3 oktober 2022: zie ook dit artikel: https://kanker-actueel.nl/waterstoftherapie-zorgt-voor-veel-minder-bijwerkingen-en-betere-ziekteprogressie-vrije-overleving-bij-patienten-met-niet-kleincellige-longkanker-die-werden-behandeld-met-of-chemo-of-immuuntherapie.html

Zelf ben ik 11 juli begonnen met deze waterstoftherapie via een mobiel waterstofapparaat. Zie hier mijn verslag en hoe ik het ervaar. Ik zal bijhouden hoe het gaat en wat de effecten zijn: https://kanker-actueel.nl/waterstoftherapie-ik-hoop-dat-een-moleculaire-waterstoftherapie-h2-met-mobiel-waterstofapparaat-mij-gaat-helpen-in-met-name-verbeteren-van-energie-en-neurologische-uitval.html

Update artikel 17 juli 2022: Ook dit artikel uit het Medisch Dossier oktober 2020 is interessant te lezen: Bruisend van gezondheid

Citaat uit het artikel: De afgelopen tien jaar is er veel onderzoek gedaan naar het effect van waterstofgas op onze gezondheid. Honderden studies wijzen erop dat het helpt bij vele aandoeningen: van alzheimer tot gewrichtsontsteking, en van kanker tot stemmingsstoornissen. In 2019 werd de opzienbarende ontdekking gedaan dat dit gas schade aan het hart kan genezen na bijvoorbeeld een hartinfarct.>>>>>>>lees verder

Wanneer moleculair waterstof H2 gecombineerd wordt met metformin dan beschermt dat patiënten met diabetes beter tegen door diabetes veroorzaakte hartklachten.
Conclusie van de studie: Concluderend heeft onze studie aangetoond dat waterstofinhalatie Diabetische CardioMyopathie (DCM) (Hartspierziekte) verzwakt door pyroptose en fibrose te verminderen en dat waterstof kan worden gecombineerd met metformine om een krachtiger cardioprotectief effect bij DCM te vertonen.

Zie deze studie voor het abstract: Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy


15 juli 2022: Van Bas kreeg ik deze link waarin in korte video's wordt uitgelegd hoe waterstoftherapie werkt bij specifieke aandoeningen. Waaronder een video met laatste studie's bij patiënten met het coronavirus - Covid-19. Zie deze recente studie: Molecular Hydrogen: A Promising Adjunctive Strategy for the Treatment of the COVID-19

Een andere studie werd al in 2021 gepubliceerd waarin 24 patiënten ziek geworden door het coronavirus werden behandeld met moleculair waterstof: Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial
 
In dit studierapport een beschrijving van hoe waterstoftherapie werkt bij een 77 jarige patiënt ernstig ziek door het coronavirus - Covid-19: Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID-19 patient

In dit studierapport wordt beschreven hoe waterstoftherapie verbeteringen geeft aan patiënten met reuma en andere gerelateerde aandoeningen: Molecular Hydrogen: New Antioxidant and Anti-inflammatory Therapy for Rheumatoid Arthritis and Related Diseases

Scroll naar beneden op deze pagina voor meer video's: https://h2hubb.com/h2minutes/

14 juli 2022: Bron:  2022 Feb 15; 23(2): 102–122

Waterstof H2 heeft veel eigenschappen die voor de gezondheid van de mens goed kunnen zijn. Zo heeft een waterstofbehandeling anti-oxidatieve, ontstekingsremmende en anti-aging effecten en draagt ​​het bij aan de regulatie van autofagie en celdood, zo zeggen wetenschappers over deze behandeling. 

Sinds de ontdekking in 2007 dat moleculaire waterstof (H2) selectieve antioxiderende eigenschappen heeft, hebben meerdere studies aangetoond dat moleculaire waterstof H2 gunstige effecten heeft op diverse diermodellen en menselijke ziekten, waaronder zelfs vormen van kanker. Er zijn verschillende manieren hoe moleculaire waterstof H2 als behandeling kan worden toegepast: Zie daarvoor Table 1.

In een meta-analyse uit 2017 bespreken wetenschappers de biologische effecten van moleculaire waterstof (H2) en mogelijke werkingsmechanismen bij verschillende ziekten, waaronder metabool syndroom, orgaanletsel en kanker; Klik op de titel voor het studierapport: Molecular hydrogen: a preventive and therapeutic medical gas for various diseases

Een recentere studie van dit jaar beschrijft de therapeutische waarde van moleculaire waterstof (H2) voor longaandoeningen: Zie onderstaande grafieken wat moleculaire waterstof (H2) doet in de longen: 

Om de volgende tekst gemakkelijk en volledig uit te leggen wat de preventieve en therapeutische effecten van waterstof bij verschillende longziekten zijn, vatten we eerst het uitgebreide therapeutische spectrum van waterstof bij longziekten samen in Fig. 2a. We beschrijven de specifieke therapeutische effecten van waterstof in ALI in detail in Fig. 2b.

