1 december 2011: Bron: Breast Cancer Research and Treatment Volume 124, Number 1, 111-119, DOI: 10.1007/s10549-009-0712-7

Wanneer dieren met botuitzaaiingen voor die bottumoren worden behandeld met PDT - Photo Dynamische Therapie dan werkt dit net zo goed op het verdwijnen van de tumor en op de botdichtheid en sterkte van het bot dan een bisfosfonaat. Dit toont een  dierstudie met ratten aan. Het abstract is kort en geeft weinig informatie, maar wie meer wilt weten kan het volledige studierapport hier tegen betaling inzien De referentielijst die ik erbij staat geeft ook nog wat meer informatie

Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue

Volume 124, Number 1, 111-119, DOI: 10.1007/s10549-009-0712-7
 

Abstract

Breast cancer patients commonly develop metastases in the spine, which compromises its mechanical stability and can lead to skeletal related events. The current clinical standard of treatment includes the administration of systemic bisphosphonates (BP) to reduce metastatically induced bone destruction. However, response to BPs can vary both within and between patients, which motivates the need for additional treatment options for spinal metastasis. Photodynamic therapy (PDT) has been shown to be effective at treating metastatic lesions secondary to breast cancer in an athymic rat model, and is proposed as a treatment for spinal metastasis. The objective of this study was to determine the effect of PDT, alone or in combination with previously administered systemic BPs, on the structural and mechanical integrity of both healthy and metastatically involved vertebrae. Human breast carcinoma cells (MT-1) were inoculated into athymic rats (day 0). At 14 days, a single PDT treatment was administered, with and without previous BP treatment at day 7. In addition to causing tumor necrosis in metastatically involved vertebrae, PDT significantly reduced bone loss, resulting in strengthening of the vertebrae compared to untreated controls. Combined treatment with BP + PDT further enhanced bone architecture and strength in both metastatically involved and healthy bone. Overall, the ability of PDT to both ablate malignant tissue and improve the structural integrity of vertebral bone motivates its consideration as a local minimally invasive treatment for spinal metastasis secondary to breast cancer.

References

  1. Klimo P Jr, Schmidt MH (2004) Surgical management of spinal metastases. Oncologist 9:188–196
    • Logo for CrossRef
    • Logo for PubMed
  2. Ecker RD, Endo T, Wetjen NM, Krauss WE (2005) Diagnosis and treatment of vertebral column metastases. Mayo Clin Proc 80:1177–1186
    • Logo for CrossRef
    • Logo for PubMed
  3. Ross JR, Saunders Y, Edmonds PM, Patel S, Broadley KE, Johnston SR (2003) Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ 327:469
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  4. Kaijzel EL, van der Pluijm G, Lowik C (2007) Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 13:3490–3497
    • Logo for CrossRef
    • Logo for PubMed
  5. Akens MK, Hardisty MR, Wilson BC, Schwock J, Whyne CM, Burch S, Yee AJ (2009) Defining the therapeutic window of vertebral photodynamic therapy in a murine pre-clinical model of breast cancer metastasis using the photosensitizer BPD-MA (Verteporfin). Breast Cancer Res Treat. doi:10.1007/s10549-009-0356-7
  6. Won E, Akens MK, Hardisty MR, Burch S, Bisland SK, Yee AJ, Wilson BC, Whyne C (2010) Effects of photodynamic therapy on the structural integrity of vertebral bone. Spine
  7. Hardisty M, Gordon L, Agarwal P, Skrinskas T, Whyne C (2007) Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method. Med Phys 34:3127–3134
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  8. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  9. Burch S, Bisland SK, Bogaards A, Yee AJ, Whyne CM, Finkelstein JA, Wilson BC (2005) Photodynamic therapy for the treatment of vertebral metastases in a rat model of human breast carcinoma. J Orthop Res 23:995–1003
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  10. Akens MK, Yee AJ, Wilson BC, Burch S, Johnson CL, Lilge L, Bisland SK (2007) Photodynamic therapy of vertebral metastases: evaluating tumor-to-neural tissue uptake of BPD-MA and ALA-PpIX in a murine model of metastatic human breast carcinoma. Photochem Photobiol 83:1034–1039
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  11. Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38:500–508
    • Logo for CrossRef
    • Logo for PubMed
  12. van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ (2003) The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 207:105–113
    • Logo for CrossRef
    • Logo for PubMed
  13. Osaki T, Takagi S, Hoshino Y, Okumura M, Fujinaga T (2007) Antitumor effects and blood flow dynamics after photodynamic therapy using benzoporphyrin derivative monoacid ring A in KLN205 and LM8 mouse tumor models. Cancer Lett 248:47–57
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  14. Dai J, Rabie AB (2007) VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res 86:937–950
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  15. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S (2006) Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med 38:516–521
    • Logo for CrossRef
    • Logo for PubMed
  16. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  17. Zelzer E, Olsen BR (2005) Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol 65:169–187
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  18. Turner CH (2002) Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int 13:97–104
    • Logo for ChemPort
    • Logo for SpringerLink
    • Logo for PubMed
  19. Daubine F, Le Gall C, Gasser J, Green J, Clezardin P (2007) Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst 99:322–330
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  20. Berenson JR, Rosen LS, Howell A, Porter L, Coleman RE, Morley W, Dreicer R, Kuross SA, Lipton A, Seaman JJ (2001) Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 91:1191–1200
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  21. Rodan GA (1997) Bone mass homeostasis and bisphosphonate action. Bone 20:1–4
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  22. Lipton A (2008) Emerging role of bisphosphonates in the clinic—antitumor activity and prevention of metastasis to bone. Cancer Treat Rev 34:S25–S30
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  23. Kosharskyy B, Solban N, Chang SK, Rizvi I, Chang Y, Hasan T (2006) A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer. Cancer Res 66:10953–10958
    • Logo for ChemPort
    • Logo for CrossRef
    • Logo for PubMed
  24. Dimitroff CJ, Klohs W, Sharma A, Pera P, Driscoll D, Veith J, Steinkampf R, Schroeder M, Klutchko S, Sumlin A, Henderson B, Dougherty TJ, Bernacki RJ (1999) Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Investig New Drugs 17:121–135
    • Logo for ChemPort
    • Logo for SpringerLink
  25. Nazarian A, von Stechow D, Zurakowski D, Muller R, Snyder BD (2008) Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int 83:368–379
    • Logo for ChemPort
    • Logo for SpringerLink
    • Logo for PubMed
  26. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314
    • Logo for CrossRef
    • Logo for PubMed
  27. Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2:1–23
    • Logo for ChemPort
    • Logo for CrossRef

Plaats een reactie ...

Reageer op "PDT - Photo Dynamische Therapie net zo effectief als bisfosfonaten bij botuitzaaiingen vanuit borstkanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

PDT - photodynamische therapie >> PDT - Photo Dynamische Therapie >> PDT - photo dynamische therapie >> Borstkanker: PDT - Photodynamische >>