24 augustus 2021: Bron:  Author manuscript; available in PMC 2010 Sep 6

Fotodynamische therapie (PDT) bij kanker maakt gebruik van niet-toxische fotosensitizers en onschadelijk zichtbaar licht in combinatie met zuurstof om kwaadaardige tumorcellen - kankergezwellen te doden. Daardoor ontstaat er necrotisch weefsel in het lichaam. Wat nog wel eens gebeurt is dat dit necrotisch weefsel het immuunsysteem van de kankerpatiënt stimuleert en soms ontstaat er een vorm van antitumor immuniteit. Blijkt het immuunsysteem de nog levende kankercellen elders in het lichaam te herkennen als lichaamsvreemd en worden deze kankercellen aangezet tot apoptose - zelfdoding. Werkt dan uiteindelijk als immuuntherapie.

In tegenstelling tot chirurgie, radiotherapie en chemotherapie die meestal immuunonderdrukkend zijn stimuleert Fotodynamische therapie (PDT) juist het immuunsysteem. 

In dit artikel worden een aantal veel gebruikte en door de FDA goedgekeurde fotosensitizers besproken: Clinical development of photodynamic agents and therapeutic applications.

Over radachlorin en bremachlorin niet-toxische fotosensitizers van Andrei Reshetnickov staat op onze website ook veel informatie. Zie deze search.


In een mooi overzicht met een lange referentielijst beschrijven drie wetenschappers Ana P. Castano,* Pawel Mroz,* and Michael R. Hamblin*‡ de geschiedenis van PDT - foto dynamische therapie en hoe antitumorimmuniteit kan ontstaan en/of worden gestimuleerd door de PDT te combineren met andere middelen. 

Een koste samenvatting uit het artikel vertaalt via google translate:

  • Fotodynamische therapie (PDT) maakt gebruik van niet-toxische kleurstoffen en onschadelijk zichtbaar licht in combinatie met zuurstof om zeer reactieve zuurstofsoorten te produceren die cellen doden.
  • Naast het vernietigen van tumorweefsel door een proces dat cellulaire necrose en de expressie van stress-eiwitten kan veroorzaken, veroorzaakt PDT een acute ontsteking en trekt het leukocyten aan naar behandelde tumoren.
  • PDT zou de immunogeniciteit van dode tumorcellen kunnen verhogen door nieuwe antigenen bloot te stellen of te creëren, en door heatshock-eiwitten te induceren die de efficiëntie van antigeenkruispresentatie verhogen om effectievere tumorspecifieke cytotoxische T-cellen te vormen.
  • De pro-inflammatoire effecten van PDT kunnen de dendritische celmigratie, antigeenopname en rijping verhogen.
  • PDT kan tumorgenezingen en langdurige tumorspecifieke immuniteit (geheugen) produceren, zoals is aangetoond door de afstoting van tumoren bij hernieuwde blootstelling in bepaalde muis- en ratmodellen.
  • PDT is gecombineerd met een reeks immunostimulerende therapieën, waaronder microbiële adjuvantia, om de door PDT alleen geproduceerde antitumorimmuniteit te verhogen.
  • Er zijn slechts enkele meldingen van de immunostimulerende effecten van PDT bij mensen, maar toenemende herkenning van het effect zou moeten leiden tot verder werk en mogelijk tot een beter resultaat voor de patiënt.

Het is een heel lang artikel en al beetje gedateerd, want uit 2010, maar het is nog steeds actueel en staat op de website van het Amerikaanse National Library U kunt zelf het artikel downloaden of inzien: klik op de volgende PDF ijms-20-03339

Hier het abstract plus referentielijst:

 Author manuscript; available in PMC 2010 Sep 6.
Published in final edited form as:
PMCID: PMC2933780
NIHMSID: NIHMS232384
PMID: 16794636

Photodynamic therapy and anti-tumour immunity

Abstract

Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells.

The principle of photodynamic therapy (PDT) was first proposed over 100 years ago. A recent review in Nature Reviews Cancer by Rakesh Jain and colleagues described some of the historical milestones in the development of PDT as a cancer treatment. Many of the photosensitizers (PSs) that have been studied since PDT was first proposed are based on a porphyrin-like nucleus. PSs function as catalysts when they absorb visible light and then convert molecular oxygen to a range of highly reactive oxygen species (ROS). The ROS that are produced during PDT have been shown to destroy tumours by multifactorial mechanisms, (FIG. 1). PDT has a direct affect on cancer cells, producing cell death by necrosis and/or apoptosis. PDT also has an affect on the tumour vasculature, whereby illumination and ROS production causes the shutdown of vessels and subsequently deprives the tumour of oxygen and nutrients,. Finally, PDT also has a significant effect on the immune system, which can be either immunostimulatory or immunosuppressive.