An external file that holds a picture, illustration, etc.
Object name is JZhejiangUnivSciB-23-2-102-g002a.jpg


En Fig. 2b:

An external file that holds a picture, illustration, etc.
Object name is JZhejiangUnivSciB-23-2-102-g002b.jpg



Een stukje nog vertaald uit het abstract van die studie (zie onderaan artikel ook abstract plus referenties) 

Als het primaire orgaan voor gasuitwisseling worden de longen voortdurend blootgesteld aan verschillende schadelijke irriterende stoffen uit de omgeving. Kort- of langdurende blootstelling aan deze schadelijke stoffen leidt vaak tot longbeschadigingen, met ademhalings- en longaandoeningen tot gevolg.
Acute en chronische aandoeningen van de luchtwegen hebben een hoge morbiditeit en mortaliteit en zijn wereldwijd een groot probleem voor de volksgezondheid geworden. Zo is de coronavirusziekte 2019 (COVID-19) veroorzaakt door het ernstige acute respiratoire syndroom coronavirus 2 (SARS-CoV-2) een wereldwijde pandemie geworden.
Een toenemend aantal onderzoeken heeft aangetoond dat waterstof de longen kan beschermen tegen diverse ziekten, waaronder acuut longletsel, chronische obstructieve longziekte, astma, longkanker, pulmonale arteriële hypertensie en longfibrose. In deze review belichten we de meerdere functies van waterstof en de mechanismen die ten grondslag liggen aan de beschermende effecten ervan bij verschillende longziekten, met een focus op de rol ervan in de pathogenese van ziekten en klinische betekenis. Zie deze studie: Molecular hydrogen is a promising therapeutic agent for pulmonary disease

Een andere interessante studie die mij interesseerde omdat ik die vorm van huidkanker heb in mijn hals is een studie gedaan bij patiënten met huidkanker type basaal carcinoom. In die studie hebben ze waterstof peroxide gebruikt, zie deze studie: 33% hydrogen peroxide as a Neoadjuvant treatment in the surgical excision of non-melanoma skin cancers: a case series

Uit de studie bij longziektes Het is wel medische vaktaal en misschien niet voor iedereen gemakkelijk te begrijpen, maar ik wil toch een stukje extra informatie geven:

WERKINGSMECHANISME VAN WATERSTOF

Anti-oxidatieReactieve zuurstofsoorten (ROS) en reactieve stikstofsoorten (RNS) zijn bijproducten van het energiemetabolisme tijdens dagelijkse activiteiten. ROS/RNS omvatten superoxide anion (O2-), ·OH, peroxyl (RO2·), alkoxyl (RO·) en stikstofoxide (NO·) radicalen. Ze spelen onder normale omstandigheden een cruciale rol bij de immuunafweer, signaalprocessen en de extractie van energie uit organische moleculen. ()
Als de ROS- en RNS-productie echter de antioxidantcapaciteit van het lichaam overschrijdt of als de antioxidantcapaciteit van het lichaam afneemt, treedt oxidatieve stress op. Acute oxidatieve stress treedt vaak op tijdens ontsteking en I/R (bijv. hartstilstand, myocard- en herseninfarct, orgaantransplantatie en intraoperatieve hemostase) ().

Chronisch ROS-letsel kan optreden bij een verscheidenheid aan pathologische aandoeningen, zoals kwaadaardige kanker, diabetes, chronische ontstekingsziekten, atherosclerose en neurodegeneratie, evenals in het proces van veroudering. ().
Mensen hebben antioxiderende verdedigingssystemen om te beschermen tegen toxiciteit door vrije radicalen. ()
Antioxidanten zijn onderverdeeld in enzymatische en niet-enzymatische typen. Enzymatische typen omvatten superoxide dismutase (SOD), catalase (CAT) en glutathionperoxidase (GSH-Px), en niet-enzymatische typen omvatten bilirubine, α‍-tocoferol (vitamine E), β‍-caroteen en urinezuur. ()

De antioxiderende effecten van moleculaire waterstof worden voornamelijk gemedieerd door de volgende mechanismen. (1) Moleculair waterstof heeft een lager molecuulgewicht dan andere veel voorkomende antioxidanten (bijv. SOD, CAT en -tocoferol). Het kan selectief reageren met sterke oxidanten en kan gemakkelijk biologische membranen binnendringen, zoals nucleaire en mitochondriale membranen, zonder de metabole redoxreactie te beïnvloeden ().
(2) Door het stimuleren van nucleaire factor erytroïde 2-gerelateerde factor 2 (Nrf2), die de basale reguleert en de expressie van veel antioxidante enzymen en het proteasoom induceert (), waterstof kan de expressie van heemoxygenase-1 (HO-1) verhogen, ().
Het vermindert ook ·ONOO-gerelateerde genexpressie en productie () en verhoogt de activiteit van de antioxidante enzymen SOD, CAT en myeloperoxidase (MPO) ().
(3) Moleculaire waterstof kan de apoptose-signaalregulerende kinase 1 (ASK1)-signaleringsroute en het stroomafwaartse signaalmolecuul p38 mitogeen-geactiveerde proteïnekinase (p38MAPK) blokkeren, waardoor de nicotinamide-adenine-dinucleotidefosfaat- (NADPH)-oxidase-activiteit wordt geremd en de productie van vrije radicalen wordt verminderd . Door deze antioxiderende effecten beschermt moleculaire waterstof de cellen tegen peroxidatie van lipiden en vetzuren.

