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Brain tumor immunotherapy: what
have we learned so far?
Stefaan Willy Van Gool *

Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium

High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery,
radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy
emerges as a promising strategy. Clinical experiences with active specific immunotherapy
demonstrate feasibility, safety and most importantly, but incompletely understood, pro-
longed long-term survival in a fraction of the patients. In relapsed patients, we developed
an immunotherapy schedule and we categorized patients into clinically defined risk
profiles. We learned how to combine immunotherapy with standard multimodal treatment
strategies for newly diagnosed glioblastoma multiforme patients. The developmental
program allows further improvements related to newest scientific insights. Finally, we
developed a mode of care within academic centers to organize cell-based therapies for
experimental clinical trials in a large number of patients.

Keywords: immunotherapy, malignant glioma, dendritic cell vaccines, immunomodulation, galectin-1, oncolytic
viruses

Introduction

High grade gliomas (HGG) are brain tumors occurring in adults and children. The WHO
grade IV HGG, called glioblastoma multiforme (GBM), is the most frequent brain cancer in
adults with an incidence of 3–4 per 100,000 adults per year (1) and 2 per million children
(2). The treatment for these patients consists primarily of maximal safe surgery in order to
debulk the tumoral mass for symptomatic relief and to obtain tissue for histological diagnosis,
followed by radiochemotherapy and maintenance chemotherapy to induce optimal local tumor
control. In spite of improved surgery and radiotherapy, and the addition of temozolomide (TMZ)
to the multimodal treatment strategy, the prognosis of patients with GBM remains poor: the
median overall survival (OS) is about 15months, with 88% of patients dying within 3 years
(3, 4). Relapse is universal and is believed to be due to the extensive spread of tumor cells
into surrounding regions of the brain (5, 6). At the time of relapse, the prognosis is partic-
ularly poor, with reports of 100% mortality within 18months (7). A recent review pointed
to the progression-free survival (PFS) at 6month and median OS as most useful and acces-
sible end points, the latter ranging between 5 and 13months for relapsed GBM patients (8).
The prognosis upon recurrence might be improving with the initiation of new multimodal
treatment strategies (9–11). Most reports are not yet focusing on long-term survival. In spite
of being an orphan disease, the tumor still causes the highest number of years of life lost
due to cancer (12). One of the particular challenges with classical chemotherapeutic strate-
gies is overcoming the blood–brain barrier. Therefore, preclinical research is focused on alter-
nate approaches, such as targeted therapy (13) including anti-angiogenesis strategies (14), and
especially immunotherapy. Treating cancer by means of immunotherapy (e.g., cancer vaccines,
adoptive cell transfer, and checkpoint blockade) has slowly evolved over decades in a nowadays
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clinically applicable treatment in a number of cancer types (e.g.,
metastatic melanoma, renal cell carcinoma, non-small cell lung
cancer, prostate cancer. . .).

Active specific immunotherapy with autologous mature
dendritic cells (DCm) loaded with autologous tumor cell
lysate (DCm-HGG-L) is an emerging and innovative treatment
approach for patients with HGG. The development of DC therapy
in HGG has started in 1999 in our center. Since then, we
established a complete translational research program from bench
to bed (Figure 1) including in vitro experiments (15, 16), in vivo
experiments in the GL261 model (17–19), early clinical phase
I/II clinical trials as part of the HGG-IMMUNO-2003 cohort
comparison trial for relapsed HGG patients (20–26), a phase
I/II clinical trial HGG-2006 for patients with newly diagnosed
GBM (EudraCT 2006-002881-20) (27, 28), and the recently
finished phase IIb prospective placebo-controlled double-blind
randomized clinical trial (RCT) HGG-2010 (EudraCT 2009-
018228-14). In parallel to this clinical program, advanced
MRI studies have been performed on HGG, in particular to
characterize immunotherapy-related changes (29–32). In this
program, insights from preclinical research were translated into
the HGG-IMMUNO-2003 cohort (A–D) comparison trial. Data
from these cohorts were then used for integration into the
multimodal treatment of patients with primary diagnosis of GBM.
As such, the vaccination technology from cohort C was used
for the HGG-2006 trial, while the technology from cohort D is
now used for the RCT HGG-2010. In parallel, according to the
evolving legislation, the preparation for the clinical applications
was embedded into a Good Manufacturing Practice (GMP)
facility within the University Hospitals Leuven. The translation
back from bed to bench has been realized by samplings of tumor
tissue and blood samples taken at defined vaccination time

points. The new preclinical research perspectives in 2014 include
galectin-1 targeting as a strategy for immunomodulation and
oncolytic virus therapy.