An external file that holds a picture, illustration, etc.
Object name is nihms232384f1.jpg
The mechanism of action on tumours in photodynamic therapy

The photosensitizer (PS) absorbs light and an electron moves to the first short-lived excited singlet state. This is followed by intersystem crossing, in which the excited electron changes its spin and produces a longer-lived triplet state. The PS triplet transfers energy to ground-state triplet oxygen, which produces reactive singlet oxygen (1O2). 1O2 can directly kill tumour cells by the induction of necrosis and/or apoptosis, can cause destruction of tumour vasculature and produces an acute inflammatory response that attracts leukocytes such as dendritic cells and neutrophils.

Most of the commonly used cancer therapies are immunosuppressive. Chemotherapy and ionizing radiation delivered at doses sufficient to destroy tumours are known to be toxic to the bone marrow, which is the source of all cells of the immune system, and neutropaenia and other forms of myelosuppression are often the dose-limiting toxicity of these therapies. However, it should be noted that low doses of either ionizing radiation, or chemotherapy can have immunostimulatory effects, including the induction of heat-shock proteins. Less well known is the fact that major surgery can also have an immunosuppressive effect that leads to a significant diminution of lymphocyte and natural killer (NK) cell function. The ideal cancer therapy would not only destroy the primary tumour, but at the same time trigger the immune system to recognize, track down and destroy any remaining tumour cells, be they at or near the site of the primary tumour or distant micrometastases. PDT, in common with some other local cancer therapies such as cryotherapy and hyperthermia, might have these desirable properties.

The importance of the immune system in the host response against cancer has been studied for many years, but immunotherapy is only accepted as a treatment option in a few cases. More than 700 cases of spontaneous regression in advanced tumours in patients have been reported, including malignant melanoma, hepatocellular carcinoma, lung metastases after destruction of the primary renal cell carcinoma and Hodgkin disease. Moreover, such spontaneous regressions normally occur following an infection.

Cancer immunotherapy (even if unrecognized as such) has a long history. The Egyptians noted that surgical opening of the tumour site could produce tumour regression, one would assume through the generation of infection and activation of the immune system. Over 100 years ago a surgeon from New York, William Coley, discovered that some infections could produce tumour regression, and he created a ‘vaccine’ based initially on erysipelas-causing bacteria. The bacillus Calmette–Guerin (BCG) vaccine derived from Mycobacterium bovis has been used to prevent tuberculosis since 1921, and has been applied for immunostimulation in neoplasia since the 1960s. The most effective use of this treatment is for superficial bladder cancer.

Since these early studies, groundbreaking discoveries in immunology have identified the roles of lymphocyte classes and subclasses, dendritic cells and antigen presentation, interleukins (IL) and other cytokines, and tumour-associated antigens and major histocompatibility complex (MHC) molecules in mediating the anti-tumour immune response. However, most cancers avoid or escape immune control,, and death from metastatic cancer is still the most likely result. In this Review we discuss the effect of PDT on the anti-tumour immune response, and the role of PDT in stimulating and suppressing both the innate immune response and adaptive immune response. We also summarize the available data on combinations of PDT with other immunostimulatory therapies.







References

1. Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Res. 2003;23:3591–3600. [PubMed[]

2. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature Rev. Cancer. 2003;3:380–387. [PubMed] [] A recent review on the theory and applications of PDT in cancer treatment.
3. Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 2004;47:3897–3915. [PubMed] []
4. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two — cellular signalling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther. 2005;2:1–23. [PMC free article] [PubMed] []
5. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn. Photodyn. Ther. 2005;2:91–106. [PMC free article] [PubMed] []
6. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem. Photobiol. Sci. 2002;1:1–21. [PubMed] []
7. Krammer B. Vascular effects of photodynamic therapy. Anticancer Res. 2001;21:4271–4277. [PubMed] []
8. Dolmans DE, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002;62:2151–2156. [PubMed] []
9. Korbelik M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 1996;14:329–334. [PubMed] []
10. van Duijnhoven FH, et al. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology. 2003;207:105–113. [PubMed] []
11. Canti G, De Simone A, Korbelik M. Photodynamic therapy and the immune system in experimental oncology. Photochem. Photobiol. Sci. 2002;1:79–80. [PubMed] []
12. Lugade AA, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005;174:7516–7523. [PubMed] []
13. Friedman EJ. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr. Pharm. Des. 2002;8:1765–1780. [PubMed] []
14. Crum ED. Effect of cisplatin upon expression of in vivo immune tumor resistance. Cancer Immunol. Immunother. 1993;36:18–24. [PubMed] []
15. Sierra-Rivera E, Voorhees GJ, Freeman ML. γ irradiation increases hsp-70 in Chinese hamster ovary cells. Radiat. Res. 1993;135:40–45. [PubMed] []
16. Ng CS, et al. Thoracotomy is associated with significantly more profound suppression in lymphocytes and natural killer cells than video-assisted thoracic surgery following major lung resections for cancer. J. Invest. Surg. 2005;18:81–88. [PubMed] []
17. Fontana G, et al. Immunological response to prostatic cancer cryotherapy: certainties, controversies, hypotheses. Prog. Clin. Biol. Res. 1989;303:299–300. [PubMed] []
18. Ivarsson K, et al. Resistance to tumour challenge after tumour laser thermotherapy is associated with a cellular immune response. Br. J. Cancer. 2005;93:435–440. [PMC free article] [PubMed] []
19. Challis GB, Stam HJ. The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol. 1990;29:545–550. [PubMed] [] A collection of 744 cases of spontaneous regressions of cancer in humans, showing the theoretical justification for immunotherapy.
20. Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J. 2003;79:672–680. [PMC free article] [PubMed] []
21. Starnes CO. Coley’s toxins in perspective. Nature. 1992;357:11–12. [PubMed] []
22. Coley WB. Treatment of inoperable malignant tumors with toxins of erysipelas and the bacillus prodigiosus. Trans. Am. Surg. Assn. 1894;12:183–212. []
23. Bassi P. BCG (Bacillus of Calmette Guerin) therapy of high-risk superficial bladder cancer. Surg. Oncol. 2002;11:77–83. [PubMed] []
24. Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv. Immunol. 1979;27:51–177. [PubMed] []
25. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. [PubMed] []
26. Belardelli F, Ferrantini M. Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol. 2002;23:201–208. [PubMed] []
27. Kern DE, Klarnet JP, Jensen MC, Greenberg PD. Requirement for recognition of class II molecules and processed tumor antigen for optimal generation of syngeneic tumor-specific class I-restricted CTL. J. Immunol. 1986;136:4303–4310. [PubMed] []
28. Ahmad M, Rees RC, Ali SA. Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol. Immunother. 2004;53:844–854. [PubMed] []
29. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer. 2005;5:263–274. [PubMed] []
30. Agostinis P, Buytaert E, Breyssens H, Hendrickx N. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem. Photobiol. Sci. 2004;3:721–729. [PubMed] []
31. Moor AC. Signaling pathways in cell death and survival after photodynamic therapy. J. Photochem. Photobiol. B. 2000;57:1–13. [PubMed] []
32. Plaetzer K, Kiesslich T, Oberdanner CB, Krammer B. Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr. Pharm. Des. 2005;11:1151–1165. [PubMed] []