In onderstaande afbeelding wordt grafisch weergegeven hoe waterstof werkt, zie Fig. 1


An external file that holds a picture, illustration, etc.
Object name is JZhejiangUnivSciB-23-2-102-g001.jpg

Illustration of the possible biological effects of hydrogen. Hydrogen exerts antioxidant activity by directly neutralizing ·OH, upregulating Nrf2, HO-1, SOD, CAT, and MPO, and scavenging ONOO - ; hydrogen exerts anti-inflammatory activity by inhibiting NF-‍κB and the pro-inflammatory factors (TNF-‍α, IL-‍1β, IL-6, and HMGB-1), inhibiting MIP-1α, MIP-2, G-CSF, and ICAM-1, and increasing the expression of the anti-inflammatory factor IL-10; hydrogen modulates autophagy including Parkin/PINK1-mediated mitophagy, alleviates inflammation and NLRP3-mediated pyroptosis; hydrogen inhibits apoptosis by modulating apoptosis-related proteins and signaling pathways, but it promotes apoptosis in cancer cells; hydrogen has anti-aging effects by reducing oxidative DNA damage, decreasing the expression of the aging-related proteins β‍-galactosidase, p53, and p21, and upregulating Sirt3 expression. + refers to activate; - refers to inhibit. RNS: reactive nitrogen species; ROS: reactive oxygen species; NF-‍κB: nuclear factor-‍κB; JNK: c-Jun N-terminal kinase; ·OH: hydroxyl free radical; ONOO - : peroxynitrite anion; HO-1: heme oxygenase-1; SOD: superoxide dismutase; CAT: catalase; MPO: myeloperoxidase; NLRP3: nucleotide-binding domain and leucine-rich repeat protein 3; PINK: phosphatase and tensin homolog (PTEN)‍-induced kinase; TNF-‍α: tumor necrosis factor-‍α; G-CSF: granulocyte colony-stimulating factor; ICAM-1: intercellular cell adhesion molecule-1; IL: interleukin; HMGB-1: high-mobility group box 1; MIP: macrophage inflammatory protein; Sirt3: sirtuins 3; Nrf2: nuclear factor erythroid 2-related factor 2.

In het originele studierapport staat nog veel meer omschreven hoe moleculair waterstof H2 werkt bij ontstekingen tot aan kanker aan toe, maar is te veel om allemaal te vertalen. Klik op de titel van het studierapport voor het gratis volledige studierapport:

ABSTRACT

Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.

Keywords: Molecular hydrogen, Pulmonary disease, Reactive oxygen species (ROS), Oxidative stress, Inflammation

1. INTRODUCTION

Molecular hydrogen is a colorless, odorless, and tasteless gas molecule with poor water solubility. It is considered inert in mammalian cells under physiological conditions. Molecular hydrogen can be broken down by some bacteria via enzymatic catalysis to provide energy and electrons. In addition, bacteria produce molecular hydrogen by anaerobic metabolism. Genes encoding the iron- or nickel-containing enzymes necessary to catalyze these reactions, such as hydrogenase, are lacking in mammals (). However, molecular hydrogen is now recognized as a novel medically relevant gas with therapeutic potential.  reported that the inhalation of 2% molecular hydrogen results in the selective scavenging of hydroxyl free radical (·OH) and peroxynitrite anion (ONOO-), significantly improving oxidative stress injury caused by cerebral ischemia/reperfusion (I/R). This study prompted substantial interest in the medical value of molecular hydrogen, and many cellular, animal, and clinical trials and studies have since investigated its preventive and therapeutic effects. Molecular hydrogen can exert biological effects on almost all organs, including the brain, heart, lung, liver, and pancreas. It has a variety of biological functions, including roles in the regulation of oxidative stress and anti-inflammatory and anti-apoptotic effects ().

The lungs are the primary organ for gas exchange between the surrounding environment and the circulatory system. During respiration, they are constantly exposed to various environmental irritants, such as bacteria, viruses, and other pathogens, and to other harmful external stimuli, such as tobacco smoke and airborne particulate matter. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases (). Acute and chronic respiratory diseases have high rates of morbidity and mortality, and the efficacy of treatment strategies is insufficient, making these diseases a major public health concern worldwide (). For example, coronavirus disease 2019 (COVID-19), a form of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely, resulting in an ongoing pandemic.

This review is based on publications up to May 2021 which were retrieved by a selective search in the PubMed database, and includes clinical trials, animal studies, and reviews. The search terms included "hydrogen," "acute lung injury (ALI)," "chronic obstructive pulmonary disease (COPD)," "asthma," "cancer," "pulmonary arterial hypertension (PAH)," "pulmonary fibrosis (PF)," and "hydrogen." We briefly discuss the mechanism of action of molecular hydrogen and its effects on biological functions and cellular processes. We then describe the status of research on its contributions to various lung diseases. We expect molecular hydrogen to have an increasing role in the treatment and prevention of lung diseases. This review provides support for the development of future treatments based on molecular hydrogen.

5. CONCLUSIONS AND PERSPECTIVES

There is accumulating evidence for the broad biological effects of hydrogen. It regulates oxidative stress, inflammation, autophagy, programmed cell death, and the aging process. Animal experiments and clinical trials have clearly demonstrated the protective effects of hydrogen on many organs and systems. In particular, there is increasing evidence that hydrogen exerts a protective effect in various lung diseases. From a systemic perspective, in addition to the direct protective effects of hydrogen on the lungs, it indirectly protects lung tissues via protective effects on other tissues and organs. However, the detailed molecular mechanisms underlying the protective effects of hydrogen remain to be determined, and our current understanding of its effects is based mainly on animal experiments. Applicability to humans is yet to be tested. Therefore, a better understanding of protective pathways mediating the effects of hydrogen may facilitate the design of specific therapies for the treatment of pulmonary diseases. We expect large-scale clinical trials to confirm the therapeutic efficacy and safety of hydrogen. Owing to their broad potential applications, safety, convenience, and simple properties, hydrogen products are promising candidates for the treatment of diverse pulmonary diseases.