The preclinical and clinical results, together with clinical results
obtained independently by other research teams provide a strong
rationale to continue exploration of immunotherapy in patients
with HGG. We summarized our insights in several reviews and
commentary papers (33–39). The emerging field of immunother-
apy for HGG has been extensively reviewed by other researchers
as well (40–43). A first meta-analysis on the available results
in the literature show clear benefit of immunotherapy for OS
(44). In this review, it is our intention to focus on our own
experience.

Rationale for Active Specific
Immunotherapy Against HGG

Theoretical Concept of Dendritic Cell Vaccination
Dendritic cells (DCs) are a subset of white blood cells, critical
to most aspects of adaptive immunity due to their central role
as specialized antigen-presenting cells (APCs) in the initiation
phase of T cell responses (45). Typically DCs reside as imma-
ture cells in almost every organ and tissue at the interface of
potential pathogen entry sites. Danger-triggered DCs start to
mature: they up-regulate chemokine receptors, which guide them
to draining lymph nodes. There, the mature DCs are capable of
inducing primary T cell responses due to their high levels ofmajor
histocompatibility complex (MHC), adhesion and costimulatory
molecule expression. As opposed to the other APC, DCs are able
to present and cross-present the antigenic peptides in the context
of both MHC Class II and Class I molecules, respectively (46, 47).
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FIGURE 1 | Immunotherapy for HGG: a translational research program.
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In this way, they can prime not only CD4+ T helper cells, but
also CD8+ cytotoxic T cells (CTLs) (48). Both effector cell types
are believed to be necessary to induce an effective cell-mediated
immune response (49).

Dendritic cells are not only sentinels in the adaptive immune
response, but have also been shown to be strong activators of
NK cells and NKT cells (50), thus linking the innate and adap-
tive immune responses. In this way, both tumor cells with and
without expression of MHC class I molecules can theoretically
be killed (51). All these particular characteristics make DCs a
perfect adjuvant in active specific immunotherapeutic strategies,
in which one aims to induce a specific immune response in vivo
(52–55).

Justification of the Use of Dendritic Cell
Technology in Glioma Therapy
Gliomas have been shown to express an impressive collection
of glioma-associated antigens (GAAs) (56). Till today, antigen
search is a field of interest (57) including even tumor-driving
mechanisms (58). Up till now, however, identification of a uni-
versally expressed GAA with a critical downstream cell survival-
related function has not been identified. Therefore, just targeting
the known GAA using individual peptides would inherently lead
to immune escape because of the positive clonal selection of
antigen-loss variants (59, 60): those tumor cell clones that do not
express the particular, targeted GAA (anymore), will escape from
the immune rejection and thus have an important proliferation
advantage as compared to the cell clones that do express the
targeted GAA. That heterogeneity in GAA expression in gliomas
represents the main reason to use whole tumor cell lysates as a
source of GAAs to load the DC. In case, the GAAs are expressed
not only exclusively on the tumor cells but also on normal healthy
cells, tolerance and induction of auto-immunity are possible, both
being theoretical hurdles to a beneficial immune response: in the
former case, an antitumoral immune response cannot be induced
because the GAA is considered a self-antigen and in the latter
case, a pathological immune response against normal tissues is
mounted.

In general, tumor vaccination strategies are not entirely new
anymore (52). Especially for the spontaneously more immuno-
genic tumors like malignant melanoma (61), renal cell carcinoma
(62), mesothelioma (63), leukemia (64), gynecological tumors
(65–67) and prostate carcinoma (68), several vaccination strate-
gies have been used in the past. Large-scale production of clinical
grade DCs became possible (69), including the development of
several closed culture systems to obtain large amounts of DCs for
clinical use (70–72). DC vaccination for prostate cancer reached
full marketing authorization (Provenge®).

The brain, once considered as immune privileged site (73), is a
dynamic immunological environment. Astrocytes, microglia and
infiltrating immune cells play amajor role in the brain during host
immunity to antigens (74). The question of immune privilege in
the context of malignant glioma is fading (56, 75). Proof of the
principle of immunotherapy has been demonstrated in in vitro
experiments (15, 16) and in several rodent models (37). In these
models, induction of protective immunity and immunological
memory against syngeneic orthotopic gliomas have been shown

after vaccination with DCs loaded with GAAs of different antigen
sources.

Immunotherapy for Patients with Relapsed
HGG

Overview of Different Cohorts
We started in 2001 to implement preclinical insights into clinical
practice after obtaining approval of the local Ethics Committee.
Since 2003, we initiated the HGG-IMMUNO-2003 study proto-
cols consisting of sequential therapy-optimalization protocols in
consecutive cohorts for patients with relapsed HGG. It is aimed to
prove the feasibility and explore the efficacy of immune therapy
for HGG, and to “dissect” different aspects of the immune therapy
in order to find a putative ideal vaccination strategy. Cohorts have
been built up on the most recent insights in vaccination strategy
available at time of preparation of the cohort protocol (Figure 2).