33. Chen B, et al. Photodynamic therapy with hypericin induces vascular damage and apoptosis in the RIF-1 mouse tumor model. Int. J. Cancer. 2002;98:284–290. [PubMed] []
34. Kaneko T, Chiba H, Yasuda T, Kusama K. Detection of photodynamic therapy-induced early apoptosis in human salivary gland tumor cells in vitro and in a mouse tumor model. Oral Oncol. 2004;40:787–792. [PubMed] []
35. Lilge L, Portnoy M, Wilson BC. Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue. Br. J. Cancer. 2000;83:1110–1117. [PMC free article] [PubMed] []
36. Magner WJ, Tomasi TB. Apoptotic and necrotic cells induced by different agents vary in their expression of MHC and costimulatory genes. Mol. Immunol. 2005;42:1033–1042. [PubMed] []
37. Bartholomae WC, et al. T cell immunity induced by live, necrotic, and apoptotic tumor cells. J. Immunol. 2004;173:1012–1022. [PubMed] []
38. Scheffer SR, et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int. J. Cancer. 2003;103:205–211. [PubMed] []
39. Shaif-Muthana M, et al. Dead or alive: immunogenicity of human melanoma cells when presented by dendritic cells. Cancer Res. 2000;60:6441–6447. [PubMed] []
40. Zitvogel L, et al. Immune response against dying tumor cells. Adv. Immunol. 2004;84:131–179. [PubMed] []
41. Melcher A, Gough M, Todryk S, Vile R. Apoptosis or necrosis for tumor immunotherapy: what’s in a name? J. Mol. Med. 1999;77:824–833. [PubMed] []
42. Yenari MA, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann. NY Acad. Sci. 2005;1053:74–83. [PubMed] []
43. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65:1018–1026. [PubMed] []
44. Todryk S, et al. Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol. 1999;163:1398–1408. [PubMed] []
45. Gomer CJ, et al. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res. 1996;56:2355–2360. [PubMed] [] Demonstrates that PDT induces HSP expression both in vitro and in vivo.
46. Mitra S, Goren EM, Frelinger JG, Foster TH. Activation of heat shock protein 70 promoter with meso-tetrahydroxyphenyl chlorin photodynamic therapy reported by green fluorescent protein in vitro and in vivo. Photochem. Photobiol. 2003;78:615–622. [PubMed] []
47. Verwanger T, et al. Gene expression pattern following photodynamic treatment of the carcinoma cell line A-431 analysed by cDNA arrays. Int. J. Oncol. 2002;21:1353–1359. [PubMed] []
48. Verrico AK, Haylett AK, Moore JV. In vivo expression of the collagen-related heat shock protein HSP47, following hyperthermia or photodynamic therapy. Lasers Med. Sci. 2001;16:192–198. [PubMed] []
49. Hanlon JG, et al. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J. Photochem. Photobiol. B. 2001;64:55–61. [PubMed] []
50. Gomer CJ, et al. Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res. 1991;51:6574–6579. [PubMed] []
51. Nowis D, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene. 2006 Feb 6; (doi 10. 1038/sj.onc1209378) [PMC free article] [PubMed] []
52. Jiang H, et al. Selective depletion of a thymocyte subset in vitro with an immunomodulatory photosensitizer. Clin. Immunol. 1999;91:178–187. [PubMed] []
53. Jiang H, et al. Selective action of the photosensitizer QLT0074 on activated human T lymphocytes. Photochem. Photobiol. 2002;76:224–231. [PubMed] []
54. Boumedine RS, Roy DC. Elimination of alloreactive T cells using photodynamic therapy. Cytotherapy. 2005;7:134–143. [PubMed] []
55. Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin. Investig. Drugs. 1998;7:57–64. [PubMed] []
56. Edstrom DW, Porwit A, Ros AM. Photodynamic therapy with topical 5-aminolevulinic acid for mycosis fungoides: clinical and histological response. Acta Derm. Venereol. 2001;81:184–188. [PubMed] []
57. Steubing RW, et al. Activation of macrophages by Photofrin II during photodynamic therapy. J. Photochem. Photobiol. B. 1991;10:133–145. [PubMed] []
58. Evans S, et al. Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J. Natl Cancer Inst. 1990;82:34–39. [PubMed] [] Shows that PDT produces TNFα from macrophages.
59. Yamamoto N, et al. Photodynamic immunopotentiation: in vitro activation of macrophages by treatment of mouse peritoneal cells with haematoporphyrin derivative and light. Eur. J. Cancer. 1991;27:467–471. [PubMed] []
60. Yamamoto N, Naraparaju VR. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor. Cancer Res. 1997;57:2187–2192. [PubMed] []