ACKNOWLEDGMENTS

This study was supported by the Technology Bureau of Liaoning Province (No. 17-230-9-45), China.

AUTHOR CONTRIBUTIONS

Zhiling FU analyzed the literature and prepared the first draft of the manuscript. Jin ZHANG revised, edited, and checked the final version. Both authors have read and approved the final manuscript, and therefore, have full access to all the data in the study and take responsibility for the integrity and security of the data.

COMPLIANCE WITH ETHICS GUIDELINES

Zhiling FU and Jin ZHANG declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by either of the authors.

REFERENCES

  • Akagi J, 2018. Immunological effect of hydrogen gas—hydrogen gas improves clinical outcomes of cancer patients. Gan To Kagaku Ryoho, 45(10): 1475-1478 (in Japanese). [PubMed] []
  • Akagi J, Baba H, 2020. Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD-1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncol Lett, 20: 258. 10.3892/ol.2020.12121 [PMC free article] [PubMed] [CrossRef] []
  • Akira S, Hemmi H, 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett, 85(2): 85-95. 10.1016/S0165-2478(02)00228-6 [PubMed] [CrossRef] []
  • Andersson U, Yang H, Harris H, 2018. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Exp Opin Ther Targets, 22(3): 263-277. 10.1080/14728222.2018.1439924 [PubMed] [CrossRef] []
  • Asada R, Saitoh Y, Miwa N, 2019. Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med Gas Res, 9(2): 68-73. 10.4103/2045-9912.260647 [PMC free article] [PubMed] [CrossRef] []
  • Asada R, Tazawa K, Sato S, et al., 2020. Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes-related markers. Med Gas Res, 10(3): 114-121. 10.4103/2045-9912.296041 [PMC free article] [PubMed] [CrossRef] []
  • Bai CX, Fukuda N, Song YL, et al., 1999. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J Clin Invest, 103(4): 555-561. 10.1172/JCI4138 [PMC free article] [PubMed] [CrossRef] []
  • Bai Y, Tao XN, 2021. Comparison of COVID-19 and influenza characteristics. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(2): 87-98. 10.1631/jzus.B2000479 [PMC free article] [PubMed] [CrossRef] []
  • Barst RJ, McGoon MD, Elliott CG, et al., 2012. Survival in childhood pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Circulation, 125(1): 113-122. 10.1161/CIRCULATIONAHA.111.026591 [PubMed] [CrossRef] []
  • Benza RL, Miller DP, Barst RJ, et al., 2012. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest, 142(2): 448-456. 10.1378/chest.11-1460 [PubMed] [CrossRef] []
  • Bhattacharya J, Matthay MA, 2013. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Phys, 75: 593-615. 10.1146/annurev-physiol-030212-183756 [PubMed] [CrossRef] []
  • Bian YX, Qin C, Xin Y, et al., 2018. iTRAQ-based quantitative proteomic analysis of lungs in murine polymicrobial sepsis with hydrogen gas treatment. Shock, 49(2): 187-195. 10.1097/SHK.0000000000000927 [PubMed] [CrossRef] []
  • Birben E, Sahiner UM, Sackesen C, et al., 2012. Oxidative stress and antioxidant defense. World Allergy Organ J, 5(1): 9-19. 10.1097/WOX.0b013e3182439613 [PMC free article] [PubMed] [CrossRef] []
  • Buchholz BM, Kaczorowski DJ, Sugimoto R, et al., 2008. Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant, 8(10): 2015-2024. 10.1111/j.1600-6143.2008.02359.x [PubMed] [CrossRef] []
  • Busch R, Hobbs BD, Zhou J, et al., 2017. Genetic association and risk scores in a chronic obstructive pulmonary disease meta-analysis of 16, 707 subjects. Am J Respir Cell Mol Biol, 57(1): 35-46. 10.1165/rcmb.2016-0331OC [PMC free article] [PubMed] [CrossRef] []
  • Cai WW, Zhang MH, Yu YS, et al., 2013. Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast. Mol Cell Biochem, 373(1-2): 1-9. 10.1007/s11010-012-1450-4 [PubMed] [CrossRef] []
  • Cejka C, Kossl J, Holan V, et al., 2020. An immunohistochemical study of the increase in antioxidant capacity of corneal epithelial cells by molecular hydrogen, leading to the suppression of alkali-induced oxidative stress. Oxid Med Cell Longev, 2020: 7435260. 10.1155/2020/7435260 [PMC free article] [PubMed] [CrossRef] [Retracted
  • Chen HG, Xie KL, Han HZ, et al., 2015. Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol, 28(1): 643-654. 10.1016/j.intimp.2015.07.034 [PubMed] [CrossRef] []
  • Chen HG, Mao X, Meng XY, et al., 2019. Hydrogen alleviates mitochondrial dysfunction and organ damage via autophagy-mediated NLRP3 inflammasome inactivation in sepsis. Int J Mol Med, 44(4): 1309-1324. 10.3892/IJMM.2019.4311 [PMC free article] [PubMed] [CrossRef] []