• Cohort A. The DC vaccination schedule existed of five intra-
dermal injections of autologous mature DC loaded with
autologous tumor antigens. DC maturation was induced
with the classical cytokine cocktail (IL-1b, TNF-a, PGE2).
The latter cytokine cocktail was based primarily on the so-
called Jonuleit cocktail (76). Already from the beginning, we
omitted IL-6 out of the cocktail. IL-6 was known to play a
major role in the induction of a Th17 phenotype of T cell
response (77). Injections were administered at week 1, 3, 7,
11, 15.

• Cohort B. Based on the observations made in the patient
group treated according to the vaccination schedule in
cohort A, injections with autologous mature DC loaded with
tumor-derived antigens were administered at week 1, 3, 5, 7,
(9) and further each 4weeks.

• Cohort C. Based on further observations made in the patient
groups treated according to both prior vaccination schedules
and based on recent insights in in vivomodels upon priming
withDCandboostingwith lysate instead ofDC (78), patients
were treated with 4weekly DC-HGG-L injections followed
by monthly boosting with HGG-L.

• Cohort D. In this cohort, we omitted PGE2 out of the mat-
uration cocktail. PGE2 was already long time ago linked to
the induction of a DC2-type (79). Because of its importance
for the induction mainly of the mobility of DC (80), it was
kept in the classical maturation cocktail. However, PGE2was
later-on also shown to induce IDO activity in human DC,
thereby creating a tolerizing DC phenotype (81). Moreover,
PGE2 upregulatedCD25 onDC, as such believed as amarker
of strong DC maturation, but a marker, of which was shown
that it was shed in the surrounding thereby consuming
the IL-2 needed for autocrine T cell activation. Because
not-fully maturated DC themselves play a role in tolerance
induction (82), we wanted to apply a method to induce
with imiquimod in vivo DC maturation after injection (83–
86). Imiquimod binds to Toll-like receptor 7 and induces
strong DC maturation and activation. Moreover, its role in
generating immune responses in a preclinical in vivo model
of HGG has been described (85). Based on this rationale,
PGE2 ex vivo maturation was replaced by local application
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of imiquimod to increase in vivo maturation and activation
of loaded DC. Within this cohort, we switched at a certain
time point from the open cell culture methodology toward a
closed cell culture methodology. This group of patients was
defined as cohort D(e). The monocytes were isolated with
Elutra instead of plastic adherence. Elutriation allows for fast
and easy enrichment of monocytes within a closed system,
and is superior to other GMP-approved methods (87–89).
DCs were cultured in VueLife tissue culture bags instead of
Falcon culture flasks. The cytokines used for differentiation
and maturation were GMP-certified. Finally, four batches
of GMP-DCm-HGG-L were produced at the same time, of
which the first was injected immediately as vaccine, while
the three other batches were frozen until use. For each of
the three remaining induction vaccinations, a batch was
thawed and washed once before injection. Of note, the open
cell culture methodology continued to include children with
relapsed HGG, because the closed culture systems could not
be applied to the leukapheresis product of children.

Updated Clinical Results
Patients suspected of a relapse of HGG, who could be taken into
consideration for immunotherapy, were re-operated upon tomax-
imally remove the tumor and in order to obtain tissue as a source
of tumor proteins. Part of the tumor was provided for pathology
diagnosis, part was placed immediately in a sterile vial, to be stored
at −80°C. Because of the large amount of tumor tissue needed for
vaccine production, in rare cases it was impossible for the patholo-
gist to unequivocally prove the recurrent pathology: in these cases,
radiological evolution and sometimes amino acid PET scan results
were consulted to conclude a relapsing, progressive HGG.

Patients with relapsed HGG were entered into the trial. About
40% of the included patients combined or consecutively applied
neurosurgery and immunotherapy with other types of treatment
like re-irradiation or chemotherapy upon decision of the refer-
ring physician. We obtained clinical results from 366 patients (48
children younger than 18 years and 318 adults above the age of
18 years). These patients belong to the “as treated” group from

FIGURE 2 | HGG-IMMUNO-2003 cohorts.

