Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of beta-galactosidase of B cells and sialidase of T cells

J Immunol. 1993 Sep 1;151(5):2794-802.

Abstract

Highly conserved DBP (human DBP is known as Gc) of serum alpha 2-globulin fraction can be converted to a potent macrophage activating factor by stepwise modification of Gc glycoprotein with beta-galactosidase of B cells and sialidase of T cells. These glycosidases, beta-galactosidase and sialidase, are membrane bound and not soluble in culture medium. Thus, consecutive contact of Gc protein with B cells and T cells, presumably via specific receptors, is required for conversion of Gc glycoprotein to the macrophage activating factor. The essential role of T cell sialidase in macrophage activation was confirmed by the finding that peritoneal nonadherent cells of SM/J mouse, whose T cells are deficient in sialidase activity, were unable to convert Gc protein to the macrophage activating factor and thus did not activate macrophages. Treatment with sialidase of a conditioned medium of lipid metabolite-treated SM/J mouse nonadherent cells efficiently generated the macrophage activating factor. When Gc protein was first treated with soluble or immobilized sialidase and used in a medium for 2 h cultivation of lipid metabolite-treated SM/J mouse nonadherent cells or BALB/c mouse B cells, the resultant conditioned media contained a large amount of the macrophage activating factor. These results support the hypothesis that Gc protein carries a dibranched trisaccharide with galactose and sialic acid termini.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • B-Lymphocytes / enzymology*
  • Female
  • Glycerides / pharmacology
  • Laurates / pharmacology
  • Lysophosphatidylcholines / pharmacology
  • Macrophage Activation
  • Macrophage-Activating Factors / metabolism*
  • Mice
  • Mice, Inbred BALB C
  • Monoglycerides
  • Neuraminidase / metabolism*
  • T-Lymphocytes / enzymology*
  • Vitamin D-Binding Protein / metabolism*
  • beta-Galactosidase / metabolism*

Substances

  • Glycerides
  • Laurates
  • Lysophosphatidylcholines
  • Macrophage-Activating Factors
  • Monoglycerides
  • Vitamin D-Binding Protein
  • monolaurin
  • Neuraminidase
  • beta-Galactosidase