  • Chen HG, Han HZ, Li Y, et al., 2020. Hydrogen alleviated organ injury and dysfunction in sepsis: the role of cross-talk between autophagy and endoplasmic reticulum stress: experimental research. Int Immunopharmacol, 78: 106049. 10.1016/j.intimp.2019.106049 [PubMed] [CrossRef] []
  • Chen JB, Kong XF, Lv YY, et al., 2019. “Real world survey” of hydrogen-controlled cancer: a follow-up report of 82 advanced cancer patients. Med Gas Res, 9(3): 115-121. 10.4103/2045-9912.266985 [PMC free article] [PubMed] [CrossRef] []
  • Chen K, Wang N, Diao Y, et al., 2017. Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell Phys Biochem, 43(4): 1634-1647. 10.1159/000484024 [PubMed] [CrossRef] []
  • Chen MH, Zhang J, Chen Y, et al., 2018. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci Rep, 8: 8004. 10.1038/s41598-018-26335-2 [PMC free article] [PubMed] [CrossRef] []
  • Chen X, Cui J, Zhai X, et al., 2018. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages. Cell Phys Biochem, 47: 176-190. 10.1159/000489764 [PubMed] [CrossRef] []
  • Chen YL, Jiang JY, Miao HB, et al., 2013. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Int J Mol Med, 31(3): 597-606. 10.3892/ijmm.2013.1256 [PubMed] [CrossRef] []
  • Chien JY, Hsueh PR, Cheng WC, et al., 2006. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 11(6): 715-722. 10.1111/j.1440-1843.2006.00942.x [PMC free article] [PubMed] [CrossRef] []
  • China National Health Commission , 2020. Chinese Clinical Guidance for COVID-19 pneumonia diagnosis and treatment (7th Edition). http://kjfy.meetingchina.org/msite/news/show/cn/3337.‍html?‍from=singlemessage&isappinstalled=0 [Accessed on May 10, 2021]. []
  • Comhair SAA, Bhathena PR, Dweik RA, et al., 2000. Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet, 355(9204): 624. 10.1016/S0140-6736(99)04736-4 [PubMed] [CrossRef] []
  • Comhair SAA, Bhathena PR, Farver C, et al., 2001. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J, 15(1): 70-78. 10.1096/fj.00-0085com [PubMed] [CrossRef] []
  • Cottin V, 2013. Interstitial lung disease. Eur Respir Rev, 22(127): 26-32. 10.1183/09059180.00006812 [PubMed] [CrossRef] []
  • Cui YM, Zhang H, Ji MH, et al., 2014. Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J Surg Res, 192(2): 564-572. 10.1016/j.jss.2014.05.060 [PubMed] [CrossRef] []
  • Den Hengst WA, Gielis JF, Lin JY, et al., 2010. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Phys Heart Circ Phys, 299(5): H1283-H1299. 10.1152/ajpheart.00251.2010 [PubMed] [CrossRef] []
  • DeVries R, Kriebel D, Sama S, 2016. Low level air pollution and exacerbation of existing copd: a case crossover analysis. Environ Health, 15: 98. 10.1186/s12940-016-0179-z [PMC free article] [PubMed] [CrossRef] []
  • Diao MY, Zhang S, Wu LF, et al., 2016. Hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury via the Nrf2 pathway in rabbits. Inflammation, 39(6): 2029-2039. 10.1007/s10753-016-0440-1 [PubMed] [CrossRef] []
  • Elmore S, 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495-516. 10.1080/01926230701320337 [PMC free article] [PubMed] [CrossRef] []
  • Fang Y, Fu XJ, Gu C, et al., 2011. Hydrogen-rich saline protects against acute lung injury induced by extensive burn in rat model. J Burn Care Res, 32(3): e82-e91. 10.1097/BCR.0b013e318217f84f [PubMed] [CrossRef] []
  • Fehrenbach H, Wagner C, Wegmann M, 2017. Airway remodeling in asthma: what really matters. Cell Tissue Res, 367(3): 551-569. 10.1007/s00441-016-2566-8 [PMC free article] [PubMed] [CrossRef] []
  • Feng S, Duan EH, Shi XJ, et al., 2019. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via Aryl hydrocarbon receptor. Int Immunopharmacol, 77: 105939. 10.1016/j.intimp.2019.105939 [PubMed] [CrossRef] []
  • Ferrari R, Ceconi C, Curello S, et al., 1991. The occurrence of oxidative stress during reperfusion in experimental animals and men. Cardiovasc Drugs Ther, 5(S2): 277-287. 10.1007/BF00054749 [PubMed] [CrossRef] []
  • Fitzgerald KA, Kagan JC, 2020. Toll-like receptors and the control of immunity. Cell, 180(6): 1044-1066. 10.1016/j.cell.2020.02.041 [PubMed] [CrossRef] []
  • Fritsch J, Lenz O, Friedrich B, 2013. Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat Rev Microbiol, 11(2): 106-114. 10.1038/nrmicro2940 [PubMed] [CrossRef] []