whom also the RPA was estimated and who received new resec-
tion and only immunotherapy till the next event. Median PFS of
these children and adults were 3.8 and 2.6months, respectively;
median OS was both 10.6months. Most importantly, the 2-year
OS for these patients with relapsed HGG was 20% (SEM= 6) for
children and 22% (SEM= 2) for adults. When the subgroup of
33 children and 247 adults with relapsed GBM was taken sepa-
rately, median PFS was 2.5months for children and 2.6months
for adults, median OS was 8 and 9.9months with a 2-year OS
of 10% (SEM= 6) and 17% (SEM= 3), respectively. Thirteen
percent (SEM= 8) of adults with relapsed GBM remained free of
recurrence for more than 18months, and 10% (SEM= 2) lived
longer than 3 years. Although hard to compare with literature
data, the tail of the OS curve seems beneficial to data published
on repeated re-operations combined with drug-based adjuvant
therapies (11). Our data are difficult to compare to published data
on PFS and OS upon new chemotherapy (8) or radiochemother-
apy (9, 10). To compare future clinical trials, data should be
presented according to prognostic models as has been published
after radio(chemo)therapy (90) or immunotherapy (25). More-
over, besides PFS at 6months and median OS, we believe that
long-term OS (2 years or more) should also be considered as
further outcome of patients with relapsed HGG in the context of
immunotherapy.

Having included a large series of patients with relapsed HGG
and treated with neurosurgery and immunotherapy, it became
indeed obvious that clinical risk factors were influencing the
prognosis of the patients. This was considered as very important
for counseling of the patients and for stratification while design-
ing future RCTs for such patients. Therefore, a novel recursive
partitioning analysis (RPA IMMUNO) classification was devel-
oped for adults above the age of 18 years with relapsed HGG,
and survival data were analyzed on the 117 first included adult
patients (25). The RPA classification was based on the age of the
patient, the grading of the relapsed tumor (grade III or grade
IV), the Karnofsky Self Performance Scale and the estimated
mental status. We internally validated the RPA IMMUNO in an
extended group of 251 adults with relapsedHGG treated in patient
cohorts of the HGG-IMMUNO-2003 protocol and from whom
we could retrieve the data for RPA classification. These patients
were equally distributed into the four cohorts of patients. Patient
characteristics are described in Table 1. As shown in Figure 3, the
PFS and the OS of patients belonging to the different RPA risk
classes were significantly different.

The immunotherapy was feasible without major treatment-
related toxicities. Almost all patients were treated in an ambula-
tory setting.

TABLE 1 | Patient characteristics.

HGG-IMMUNO-2003 HGG-2006

Age (median, range) 49 (18–77) 57 (27–70)
Sex (M/F) 161/90 49/28
Grade III/IV/no grading tumors 43/205/3 0/77/0
Number of events (median, range) 2 (2–7) 1
Number of vaccines 6 (4–24) 8 (0–30)
Cohort A/B/C/D/D(e) 11/15/26/72/127 –
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PFS adults with relapsed HGG
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FIGURE 3 | PFS and OS of adults with relapsed HGG.

Immunotherapy for Patients with Newly
Diagnosed GBM

HGG-2006 Phase I/II Trial
Rationale
As next step in our program, we wanted to integrate immunother-
apy within the multimodal standard treatment for adults with
newly diagnosed and histologically provenGBM (3, 4). A complex
rationale was elaborated for the design. (1) Leukapheresis was
scheduled after the surgical resection and before radiochemother-
apy. After resection of GBM, a functional immune system is
normally recovered within 1week (91). Pro-inflammatory activity
after irradiation might influence the activation state of mono-
cytes and hence their differentiation capacity toward DC (92).
Moreover, although grade III and IV hematologic toxic effects
after radiochemotherapy were minimal (3), mild reduction of the
monocyte count cannot be excluded. (2) The four induction vac-
cines were administered immediately after the radiochemother-
apy. The immune suppression after 6weeks concomitant TMZ
was shown to be minimal but still might exist (3). The concept
of tumor-specific immunization at time of immune reconstitu-
tion after chemotherapy has been demonstrated in several animal
models (93, 94) and in clinical practice (95). Moreover, besides
the induction of pro-inflammation (92), local radiotherapy might
remove suppressor T cells, thus permitting a more effective T cell
stimulation in loco (96). Another important reason to immunize
prior to maintenance TMZ was the finding that the sensitivity of
GBM to chemotherapeutics, among which TMZ, after prior vac-
cination was significantly increased (97, 98). (3) We further con-
tinued the boost vaccines during the TMZ maintenance therapy.
Injection of lysate-loaded DCs for the priming, followed by boosts
with tumor cell lysate alone generated themost effective antitumor
effects in a preclinical model. The protocol allowed better CTL
responses and also triggered an antitumor humoral response (78).
The experiences in cohort C with induction vaccines with DCm-
HGG-L and boost vaccines with HGG-L as immunotherapeutic
strategy supported the concept for the HGG-2006 trial.

Updated Clinical Results
The first aim of this study was to assess the feasibility/toxicity to
integrate tumor vaccination within the global treatment plan for
an adult patient with newly diagnosed and GBM WHO grade IV,
which could at least subtotally be removed. The major primary

aim was the PFS at 6months after diagnosis. To fulfill both the
aims of (1) monitoring toxicity (phase I) of this treatment in the
newly diagnosed patients and (2) detecting a potential benefit as
a treatment strategy (phase II), we included a “STOP and GO”
design.