61. Korbelik M, Krosl G. Enhanced macrophage cytotoxicity against tumor cells treated with photodynamic therapy. Photochem. Photobiol. 1994;60:497–502. [PubMed] []
62. Marshall JF, Chan WS, Hart IR. Effect of photodynamic therapy on anti-tumor immune defenses: comparison of the photosensitizers hematoporphyrin derivative and chloro-aluminum sulfonated phthalocyanine. Photochem. Photobiol. 1989;49:627–632. [PubMed] []
63. Gollnick SO, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br. J. Cancer. 2003;88:1772–1779. [PMC free article] [PubMed] [] Describes the production of pro-inflammatory cytokines after PDT in vivo.
64. Yom SS, et al. Elevated serum cytokine levels in mesothelioma patients who have undergone pleurectomy or extrapleural pneumonectomy and adjuvant intraoperative photodynamic therapy. Photochem. Photobiol. 2003;78:75–81. [PubMed] []
65. Henderson BW, Donovan JM. Release of prostaglandin E2 from cells by photodynamic treatment in vitro. Cancer Res. 1989;49:6896–6900. [PubMed] []
66. Henderson BW, Owczarczak B, Sweeney J, Gessner T. Effects of photodynamic treatment of platelets or endothelial cells in vitro on platelet aggregation. Photochem. Photobiol. 1992;56:513–521. [PubMed] []
67. Fingar VH, Wieman TJ, Doak KW. Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction. Cancer Res. 1990;50:2599–2603. [PubMed] []
68. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–217. [PubMed] []
69. Sun SC, Xiao G. Deregulation of NF-κB and its upstream kinases in cancer. Cancer Metastasis Rev. 2003;22:405–422. [PubMed] []
70. Baeuerle PA, Henkel T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 1994;12:141–179. [PubMed] []
71. Haefner B. NF-κB: arresting a major culprit in cancer. Drug Discov. Today. 2002;7:653–663. [PubMed] []
72. Ryter SW, Gomer CJ. Nuclear factor κB binding activity in mouse L1210 cells following photofrin II-mediated photosensitization. Photochem. Photobiol. 1993;58:753–756. [PubMed] [] First report of PDT triggering NFκB signalling.
73. Kick G, et al. Photodynamic therapy induces expression of interleukin 6 by activation of AP-1 but not NF-κB DNA binding. Cancer Res. 1995;55:2373–2379. [PubMed] []
74. Matroule JY, et al. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-κB through the interleukin-1 receptor-dependent signaling pathway. J. Biol. Chem. 1999;274:2988–3000. [PubMed] []
75. Matroule JY, et al. Role of nuclear factor-κB in colon cancer cell apoptosis mediated by aminopyropheophorbide photosensitization. Photochem. Photobiol. 1999;70:540–548. [PubMed] []
76. Granville DJ, et al. Nuclear factor-κB activation by the photochemotherapeutic agent verteporfin. Blood. 2000;95:256–262. [PubMed] []
77. Ferrario A, et al. Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy- mediated tumor response. Cancer Res. 2002;62:3956–3961. [PubMed] []
78. Mitsuhashi M, et al. Regulation of interleukin-12 gene expression and its anti-tumor activities by prostaglandin E2 derived from mammary carcinomas. J. Leukoc. Biol. 2004;76:322–332. [PMC free article] [PubMed] []
79. Makowski M, et al. Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clin. Cancer Res. 2003;9:5417–5422. [PubMed] []
80. Volanti C, et al. Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene. 2005;24:2981–2991. [PubMed] []
81. Hendrickx N, et al. Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J. Biol. Chem. 2003;278:52231–52239. [PubMed] []
82. Gollnick SO, et al. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res. 1997;57:3904–3909. [PubMed] []
83. Henderson BW, et al. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004;64:2120–2126. [PubMed] []
84. Coutier S, et al. Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mTHPC)-sensitized HT29 xenografts in nude mice. Radiat. Res. 2002;158:339–345. [PubMed] []
85. Sluiter W, de Vree WJ, Pietersma A, Koster JF. Prevention of late lumen loss after coronary angioplasty by photodynamic therapy: role of activated neutrophils. Mol. Cell. Biochem. 1996;157:233–238. [PubMed] []
86. de Vree WJ, Fontijne-Dorsman AN, Koster JF, Sluiter W. Photodynamic treatment of human endothelial cells promotes the adherence of neutrophils in vitro. Br. J. Cancer. 1996;73:1335–1340. [PMC free article] [PubMed] []