  • Fu ZL, Zhang Z, Wu XY, et al., 2020. Hydrogen-rich saline inhibits lipopolysaccharide-induced acute lung injury and endothelial dysfunction by regulating autophagy through mTOR/TFEB signaling pathway. Biomed Res Int, 2020: 9121894. 10.1155/2020/9121894 [PMC free article] [PubMed] [CrossRef] []
  • Ge YH, Wu FX, Sun XJ, et al., 2014. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats. PLoS ONE, 9(5): e97436. 10.1371/journal.pone.0097436 [PMC free article] [PubMed] [CrossRef] []
  • Genestra M, 2007. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal, 19(9): 1807-1819. 10.1016/j.cellsig.2007.04.009 [PubMed] [CrossRef] []
  • Gharib B, Hanna S, Abdallahi OM, et al., 2001. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C R Acad Sci III, 324(8): 719-724. 10.1016/S0764-4469(01)01350-6 [PubMed] [CrossRef] []
  • Giannotta M, Trani M, Dejana E, 2013. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell, 26(5): 441-454. 10.1016/j.devcel.2013.08.020 [PubMed] [CrossRef] []
  • Golden TR, Melov S, 2007. Gene expression changes associated with aging in Celegans. In: WormBook (Ed.), The C. elegans Research Community. WormBook, p.1-12. 10.1895/wormbook.1.127.2 [PMC free article] [PubMed] [CrossRef] []
  • Goss CH, Brower RG, Hudson LD, et al., 2003. Incidence of acute lung injury in the United States. Crit Care Med, 31(6): 1607-1611. 10.1097/01.CCM.0000063475.65751.1D [PubMed] [CrossRef] []
  • Gottlieb RA, 2011. Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther, 16(3-4): 233-238. 10.1177/1074248411409581 [PMC free article] [PubMed] [CrossRef] []
  • Guerrina N, Traboulsi H, Eidelman DH, et al., 2018. The Aryl Hydrocarbon Receptor and the maintenance of lung health. Int J Mol Sci, 19(12): 3882. 10.3390/ijms19123882 [PMC free article] [PubMed] [CrossRef] []
  • Guo HT, Callaway JB, Ting JPY, 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 21(7): 677-687. 10.1038/nm.3893 [PMC free article] [PubMed] [CrossRef] []
  • Guo SX, Fang Q, You CG, et al., 2015. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J Trans Med, 13: 183. 10.1186/s12967-015-0548-3 [PMC free article] [PubMed] [CrossRef] []
  • Guzik TJ, Touyz RM, 2017. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 70(4): 660-667. 10.1161/HYPERTENSIONAHA.117.07802 [PubMed] [CrossRef] []
  • Haahtela T, 1997. Airway remodelling takes place in asthma—what are the clinical implications? Clin Exp Allergy, 27(4): 351-353. 10.1111/j.1365-2222.1997.tb00717.x [PubMed] [CrossRef] []
  • Han AL, Park SH, Park MS, 2017. Hydrogen treatment protects against cell death and senescence induced by oxidative damage. J Microbiol Biotechnol, 27(2): 365-371. 10.4014/jmb.1608.08011 [PubMed] [CrossRef] []
  • He B, Zhang YF, Kang B, et al., 2013. Protection of oral hydrogen water as an antioxidant on pulmonary hypertension. Mol Biol Rep, 40(9): 5513-5521. 10.1007/s11033-013-2653-9 [PMC free article] [PubMed] [CrossRef] []
  • He C, Murthy S, McCormick ML, et al., 2011. Mitochondrial Cu, Zn-superoxide dismutase mediates pulmonary fibrosis by augmenting H2O2 generation. J Biol Chem, 286(17): 15597-15607. 10.1074/jbc.M110.187377 [PMC free article] [PubMed] [CrossRef] []
  • Hewlett JC, Kropski JA, Blackwell TS, 2018. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol, 71-72: 112-127. 10.1016/j.matbio.2018.03.021 [PMC free article] [PubMed] [CrossRef] []
  • Hirano SI, Ichikawa Y, Kurokawa R, et al., 2020. A “philosophical molecule, ” hydrogen may overcome senescence and intractable diseases. Med Gas Res, 10(1): 47-49. 10.4103/2045-9912.279983 [PMC free article] [PubMed] [CrossRef] []
  • Hong YC, Sun L, Sun RQ, et al., 2016. Combination therapy of molecular hydrogen and hyperoxia improves survival rate and organ damage in a zymosan-induced generalized inflammation model. Exp Ther Med, 11(6): 2590-2596. 10.3892/etm.2016.3231 [PMC free article] [PubMed] [CrossRef] []
  • Hong YC, Chen HG, Yu YH, et al., 2017. Effect of combination therapy with propofol and hydrogen-rich saline on organ damage and cytokines in a murine model of sepsis. Chin Crit Care Med, 29(4): 316-320 (in Chinese). 10.3760/cma.j.issn.2095-4352.2017.04.006 [PubMed] [CrossRef] []
  • Hosokawa S, Haraguchi G, Sasaki A, et al., 2013. Pathophysiological roles of nuclear factor kappaB (NF-‍κB) in pulmonary arterial hypertension: effects of synthetic selective NF-‍κB inhibitor IMD-0354. Cardiovasc Res, 99(1): 35-43. 10.1093/cvr/cvt105 [PubMed] [CrossRef] []