The results of the pilot phase and the full trial phase
have been published recently (27, 28). The trial was feasible
without major immunotherapy-related toxicities. The integrated
immunotherapy did not affect quality of life. We here present the
last updated results (31 July 2014) of the PFS and OS of patients
from the HGG-2006 study, divided into the EORTCRPA risk pro-
files three to five (Figure 4). Patient characteristics are described in
Table 1. The data represent the intent-to-treat analysis. The 5-year
OS for the EORTC RPA class III and class IV patients was 35.9%
(asymmetrical CI95%: +25.4, −24.2) and 11.5% (asymmetrical
CI95%: +10.2, −6.9), respectively. As compared to the historical
control data of patients belonging to the same EORTC RPA risk
profiles (4), patients from EORTC RPA class III had a better OS
when immunotherapywas added to the standard treatment. These
data were used to power the HGG-2010 trial.

HGG-2010 Prospective Placebo-Controlled
Double Blind Randomized Clinical Trial
A prospective placebo-controlled double-blind phase IIb RCT
was designed to explore the benefit of immunotherapy as fourth
treatment modality to be included within the standard primary
treatment strategy for patientswithGBM(Figure 5). Supported by
our experiences with patients included in HGG-2006, the design
of the experimental arm (immunotherapy) is almost similar to
HGG-2006. DCm-HGG-L is prepared and maturation is induced
similar to Cohort D of the HGG-IMMUNO-2003 trial, using
TNF-a, IL-1b, and Imiquimod skin preparation (aimed for TLR7-
mediated DC activation). The design of the control arm is the
current standard primary treatment: surgery, radiochemotherapy
with TMZ, andmaintenance chemotherapywith TMZ (3, 4). Ran-
domization is performed with age as stratification variable (99).
MGMT (O(6)-methylguanine DNA methyltransferase) methyla-
tion is not used for stratification. There is emerging evidence that
other cytogenetic abnormalities outside MGMT methylation are
of strong prognostic value as well (100–102). Primary endpoint of
the trial is the PFS after six cycles of maintenance chemotherapy
with TMZ. Secondary endpoints are quality of life assessments,
OS, and induction of immune responses in both arms.
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FIGURE 4 | PFS and OS of adults with primary diagnosis of GBM.

FIGURE 5 | Outline of the phase IIb randomized clinical trial HGG-2010.

Patients are unblinded after the assessment of disease status at
time of MRI after the sixth cycle of TMZ or at time of progression
if earlier progression occurred before the end of the sixth cycle of
TMZ. Patients treated in the placebo arm and not yet relapsed (or
with a compatible salvage treatment and no steroids after relapse)
are treated with the immunotherapy regimen at this later stage,
allowing to compare with immunomonitoring early vaccination
efficacy during multimodal therapy with late vaccination after
multimodal therapy.

The data of this RCT will be subject to the consortium Com-
putational Horizons in Cancer (www.chic-vph.eu) to develop a
hypermodel based on granular hypomodels in order to predict
for which patient immunotherapy might be of added value. Clini-
cal, radiological, immunological, and molecular data at diagnosis
and at early evolution upon the radiochemotherapy will serve as
incoming data into the different hypomodels.

New Preclinical Research Perspectives in
2014

Targeting Galectin-1 as Strategy for
Immunomodulation
GL261 Orthotopic Mouse Model
Galectin-1 is a glycan-binding protein which is involved in
the aggressive nature of GBM by stimulating angiogenesis,
cell migration, and proliferation. In different cancer models,