87. Volanti C, et al. Downregulation of ICAM-1 and VCAM-1 expression in endothelial cells treated by photodynamic therapy. Oncogene. 2004;23:8649–8658. [PubMed] []
88. de Vree WJ, et al. Evidence for an important role of neutrophils in the efficacy of photodynamic therapy in vivo. Cancer Res. 1996;56:2908–2911. [PubMed] [] Shows that neutrophils have a crucial role in the PDT response in vivo.
89. Krosl G, Korbelik M, Dougherty GJ. Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. Br. J. Cancer. 1995;71:549–555. [PMC free article] [PubMed] []
90. Cecic I, Parkins CS, Korbelik M. Induction of systemic neutrophil response in mice by photodynamic therapy of solid tumors. Photochem. Photobiol. 2001;74:712–720. [PubMed] []
91. Kajita T, Hugli TE. C5a-induced neutrophilia. A primary humoral mechanism for recruitment of neutrophils. Am. J. Pathol. 1990;137:467–477. [PMC free article] [PubMed] []
92. Cecic I, Serrano K, Gyongyossy-Issa M, Korbelik M. Characteristics of complement activation in mice bearing Lewis lung carcinomas treated by photodynamic therapy. Cancer Lett. 2005;225:215–223. [PubMed] []
93. Sun J, Cecic I, Parkins CS, Korbelik M. Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours. Photochem. Photobiol. Sci. 2002;1:690–695. [PubMed] []
94. Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors. Cancer Lett. 2002;183:43–51. [PubMed] []
95. Canti G, et al. Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light. Anti-Cancer Drugs. 1994;5:443–447. [PubMed] []
96. Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56:5647–5652. [PubMed] [] One of the first reports to show T-cell mediated immune response against cancer after PDT.
97. Korbelik M, Dougherty GJ. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res. 1999;59:1941–1946. [PubMed] []
98. Hendrzak-Henion JA, et al. Role of the immune system in mediating the antitumor effect of benzophenothiazine photodynamic therapy. Photochem. Photobiol. 1999;69:575–581. [PubMed] []
99. Castano AP, Liu Q, Hamblin MR. A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br. J. Cancer. 2006;94:391–397. [PMC free article] [PubMed] []
100. Uenaka A, Nakayama E. Murine leukemia RL male 1 and sarcoma Meth A antigens recognized by cytotoxic T lymphocytes (CTL) Cancer Sci. 2003;94:931–936. [PubMed] []
101. Gollnick SO, Vaughan L, Henderson BW. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Res. 2002;62:1604–1608. [PubMed] [] Shows that PDT is especially effective in preparing vaccines from tumour cell lysates.
102. Korbelik M, Sun J. Photodynamic therapy-generated vaccine for cancer therapy. Cancer Immunol. Immunother. 2005;55:900–909. [PubMed] []
103. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol. 2003;21:335–376. [PubMed] []
104. Kadowaki N, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 2001;194:863–869. [PMC free article] [PubMed] []
105. Krug A, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 2001;31:3026–3037. [PubMed] []
106. Supajatura V, et al. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 2001;167:2250–2256. [PubMed] []
107. Seya T, et al. Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer. Anticancer Res. 2003;23:4369–4376. [PubMed] []
108. Myers RC, et al. Modulation of hematoporphyrin derivative-sensitized phototherapy with corynebacterium parvum in murine transitional cell carcinoma. Urology. 1989;33:230–235. [PubMed] []
109. Korbelik M, Sun J, Posakony JJ. Interaction between photodynamic therapy and BCG immunotherapy responsible for the reduced recurrence of treated mouse tumors. Photochem. Photobiol. 2001;73:403–409. [PubMed] []
110. Korbelik M, Cecic I. Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment. J. Photochem. Photobiol. B. 1998;44:151–158. [PubMed] []
111. Uehara M, et al. Enhancement of the photodynamic antitumor effect by streptococcal preparation OK-432 in the mouse carcinoma. Cancer Immunol. Immunother. 2000;49:401–409. [PubMed] []
112. Taylor PR, et al. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 2002;169:3876–3882. [PubMed] []
113. Roeder A, et al. Toll-like receptors as key mediators in innate antifungal immunity. Med. Mycol. 2004;42:485–498. [PubMed] []
114. Krosl G, Korbelik M. Potentiation of photodynamic therapy by immunotherapy: the effect of schizophyllan (SPG) Cancer Lett. 1994;84:43–49. [PubMed] []