  • Hu QG, Zhou YX, Wu SJ, et al., 2020. Molecular hydrogen: a potential radioprotective agent. Biomed Pharmacother, 130: 110589. 10.1016/j.biopha.2020.110589 [PubMed] [CrossRef] []
  • Huang CS, Kawamura T, Lee S, et al., 2010. Hydrogen inhalation ameliorates ventilator-induced lung injury. Crit Care, 14: R234. 10.1186/cc9389 [PMC free article] [PubMed] [CrossRef] []
  • Huang CS, Kawamura T, Peng XM, et al., 2011. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation. Biochem Biophys Res Commun, 408(2): 253-258. 10.1016/j.bbrc.2011.04.008 [PubMed] [CrossRef] []
  • Huang KJ, Su IJ, Theron M, et al., 2005. An interferon-γ-related cytokine storm in SARS patients. J Med Virol, 75(2): 185-194. 10.1002/jmv.20255 [PMC free article] [PubMed] [CrossRef] []
  • Huang PK, Wei SS, Huang WH, et al., 2019. Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int Immunopharmacol, 74: 105646. 10.1016/j.intimp.2019.05.031 [PubMed] [CrossRef] []
  • Huo TT, Zeng Y, Liu XN, et al., 2014. Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in rats. Anesth Analg, 119(2): 368-380. 10.1213/ANE.0000000000000303 [PubMed] [CrossRef] []
  • Iketani M, Ohsawa I, 2017. Molecular hydrogen as a neuroprotective agent. Curr Neuropharmacol, 15(2): 324-331. 10.2174/1570159X14666160607205417 [PMC free article] [PubMed] [CrossRef] []
  • Jiang Y, Liu G, Zhang L, et al., 2018. Therapeutic efficacy of hydrogen-rich saline alone and in combination with PI3K inhibitor in non-small cell lung cancer. Mol Med Rep, 18(2): 2182-2190. 10.3892/MMR.2018.9168 [PMC free article] [PubMed] [CrossRef] []
  • Jiao Y, Yu Y, Li B, et al., 2020. Protective effects of hydrogen-rich saline against experimental diabetic peripheral neuropathy via activation of the mitochondrial ATP-sensitive potassium channel channels in rats. Mol Med Rep, 21(1): 282-290. 10.3892/mmr.2019.10795 [PMC free article] [PubMed] [CrossRef] []
  • Kan XC, Chen YS, Huang BX, et al., 2021. Effect of Palrnatine on lipopolysaccharide-induced acute lung injury by inhibiting activation of the Akt/NF-‍κB pathway. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(11): 929-940. 10.1631/jzus.B2000583 [PMC free article] [PubMed] [CrossRef] []
  • Kawamura M, Imamura R, Kobayashi Y, et al., 2020. Oral administration of Si-based agent attenuates oxidative stress and ischemia-reperfusion injury in a rat model: a novel hydrogen administration method. Front Med, 7: 95. 10.3389/FMED.2020.00095 [PMC free article] [PubMed] [CrossRef] []
  • Kawamura T, Huang CS, Tochigi N, et al., 2010. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation, 90(12): 1344-1351. 10.1097/TP.0b013e3181fe1357 [PubMed] [CrossRef] []
  • Kawamura T, Huang CS, Peng XM, et al., 2011. The effect of donor treatment with hydrogen on lung allograft function in rats. Surgery, 150(2): 240-249. 10.1016/j.surg.2011.05.019 [PubMed] [CrossRef] []
  • Kawamura T, Wakabayashi N, Shigemura N, et al., 2013. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am J Phys Lung Cell Mol Phys, 304(10): L646-L656. 10.1152/ajplung.00164.2012 [PMC free article] [PubMed] [CrossRef] []
  • Kawamura T, Higashida K, Muraoka I, 2020. Application of molecular hydrogen as a novel antioxidant in sports science. Oxid Med Cell Longev, 2020: 2328768. 10.1155/2020/2328768 [PMC free article] [PubMed] [CrossRef] []
  • Kim YW, Byzova TV, 2014. Oxidative stress in angiogenesis and vascular disease. Blood, 123(5): 625-631. 10.1182/blood-2013-09-512749 [PMC free article] [PubMed] [CrossRef] []
  • Kou Z, Zhao PH, Wang ZH, et al., 2019. Acid-responsive H2-releasing Fe nanoparticles for safe and effective cancer therapy. J Mater Chem B, 7(17): 2759-2765. 10.1039/c9tb00338j [PubMed] [CrossRef] []
  • Koyama Y, Taura K, Hatano E, et al., 2014. Effects of oral intake of hydrogen water on liver fibrogenesis in mice. Hepatol Res, 44(6): 663-677. 10.1111/hepr.12165 [PubMed] [CrossRef] []
  • Kura B, Bagchi AK, Singal PK, et al., 2019. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Can J Phys Pharmacol, 97(4): 287-292. 10.1139/cjpp-2018-0604 [PubMed] [CrossRef] []
  • Lamkanfi M, Dixit VM, 2014. Mechanisms and functions of inflammasomes. Cell, 157(5): 1013-1022. 10.1016/j.cell.2014.04.007 [PubMed] [CrossRef] []
  • Lee WL, Slutsky AS, 2010. Sepsis and endothelial permeability. N Engl J Med, 363(7): 689-691. 10.1056/NEJMcibr1007320 [PubMed] [CrossRef] []