galectin-1 has been demonstrated to play a pivotal role in tumor-
mediated immune evasion especially by modulating cells of the
adaptive immune system. It was unknown, however, whether the
absence or presence of galectin-1 within the glioma microen-
vironment also causes qualitative or quantitative differences in
innate and/or adaptive antitumor immune responses.We explored
the role of galectin-1 in the orthotopic GL261 mouse glioma
model (19). Stable galectin-1 knockdown was achieved via trans-
duction of parental GL261 tumor cells with a lentiviral vector
encoding a galectin-1-targeting miRNA. We demonstrated that
the absence of tumor-derived but not of host-derived galectin-
1 significantly prolonged the survival of glioma-bearing mice
as such and in combination with DC-based immunotherapy.
Both flow cytometric and pathological analysis revealed that the
silencing of glioma-derived galectin-1 significantly decreased the
amount of brain-infiltrating macrophages and myeloid-derived
suppressor cells (MDSCs) in tumor-bearing mice. Additionally,
we demonstrated a pro-angiogenic role for galectin-1 within the
glioma microenvironment. The data provided in this study point
to a pivotal role for glioma-derived galectin-1 in the regula-
tion of myeloid cell accumulation within the glioma microenvi-
ronment, the most abundant immune cell population in HGG.
Furthermore, the prolonged survival observed in untreated and
DC-vaccinated glioma-bearingmice upon the silencing of tumor-
derived galectin-1 strongly suggests that the in vivo targeting of
tumor-derived galectin-1 might offer a promising and realistic
adjuvant treatment modality in patients diagnosed with GBM.
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Galectin-1 in the Serum of Patients
In parallel to this preclinical work, we questioned whether
increased galectin-1 expression levels were exclusively found at
the tumor site or whether galectin-1 could also be detected in the
serum of HGG patients. Galectin-1 serum levels were analyzed
in a prospective dataset of 43 healthy controls and 125 patients
with newly diagnosed or recurrent HGG (103). Samples were
taken at the moment of surgical resection and/or 2–3weeks after
surgery. Galectin-1 serum levels were determined using an ELISA
for galectin-1. Galectin-1 serum levels depended significantly on
age and sex in the control group. Age- and sex-adjusted galectin-
1 serum levels were significantly higher in all patient subgroups
compared to healthy controls with a high discriminative ability
that increased with age. We did not observe a significant decrease
in the galectin-1 serum levels upon surgical resection of the
tumor. Collectively, the data may represent a first step to establish
galectin-1 as a serum biomarker in HGG disease monitoring.

Further longitudinal evaluation is required and ongoing to
investigate the value of galectin-1 serum levels in HGG patients
as an additional diagnostic marker, but more importantly as
a predictor of treatment response and prognosis. Furthermore,
galectin-1 serum levels can also provide an important tool for the
identification of HGG patients that can benefit from galectin-1-
directed therapies that are currently under development.

Oncolytic Virus Therapy
The oncolytic features of several naturally occurring oncolytic
viruses have been shown on GBM cell lines and in (subcuta-
neous) xenotransplant models (104). However, orthotopic glioma
studies in immunocompetent animals were lacking. We investi-
gated Newcastle disease virus (NDV) in the orthotopic, syngeneic
murine GL261 gliomamodel (105). Seven days after tumor induc-
tion, mice were treated intratumorally with NDV. Treatment sig-
nificantly prolonged median survival of treated animals and 50%
showed long-term survival versus none in the control group. We
demonstrated immunogenic cell death (ICD) induction in GL261
cells after NDV infection, comprising of calreticulin surface expo-
sure, release of HMGB1 and increased expression of PMEL17
cancer antigen. Uniquely, we found absence of secreted ATP.
NDV-induced ICD in GL261 cells was shown to occur through
programmed necrosis or necroptosis. In vivo, elevated infiltration
of IFN-γ+ T cells was observed in NDV-treated tumors, along
with reduced accumulation of myeloid derived suppressor cells.
The importance of a functional adaptive immune system in this
paradigm was demonstrated in immunodeficient Rag2−/− mice,
in whichNDV induced a slight prolongation of survival, but failed
to induce long-term survival. After secondary tumor induction in
mice surviving long-term afterNDV treatment, protection against
glioma outgrowth was seen in 80% of animals, demonstrating
induction of long-term antitumor immune memory after NDV
therapy. We thus demonstrated for the first time that NDV has
therapeutic activity against GL261 tumors, evidenced in an ortho-
topic mouse model. The therapeutic effect relies on the induction
of a unique ICD route in the tumor cells, which primes adaptive
antitumor immunity. The data change the paradigm that the use
of oncolytic viruses for anti-cancer therapies should be performed
in combination with suppression of potential antiviral immune

responses. These insights are of high importance when using
oncolytic viruses in combination with tumor vaccines within a
multimodal treatment strategy.

Clinical Experiences on Immunotherapy
Obtained in Other Centers

Active specific immunotherapy has been widely studied in many
centers in phase I and/or phase II trials. Reviewing 37 reports on
DC vaccines between 2000 and 2014, the patient number in each
report was in median 15 ranging from 1 to 146. All these trials
have been designed in different ways making read-outs hardly
comparable. Moreover technologies for the vaccine production
and administration routes were different as well. Characteristics
of these trials are described in Table 2. Besides, the method-
ology to perform immune monitoring was variable: DTH tests,
relative immune phenotypes of circulating lymphocytes, T cell
proliferation and CTL assays, NK cell assays, IFN-γ production
(serum, ELISPOT, mRNA expression, FACS), and recent thymic
emigrant assay. In spite of all these differences, some general con-
clusions can bemade. Immunotherapy for patients with (relapsed)
HGG is feasible, and is safe. Only two immunotherapy-related
serious adverse reactions have been reported: an overwhelming
inflammatory reaction in a patient with large residual disease
(21) and a cutaneous GBM growth after DTH testing of tumor

TABLE 2 | Overview of DC-based clinical trials.

