year: a case report. Anticancer research. 2011;31:2441–5. [PubMed]
88. Rafiq S, Dao T, Liu C, Scheinberg DA, Brentjens RJ. Engineered T cell receptor-mimic antibody,(TCRm) chimeric antigen receptor (CAR) T cells against the intracellular protein Wilms tumor-1 (WT1) for treatment of hematologic and solid cancers. Blood. 2014;124:2155. -
89. Zhao Q, Ahmed M, Tassev D, Hasan A, Kuo T, Guo H, Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential. Leukemia; 2015. [PMC free article] [PubMed]
90. Tchou J, Wang L-C, Selven B, Zhang H, Conejo-Garcia J, Borghaei H. et al. Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast cancer research and treatment. 2012;133:799–804. [PMC free article] [PubMed]
91. Servais EL, Colovos C, Rodriguez L, Bograd AJ, Nitadori J-i, Sima C. et al. Mesothelin overexpression promotes mesothelioma cell invasion and MMP-9 secretion in an orthotopic mouse model and in epithelioid pleural mesothelioma patients. Clinical Cancer Research. 2012;18:2478–89. [PMC free article] [PubMed]
92. Rizk NP, Servais EL, Tang LH, Sima CS, Gerdes H, Fleisher M. et al. Tissue and serum mesothelin are potential markers of neoplastic progression in Barrett's associated esophageal adenocarcinoma. Cancer Epidemiology Biomarkers & Prevention. 2012;21:482–6. [PMC free article] [PubMed]
93. Kachala SS, Bograd AJ, Villena-Vargas J, Suzuki K, Servais EL, Kadota K. et al. Mesothelin overexpression is a marker of tumor aggressiveness and is associated with reduced recurrence-free and overall survival in early-stage lung adenocarcinoma. Clinical Cancer Research. 2014;20:1020–8. [PMC free article] [PubMed]
94. Pastan I, Hassan R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer research. 2014;74:2907–12. [PMC free article] [PubMed]
95. Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira ACP. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. Journal of clinical immunology. 2012;32:1059–70. [PubMed]
96. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature biotechnology. 2013;31:71–5. [PMC free article] [PubMed]
97. Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S. et al. Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity. Cancer research. 2015;75:3505–18. [PMC free article] [PubMed]
98. Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC. et al. Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice. Cancer research. 2015;75:3596–607. [PMC free article] [PubMed]
99. Casucci M, Bondanza A. Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. Journal of Cancer. 2011;2:378. [PMC free article] [PubMed]
100. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Frontiers in pharmacology; 2014. p. 5. [PMC free article] [PubMed]
101. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Frontiers in pharmacology; 2014. p. 5. [PMC free article] [PubMed]
102. Ciceri F, Bonini C, Stanghellini MTL, Bondanza A, Traversari C, Salomoni M. et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. The lancet oncology. 2009;10:489–500. [PubMed]
103. Shiao SL, Ganesan AP, Rugo HS, Coussens LM. Immune microenvironments in solid tumors: new targets for therapy. Genes & development. 2011;25:2559–72. [PMC free article] [PubMed]
104. Park HJ, Kusnadi A, Lee E-J, Kim WW, Cho BC, Lee IJ. et al. Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cellular immunology. 2012;278:76–83. [PubMed]
105. Zheng Y, Zha Y, Gajewski TF. Molecular regulation of T-cell anergy. EMBO reports. 2008;9:50–5. [PMC free article] [PubMed]
106. Moon EK, Wang L-C, Dolfi DV, Wilson CB, Ranganathan R, Sun J. et al. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clinical Cancer Research. 2014;20:4262–73. [PMC free article] [PubMed]
107. Beatty GL, Moon EK. Chimeric antigen receptor T cells are vulnerable to immunosuppressive mechanisms present within the tumor microenvironment. Oncoimmunology. 2014;3:e970027. [PMC free article] [PubMed]
108. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J. et al. Immune resistance orchestrated by the tumor microenvironment. Immunological reviews. 2006;213:131–45. [PubMed]
109. Anderson RC, Anderson DE, Elder JB, Brown MD, Mandigo CE, Parsa AT. et al. Lack of B7 expression, not human leukocyte antigen expression, facilitates immune evasion by human malignant gliomas. Neurosurgery. 2007;60:1129–36. [PubMed]
110. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP. et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 2012;120:4772–82. [PMC free article] [PubMed]
111. Prosser ME, Brown CE, Shami AF, Forman SJ, Jensen MC. Tumor PD-L1 co-stimulates primary human CD8+ cytotoxic T cells modified to express a PD1: CD28 chimeric receptor. Molecular immunology. 2012;51:263–72. [PubMed]
112. Santos AM, Jung J, Aziz N, Kissil JL, Puré E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. The Journal of clinical investigation. 2009;119:3613. [PMC free article] [PubMed]
113. Kakarla S, Chow KK, Mata M, Shaffer DR, Song X-T, Wu M-F. et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Molecular Therapy. 2013;21:1611–20. [PMC free article] [PubMed]
114. Saadi A, Shannon NB, Lao-Sirieix P, O'Donovan M, Walker E, Clemons NJ. et al. Stromal genes discriminate preinvasive from invasive disease, predict outcome, and highlight inflammatory pathways in digestive cancers. Proceedings of the National Academy of Sciences. 2010;107:2177–82. [PMC free article] [PubMed]
115. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α Science. 2010;330:827–30. [PubMed]
116. Lo A, Wang L-CS, Scholler J, Monslow J, Avery D, Newick K, Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer research; 2015. canres.3041.2014. [PMC free article] [PubMed]
117. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. [PMC free article] [PubMed]
118. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74. [PubMed]
119. Nishio N, Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. Oncoimmunology. 2015;4:e988098. [PMC free article] [PubMed]

Articles from International Journal of Biological Sciences are provided here courtesy of Ivyspring International Publisher

Plaats een reactie ...

Reageer op "CAR-T cel therapie is een vorm van immuuntherapie die hele goede resultaten geeft. In Jama een overzicht van stand van zaken in de klinische praktijk"


Gerelateerde artikelen
 

Gerelateerde artikelen

CD19 Fast-CAR-T-cel therapie >> CAR-T celtherapie brengt binnen >> CAR-T celtherapie is zeer >> Immuuntherapie met gemanipuleerde >> Immuuntherapie met gemanipuleerde >> Dendritische celtherapie met >> Longkanker: Dendritische celtherapie >> Immuuntherapie met TIL - tumor >> Immuuntherapie met CAR T-Cell >> Immuuntherapie met T-car cells >>