Aan onderstaand artikel is enkele uren gewerkt. Misschien wilt u ons ondersteunen met een al of niet anonieme donatie om kanker-actueel online te houden. Elk bedrag is welkom, hoe klein ook. Klik hier als u een online donatie wilt doen

18 november 2011: Bron: Clin Dev Immunol. 2010; 2010: 517493. Published online 2010 November 4. doi:  10.1155/2010/517493

Dendritische celtherapie bij prostaatkanker wordt algemeen gezien als een veelbelovende immuuntherapeutische aanpak van prostaatkanker. Denk maar aan het succes van Provenge, hoewel daar ook recent weer kritiek op is geleverd wegens mogelijke fraude. Vorige week werd een overzichtstudie gepresenteerd over dendritische celtherapie bij prostaatkanker. Met als conclusie overwegend positieve resultaten, maar ook met aanbevelingen voor nieuw op te zetten studies. Wat opvalt in deze overzichtstudie is dat als er succes wordt geboekt, is dat altijd als combinatie met dendritische cellen in contact gebracht met antigen gerelateerde immuunstimulerende middelen  of met een andere vorm van behandelen, zoals lichte dosis chemo of hormoontherapie. In deze overzichtstudie ontbreekt de hyperthermie als combinatiebehandeling, terwijl deze toch ook een meerwaarde kan hebben blijkt uit meerdere studies. 

Hier het korte abstract van de genoemde overzichtstudie, maar als u hier klikt kunt u het volledige studierapport vrij inzien. Onderaan dit artikel hebben we een referentielijst toegevoegd die bij deze overzichtstudie is gebruikt.  

Dendritic cells (DCs) are professional antigen-presenting cells (APCs), which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. An overview of recent developments

Source: Clin Dev Immunol. 2010; 2010: 517493. Published online 2010 November 4. doi:  10.1155/2010/517493

Dendritic Cell-Based Immunotherapy for Prostate Cancer
Hanka Jähnisch,1 Susanne Füssel,2 Andrea Kiessling,3 Rebekka Wehner,1 Stefan Zastrow,2 Michael Bachmann,1, 4 Ernst Peter Rieber,1 Manfred P. Wirth,2 and Marc Schmitz1, 4*
1Institute of Immunology, Medical Faculty, Technical University of Dresden, Fetscherstr. 74, 01307 Dresden, Germany
2Department of Urology, Medical Faculty, Technical University of Dresden, 01307 Dresden, Germany
3Translational Sciences and Safety, Novartis Biologic, 4002 Basel, Switzerland
4Center for Regenerative Therapies Dresden, 01307 Dresden, Germany
*Marc Schmitz: marc.schmitz@tu-dresden.de
Academic Editor: Yang Liu
Received June 30, 2010; Accepted October 7, 2010.
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. Thus, clinical trials enrolling prostate cancer patients were conducted, which were based on the administration of DCs loaded with tumor-associated antigens. These clinical trials revealed that DC-based immunotherapeutic strategies represent safe and feasible concepts for the induction of immunological and clinical responses in prostate cancer patients. In this context, the administration of the vaccine sipuleucel-T consisting of autologous peripheral blood mononuclear cells including APCs, which were pre-exposed in vitro to the fusion protein PA2024, resulted in a prolonged overall survival among patients with metastatic castration-resistent prostate cancer. In April 2010, sipuleucel-T was approved by the United States Food and Drug Administration for prostate cancer therapy.

 

References:

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer Journal for Clinicians. 2009;59(4):225–249.
2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Annals of Oncology. 2007;18(3):581–592. [PubMed]
3. Heidenreich A, Aus G, Bolla M, et al. EAU guidelines on prostate cancer. European Urology. 2008;53(1):68–80. [PubMed]
4. Damber J-E, Aus G. Prostate cancer. The Lancet. 2008;371(9625):1710–1721.
5. Roehl KA, Han M, Ramos CG, Antenor JAV, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. The Journal of Urology. 2004;172(3):910–914. [PubMed]
6. Lattouf J-B, Saad F. Bone complications of androgen deprivation therapy: screening, prevention, and treatment. Current Opinion in Urology. 2010;20(3):247–252. [PubMed]
7. Smith MR, Egerdie B, Toriz NH, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. The New England Journal of Medicine. 2009;361(8):745–755. [PMC free article] [PubMed]
8. Tannock IF, De Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine. 2004;351(15):1502–1512. [PubMed]
9. Petrylak DP, Tangen CM, Hussain MHA, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England Journal of Medicine. 2004;351(15):1513–1520. [PubMed]
10. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annual Review of Immunology. 2000;18:767–811.
11. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–426. [PubMed]
12. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunology Today. 1997;18(4):175–182. [PubMed]
13. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology. 2009;21(2):233–240. [PubMed]
14. Wang R-F. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends in Immunology. 2001;22(5):269–276. [PubMed]
15. Fernandez NC, Lozier A, Flament C, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine. 1999;5(4):405–411.
16. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Münz C. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. The Journal of Experimental Medicine. 2002;195(3):343–351. [PMC free article] [PubMed]
17. Wehner R, Löbel B, Bornhäuser M, et al. Reciprocal activating interaction between 6-sulfo LacNAc+ dendritic cells and NK cells. International Journal of Cancer. 2009;124(2):358–366.
18. Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) The Journal of Experimental Medicine. 1999;190(8):1155–1164. [PMC free article] [PubMed]
19. Schmitz M, Zhao S, Deuse Y, et al. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. The Journal of Immunology. 2005;174(7):4127–4134. [PubMed]
20. Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. The Journal of Experimental Medicine. 2007;204(6):1441–1451. [PMC free article] [PubMed]
21. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nature Reviews Immunology. 2005;5(4):296–306.
22. Gilboa E. DC-based cancer vaccines. The Journal of Clinical Investigation. 2007;117(5):1195–1203. [PMC free article] [PubMed]
23. Xue B-H, Zhang Y, Sosman JA, Peace DJ. Induction of human cytotoxic T lymphocytes specific for prostate- specific antigen. Prostate. 1997;30(2):73–78. [PubMed]
24. Perambakam S, Xue B-H, Sosman JA, Peace DJ. Induction of Tc2 cells with specificity for prostate-specific antigen from patients with hormone-refractory prostate cancer. Cancer Immunology, Immunotherapy. 2002;51(5):263–270.
25. Correale P, Walmsley K, Nieroda C, et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. Journal of the National Cancer Institute. 1997;89(4):293–300. [PubMed]
26. Correale P, Walmsley K, Zaremba S, Zhu M, Schlom J, Tsang KY. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. The Journal of Immunology. 1998;161(6):3186–3194. [PubMed]
27. Heiser A, Dahm P, Yancey DR, et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. The Journal of Immunology. 2000;164(10):5508–5514. [PubMed]
28. Tjoa B, Boynton A, Kenny G, Ragde H, Misrock SL, Murphy G. Presentation of prostate tumor antigens by dendritic cells stimulates T-cell proliferation and cytotoxicity. Prostate. 1996;28(1):65–69. [PubMed]
29. Murphy GP, Tjoa B, Ragde H, Kenny G, Boynton A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate. 1996;29(6):371–380. [PubMed]
30. Peshwa MV, Shi JD, Ruegg C, Laus R, Van Schooten WCA. Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate. 1998;36(2):129–138. [PubMed]
31. Dannull J, Diener P-A, Prikler L, et al. Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Research. 2000;60(19):5522–5528. [PubMed]
32. Kiessling A, Schmitz M, Stevanovic S, et al. Prostate stem cell antigen: identification of immunogenic peptides and assessment of reactive CD8+ T cells in prostate cancer patients. International Journal of Cancer. 2002;102(4):390–397.
33. Kiessling A, Stevanovic S, Füssel S, et al. Identification of an HLA-A[low asterisk]0201-restricted T-cell epitope derived from the prostate cancer-associated protein prostein. British Journal of Cancer. 2004;90(5):1034–1040. [PMC free article] [PubMed]
34. Kiessling A, Füssel S, Schmitz M, et al. Identification of an HLA-A[low asterisk]0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8. Prostate. 2003;56(4):270–279. [PubMed]
35. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10(6):673–679. [PubMed]
36. Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(9):4796–4801. [PMC free article] [PubMed]
37. Schmitz M, Diestelkoetter P, Weigle B, et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Research. 2000;60(17):4845–4849. [PubMed]
38. Andersen MH, Pedersen LO, Becket JC, Thor Straten P. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Research. 2001;61(3):869–872. [PubMed]
39. Lundwall A, Lilja H. Molecular cloning of human prostate specific antigen cDNA. FEBS Letters. 1987;214(2):317–322. [PubMed]
40. Oesterling JE. Prostate specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. The Journal of Urology. 1991;145(5):907–923. [PubMed]
41. Balk SP, Ko Y-J, Bubley GJ. Biology of prostate-specific antigen. Journal of Clinical Oncology. 2003;21(2):383–391. [PubMed]
42. Freedland SJ, Hotaling JM, Fitzsimons NJ, et al. PSA in the new millennium: a powerful predictor of prostate cancer prognosis and radical prostatectomy outcomes—results from the SEARCH database. European Urology. 2008;53(4):758–766. [PubMed]