Study phase Case report (20, 148)
Phase I (21, 27, 149–161)
Phase I/II (22–26, 28, 162–171)
Phase II (106, 172)

HGG grade Grade III (24, 148)
Grade III and IV (23, 25, 106, 149–151, 153,

154, 158, 160, 162, 164–169)
Grade IV (20–22, 26–28, 97, 152,

155–157, 159, 161, 163,
170, 172)

Disease status Relapse (R) (20–26, 148, 150, 151,
160–162, 165–167, 171)

New diagnosis (ND) (27, 28, 97, 149, 152, 155,
156, 159, 169, 170, 172)

R and ND (106, 153, 154, 157, 158, 163,
164, 168)

Tumor antigen Lysate (20–28, 97, 106, 153, 155,
158, 161–164, 166, 169)

Peptides (97, 148, 149, 152, 156, 160,
167, 171, 173)

Tumor cell mRNA (151)
Cancer stem cell mRNA (159)
Tumor cell suspension (154)
IFN-g-treated tumor cells (168)
Apoptotic tumor cells (170, 172)
Fusions (150, 165)

Route ID (20–28, 148, 150, 152–154,
156–161, 165)

SC (97, 106, 149, 164, 168, 170,
172)

ID+ intratumoral (162, 166)
ID+ IV (151)
Intranodal (167)
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cells which were presumably radio-resistant (106). Induction of
autoimmune reactions has not been observed at all, in spite of
the fact that crude lysate of tumor tissue used in several tri-
als contained also normal tissue antigens. In most of the trials,
an effect is observed being long-term surviving patients and/or
immune responses. Immune monitoring data were hardly corre-
lated with clinical data. Most importantly for the further devel-
opment, a first meta-analysis on the available data shows clear
clinical benefit of DC-based immunotherapy for patients with
HGG (44).

Modulation to Escape Immune Evasion
Mechanisms

There are numerous factors that are responsible for HGG immune
evasion (107). Intrinsic mechanisms include low expression of
MHC class I andMHC class II molecules on the HGG tumor cells,
microglia cells that produce IL-10 and IL-6, and an unbalance of
the Th1/Th2 ratio in favor of Th2. Moreover Tenascin-C in the
extracellular matrix in glioma prevents efficient immune cell to
tumor cell contact. HGGcells produce a lot of immunosuppressive
factors like TGF-b and PGE-2. Tumor cells lack costimulatory
signals and might induce T cell anergy upon recognition. More-
over, stat-3 expression in the tumor cells promotes tumor immune
evasion by inhibiting pro-inflammatory cytokine signaling and by
amplifying Tregs. The PD-1L-1 expression on HGG is identified
as a strong inhibitor of CD4+ and CD8+ T cell activation. The
expression of HLA-E, HLA-G, and the presence of TGF-b and
lectin-like transcript 1 are responsible for the absence of an NK
attack to HGG. HGG cells express fas and fasL as well as CD70,
and produce gangliosides and galectin-1. All these mechanisms
are responsible for apoptosis of immune cells. Immune check-
point blockade in combination with immunotherapy for glioma
is therefore an emerging area of research (108). The most impor-
tant immune evasion mechanisms are, however, the presence of
myeloid-derived suppressor cells and especially Tregs.

The presence of Tregs in HGG tumors was found for the first
time in 2006 (109). The number of Tregs infiltrating the brain
was correlated with the WHO grade of the glioma (110). The sup-
pressive activity of HGG-derived Tregs was demonstrated (109,
111–113). In preclinical research, we clearly showed the role of
Tregs not only to block the antitumoral immune response (18)
but also to change the inflammatory tumor microenvironment
(114). Tregs have been shown to play a role on M2 macrophage
differentiation (115) and MDSC functioning (116) in rodents.
Tregs are particularly recruited into HGG by the production
of CCL2 and CCL22 (117). Moreover, Tregs in HGG patients
have a higher expression of the CCL2 receptor CCR4 as com-
pared to controls. In the peripheral blood, a relative increase
of the Treg fraction in the CD4 compartment as compared to
controls was also described (118). Functional studies on Tregs
from HGG patients became possible through isolation and char-
acterization of this population as CD4+CD127dim cells (119).
These clinical data clearly show the presence and function of
Tregs within the tumor microenvironment and even systemi-
cally.