115. Chen WR, et al. Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant. Photochem. Photobiol. 2005;81:190–195. [PubMed] []
116. Korbelik M, Sun J, Cecic I, Serrano K. Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors. Photochem. Photobiol. Sci. 2004;3:812–816. [PubMed] []
117. Korbelik M, Naraparaju VR, Yamamoto N. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer. Br. J. Cancer. 1997;75:202–207. [PMC free article] [PubMed] []
118. Bellnier DA. Potentiation of photodynamic therapy in mice with recombinant human tumor necrosis factor-α J. Photochem. Photobiol. B. 1991;8:203–210. [PubMed] []
119. Golab J, et al. Potentiation of the anti-tumour effects of Photofrin-based photodynamic therapy by localized treatment with G-CSF. Br. J. Cancer. 2000;82:1485–1491. [PMC free article] [PubMed] []
120. Krosl G, Korbelik M, Krosl J, Dougherty GJ. Potentiation of photodynamic therapy-elicited antitumor response by localized treatment with granulocyte-macrophage colony-stimulating factor. Cancer Res. 1996;56:3281–3286. [PubMed] []
121. North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 1982;155:1063–1074. [PMC free article] [PubMed] []
122. Zagozdzon R, Golab J. Immunomodulation by anticancer chemotherapy: more is not always better (review) Int. J. Oncol. 2001;18:417–424. [PubMed] []
123. Castano AP, Hamblin MR. Anti-tumor immunity generated by photodynamic therapy in a metastatic murine tumor model. Proc. SPIE. 2005;5695:7–16. []
124. Fu S, et al. TGF-β induces Foxp3 + T-regulatory cells from CD4 + CD25- precursors. Am. J. Transplant. 2004;4:1614–1627. [PubMed] []
125. Wahl SM, Swisher J, McCartney-Francis N, Chen W. TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. J. Leukoc. Biol. 2004;76:15–24. [PubMed] []
126. Jalili A, et al. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin. Cancer Res. 2004;10:4498–4508. [PubMed] []
127. Saji H, et al. Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin. Cancer Res. 2006;12:2568–2574. [PubMed] [] The immune response produced by PDT and dendritic cells can regress a distant untreated tumour.
128. Korbelik M, Sun J. Cancer treatment by photodynamic therapy combined with adoptive immunotherapy using genetically altered natural killer cell line. Int. J. Cancer. 2001;93:269–274. [PubMed] []
129. Hunt DW, Levy JG. Immunomodulatory aspects of photodynamic therapy. Expert Opin. Investig. Drugs. 1998;7:57–64. [PubMed] []
130. Musser DA, Camacho SH, Manderscheid PA, Oseroff AR. The anatomic site of photodynamic therapy is a determinant for immunosuppression in a murine model. Photochem. Photobiol. 1999;69:222–225. [PubMed] []
131. Simkin GO, Tao JS, Levy JG, Hunt DW. IL-10 contributes to the inhibition of contact hypersensitivity in mice treated with photodynamic therapy. J. Immunol. 2000;164:2457–2462. [PubMed] [] Describes PDT-induced immune suppression as evidenced by reduction of CHS.
132. Gollnick SO, et al. IL-10 does not play a role in cutaneous Photofrin photodynamic therapy- induced suppression of the contact hypersensitivity response. Photochem. Photobiol. 2001;74:811–816. [PubMed] []
133. Musser DA, Oseroff AR. Characteristics of the immunosuppression induced by cutaneous photodynamic therapy: persistence, antigen specificity and cell type involved. Photochem. Photobiol. 2001;73:518–524. [PubMed] []
134. Ohtani M, Kobayashi Y, Watanabe N. Gene expression in the elicitation phase of guinea pig DTH and CHS reactions. Cytokine. 2004;25:246–253. [PubMed] []
135. Lou PJ, et al. Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. Br. J. Cancer. 2004;91:441–446. [PMC free article] [PubMed] []
136. Abdel-Hady ES, et al. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res. 2001;61:192–196. [PubMed] [] One of the few papers describing immune response after PDT in humans.
137. Shikowitz MJ, et al. Clinical trial of photodynamic therapy with meso-tetra (hydroxyphenyl) chlorin for respiratory papillomatosis. Arch. Otolaryngol. Head Neck Surg. 2005;131:99–105. [PubMed] []
138. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–1036. [PubMed] []

Plaats een reactie ...

Reageer op "PDT - Foto Dynamische Therapie gebruikt bij kankerpatienten stimuleert immuunsysteem en is soms succesvol als immuuntherapie. Hier een overzichtstudie"


Gerelateerde artikelen