43. Terasawa H, Tsang K-Y, Gulley J, Arlen P, Schlom J. Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clinical Cancer Research. 2002;8(1):41–53. [PubMed]
44. Murphy GP, Elgamal A-AA, Su SL, Bostwick DG, Holmes EH. Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer. 1998;83(11):2259–2269. [PubMed]
45. Kawakami M, Nakayama J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Research. 1997;57(12):2321–2324. [PubMed]
46. Solin T, Kontturi M, Pohlmann R, Vihko P. Gene expression and prostate specificity of human prostatic acid phosphatase (PAP): evaluation by RNA blot analyses. Biochimica et Biophysica Acta. 1990;1048(1):72–77. [PubMed]
47. Reiter RE, Gu Z, Watabe T, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(4):1735–1740. [PMC free article] [PubMed]
48. Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000;19(10):1288–1296. [PubMed]
49. Xu J, Kalos M, Stolk JA, et al. Identification and characterization of prostein, a novel prostate-specific protein. Cancer Research. 2001;61(4):1563–1568. [PubMed]
50. Kalos M, Askaa J, Hylander BL, et al. Prostein expression is highly restricted to normal and malignant prostate tissues. Prostate. 2004;60(3):246–256. [PubMed]
51. Tsavaler L, Shapero MH, Morkowski S, Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Research. 2001;61(9):3760–3769. [PubMed]
52. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–2015. [PubMed]
53. Thorn M, Wang M, Kløverpris H, et al. Identification of a new hTERT-derived HLA-A[low asterisk]0201 restricted, naturally processed CTL epitope. Cancer Immunology, Immunotherapy. 2007;56(11):1755–1763.
54. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Medicine. 1997;3(8):917–921.
55. Koike H, Sekine Y, Kamiya M, Nakazato H, Suzuki K. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer. Urology. 2008;72(6):1229–1233. [PubMed]
56. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Medicine. 1995;1(12):1297–1302.
57. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Medicine. 2000;6(9):1011–1017.
58. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Medicine. 1996;2(1):52–58.
59. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Medicine. 1998;4(3):328–332.
60. Thurner B, Haendle I, Röder C, et al. Vaccination with Mage-3A1 peptide-pulsed nature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. The Journal of Experimental Medicine. 1999;190(11):1669–1678. [PMC free article] [PubMed]
61. Wierecky J, Müller MR, Wirths S, et al. Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Research. 2006;66(11):5910–5918. [PubMed]
62. Tjoa BA, Erickson SJ, Bowes VA, et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate. 1997;32(4):272–278. [PubMed]
63. Tjoa BA, Simmons SJ, Bowes VA, et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998;36(1):39–44. [PubMed]
64. Vonderheide RH, Domchek SM, Schultze JL, et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clinical Cancer Research. 2004;10(3):828–839. [PubMed]
65. Fuessel S, Meye A, Schmitz M, et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate. 2006;66(8):811–821. [PubMed]
66. Waeckerle-Men Y, Uetz-Von Allmen E, Fopp M, et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunology, Immunotherapy. 2006;55(12):1524–1533.
67. Thomas-Kaskel A-K, Zeiser R, Jochim R, et al. Vaccination of advanced prostate cancer patients with PSCA and PSA peptide-loaded dendritic cells induces DTH responses that correlate with superior overall survival. International Journal of Cancer. 2006;119(10):2428–2434.
68. Hildenbrand B, Sauer B, Kalis O, et al. Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous PSA-peptide loaded dendritic cells—a pilot study. Prostate. 2007;67(5):500–508. [PubMed]
69. Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer Immunotherapy. The Journal of Immunology. 2001;167(12):7150–7156. [PubMed]
70. Barrou B, Benoît G, Ouldkaci M, et al. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunology, Immunotherapy. 2004;53(5):453–460.
71. Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. Journal of Clinical Oncology. 2000;18(23):3894–3903. [PubMed]
72. Burch PA, Croghan GA, Gastineau DA, et al. Immunotherapy (APC8015, provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial. Prostate. 2004;60(3):197–204. [PubMed]
73. Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer. 2006;107(1):67–74. [PubMed]
74. Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with Sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. Journal of Clinical Oncology. 2006;24(19):3089–3094. [PubMed]
75. Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–3679. [PubMed]
76. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistent prostate cancer. The New England Journal of Medicine. 2010;363(5):411–422. [PubMed]
77. Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. The Journal of Clinical Investigation. 2002;109(3):409–417. [PMC free article] [PubMed]
78. Su Z, Dannull J, Yang BK, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. The Journal of Immunology. 2005;174(6):3798–3807. [PubMed]
79. Mu LJ, Kyte JA, Kvalheim G, et al. Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. British Journal of Cancer. 2005;93(7):749–756. [PMC free article] [PubMed]
80. Higano CS, Vogelzang NJ, Sosman JA, Feng A, Caron D, Small EJ. Safety and biological activity of repeated doses of recombinant human Flt3 ligand in patients with bone scan-negative hormone-Refractory prostate cancer. Clinical Cancer Research. 2004;10(4):1219–1225. [PubMed]


Plaats een reactie ...

Reageer op "Dendritische celtherapie bij prostaatkanker: overzichtstudie is positief over deze aanpak, maar vraagt meer onderzoek naar combinaties van dendritische cellen met tumor gerelateerde antigenen - eiwitten en in combinatie met andere behandelingswijzen."


Gerelateerde artikelen
 

Gerelateerde artikelen

Prostac-VF: immuuntherapie >> ProscaVax, een vaccin bestaande >> Weinig patienten met prostaatkanker >> Immuuntherapie met pembrolizumab >> Immuuntherapie voor uitgezaaide >> Provenge een immuuntherapie >> immuuntherapie met pembrolizumab >> Immuuntherapie met dendritische >> Immuuntherapie: Drie nieuwe >> Erasmus Medisch Centrum start >>