Treg depletion and Treg inhibition are a widely discussed
strategy in cancer (120). TLR ligands have been shown in pre-
clinical models to inhibit Treg function and enhance in vivo
tumor immunity (121, 122). Also TMZ (117, 123, 124) and
gemcitabine (125) have been found to affect Treg infiltration
in rodent models. Treatment with Sunitinib (126–128) or low
dose paclitaxel (129) decreased the number of Tregs in cancer
patients. Specific Treg depletion strategies have been performed
in humans with anti-CD25 mAb daclizumab or with IL-2 diph-
theria toxin conjugate denileukin diftitox (Ontak) (130–132).
Treg depletion and immunological benefits could be obtained,
especially with daclizumab. However, a trial had to be stopped
because of availability of the product (130). The most impor-
tant depleting strategy is the metronomic use of CPM (133–
140). CPM suppresses in vitro induction of Tregs (141). The
Treg depleting activity of CPM has been demonstrated in murine
models in the context of vaccines (142). Some studies in humans
have shown improvement of T cell effector function associated
with a reduction in Treg numbers after low dose CPM (135).
The timing and dose are critical for a robust CPM-based pro-
tocol able to induce significant ablation of Treg inhibitory func-
tions in patients. Because the Treg depletion is aimed to be
performed shortly after neurosurgery, potential interaction with
used corticosteroids as described in mice should be taken into
account (143).

Toward a New Health Care Model for
Advanced Therapy Treatments

Autologous mature DCs loaded with autologous tumor lysate
belong to the category of advanced therapy medicinal products
(ATMP). According to EU Regulation 2007/1394/EC, ATMP for
human usemeans (1) a gene therapymedicinal product as defined
in Part IV of Annex I to Directive 2001/83/EC; (2) a somatic
cell therapy medicinal product as defined in Part IV of Annex
I to Directive 2001/83/EC; or (3) a tissue engineered product.
In that context, DCs differentiated out of monocytes are defined
as ATMPs. The boost vaccines consisting of HGG-L are regu-
lated by the Directive 2004/23/EC. ATMPs in academic hospitals
can be produced under the hospital exemption clausule. Hospi-
tal exemption means preparation of ATMPs on a non-routine
basis according to specific quality standards, and used within the
same Member State in a hospital under the exclusive professional
responsibility of a medical practitioner in order to comply with an
individual medical prescription for a custom-made product for an
individual patient.

The production and administration of personalized ATMPs
together with other anti-cancer therapies in a multimodal treat-
ment approach for very diseased patients should be considered
as Advanced Therapy Treatment for these patients, preferen-
tially performed in centers of excellence by fully equipped spe-
cialty teams with particular multidisciplinary knowledge on basic,
translational, and clinical science around the ATMP within the
given clinical context. From the beginning of the translational
research program, the working model was organized as a mul-
ticentre collaboration. The goal was to make this experimental
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treatment strategy in clinical trials easily accessible for all potential
patients in and outside the country. By doing this, a multiple “win”
situation was created: the accessibility to immunotherapy pro-
gram was easy for each patient, the referring specialist remained
involved in the patient care (vaccination in ambulant setting) and
in the scientific evolutions of the program, and the vaccination
center obtained large series of patients so that experience could
be maximized and scientific data generated within short periods.
It might take time before patient-specific ATMPs that are used
within a very complex clinical context, will reach industrialization
for their production. In their report to the European Parliament
and the Council in March 2014, the reporters from the European
Commission pointed to creating a more favorable environment
for ATMP developers working in an academic or non-for-profit
setting, including by promoting early contacts with the author-
ities through the application of the fee reduction for scientific
advice and by extending the existing certification scheme to these
developers (144). Nevertheless, the DCVax®-L vaccine is devel-
oped by Northwest Biotherapeutics as an adjunct to the treat-
ment of GBM, and is currently under evaluation in a phase III
trial (145).

Obviously, the use of autologous ex vivo culturedmature loaded
DCs is labor-intensive and expensive. This means a small-scale
production for each individual patient as well as an adapted health
care model to develop and provide such technologies. Mean-
while, strategies are searched for targeting DCs in the patient
themselves. Appropriate pattern recognition receptors ligands are
bound to tumor antigens to provide necessary adjuvant immune
signals. Antigens are bound to antibodies which target particular
receptors on DCs for internalization of the antigen and subse-
quent presentation (146). Besides antibody-based DC targeting,
nanoparticles are rapidly emerging as new vehicles for delivering
vaccines. Nanoparticles are a platform for co-encapsulating TLR
ligands with the tumor antigen, and for targeting DCs through
monoclonal antibodies or carbohydrate ligands (147).

Conclusion

Immunotherapy for HGG is feasible and has shown promising
clinical results in a subgroup of patients without major adverse
events. Decisive scientific results from large randomized trials are
needed and awaited before the true position of DC vaccination
in the therapy of HGG can be established. In parallel, patients
who can benefit from this technology are characterized and
defined. With current available basic science knowledge, further
improvements of techniques and treatment strategies are reach-
able. However, administrative burdens to produce individualized
vaccines remain a major threat, so that research focusses on as
much as possible standardized off-the-shelf consumables for their
production.
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