  • Li H, Zhou RH, Liu J, et al., 2012. Hydrogen-rich saline attenuates lung ischemia-reperfusion injury in rabbits. J Surg Res, 174(1): e11-e16. 10.1016/j.jss.2011.10.001 [PubMed] [CrossRef] []
  • Li H, Yin YR, Liu J, et al., 2021. Hydrogen-rich water attenuates the radiotoxicity induced by tritium exposure in vitro and in vivo. J Radiat Res, 62(1): 34-45. 10.1093/jrr/rraa104 [PMC free article] [PubMed] [CrossRef] []
  • Li J, Hong ZJ, Liu H, et al., 2016. Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation. Front Pharmacol, 7: 106. 10.3389/fphar.2016.00106 [PMC free article] [PubMed] [CrossRef] []
  • Li RC, Liu YL, Xie J, et al., 2019. Sirt3 mediates the protective effect of hydrogen in inhibiting ROS-induced retinal senescence. Free Radic Biol Med, 135: 116-124. 10.1016/j.freeradbiomed.2019.02.005 [PubMed] [CrossRef] []
  • Li T, Deng SH, Lei W, et al., 2020. Hydrogen water alleviates paraquat-induced lung fibroblast injury in vitro by enhancing Nrf2 expression. J Southern Med Univ, 40(2): 233-239 (in Chinese). 10.12122/j.issn.1673-4254.2020.02.10 [PMC free article] [PubMed] [CrossRef] []
  • Li Y, Xie KL, Chen HG, et al., 2015. Hydrogen gas inhibits high-mobility group box 1 release in septic mice by upregulation of heme oxygenase 1. J Surg Res, 196(1): 136-148. 10.1016/j.jss.2015.02.042 [PubMed] [CrossRef] []
  • Li Y, Chen HG, Shu RC, et al., 2020. Hydrogen treatment prevents lipopolysaccharide-induced pulmonary endothelial cell dysfunction through RhoA inhibition. Biochem Biophys Res Commun, 522(2): 499-505. 10.1016/j.bbrc.2019.11.101 [PubMed] [CrossRef] []
  • Liang CX, Liu XW, Liu L, et al., 2012. Effect of hydrogen inhalation on p38 MAPK activation in rats with lipopolysaccharide-induced acute lung injury. J Southern Med Univ, 32(8): 1211-1213, 1217. 10.3969/j.issn.1673-4254.2012.08.32 [PubMed] [CrossRef] []
  • Liu HY, Liang XJ, Wang DD, et al., 2015. Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock, 43(5): 504-511. 10.1097/SHK.0000000000000316 [PubMed] [CrossRef] []
  • Liu LD, Wu XY, Tao BD, et al., 2016. Protective effect and mechanism of hydrogen treatment on lung epithelial barrier dysfunction in rats with sepsis. Genet Mol Res, 15(1): gmr.15016050.. 10.4238/gmr.15016050 [PubMed] [CrossRef] []
  • Liu MY, Xie F, Zhang Y, et al., 2019. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res Ther, 10: 145. 10.1186/s13287-019-1241-x [PMC free article] [PubMed] [CrossRef] []
  • Liu RF, Fang XH, Meng C, et al., 2015. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats. Exp Biol Med, 240(9): 1214-1222. 10.1177/1535370214563895 [PMC free article] [PubMed] [CrossRef] []
  • Liu SL, Liu K, Sun Q, et al., 2011. Hydrogen therapy may be a novel and effective treatment for COPD. Front Pharmacol, 2: 19. 10.3389/fphar.2011.00019 [PMC free article] [PubMed] [CrossRef] []
  • Liu W, Shan LP, Dong XS, et al., 2013. Combined early fluid resuscitation and hydrogen inhalation attenuates lung and intestine injury. World J Gastroenterol, 19(4): 492-502. 10.3748/wjg.v19.i4.492 [PMC free article] [PubMed] [CrossRef] []
  • Liu X, Ma C, Wang X, et al., 2017. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model. Int J Chron Obstruct Pulmon Dis, 12: 1309-1324. 10.2147/COPD.S124547 [PMC free article] [PubMed] [CrossRef] []
  • Liu YM, Zhang J, 2017. Saturated hydrogen saline ameliorates lipopolysaccharide-induced acute lung injury by reducing excessive autophagy (Review). Exp Ther Med, 13(6): 2609-2615. 10.3892/etm.2017.4353 [PMC free article] [PubMed] [CrossRef] []
  • Liu YQ, Liu YF, Ma XM, et al., 2015. Hydrogen-rich saline attenuates skin ischemia/reperfusion induced apoptosis via regulating Bax/Bcl-2 ratio and ASK-1/JNK pathway. J Plast Reconstr Aesthet Surg, 68(7): e147-e156. 10.1016/j.bjps.2015.03.001 [PubMed] [CrossRef] []
  • Lu WJ, Li DF, Hu JY, et al., 2018. Hydrogen gas inhalation protects against cigarette smoke-induced COPD development in mice. J Thorac Dis, 10(6): 3232-3243. 10.21037/jtd.2018.05.93 [PMC free article] [PubMed] [CrossRef] []
  • Maiuri MC, Zalckvar E, Kimchi A, et al., 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol, 8(9): 741-752. 10.1038/nrm2239 [PubMed] [CrossRef] []
  • Mao YF, Zheng XF, Cai JM, et al., 2009. Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun, 381(4): 602-605. 10.1016/j.bbrc.2009.02.105 [PubMed] [CrossRef] []
  • Marcos-Ramiro B, García-Weber D, Millán J, 2014. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost, 112(6): 1088-1102. 10.1160/th14-04-0299 [PubMed] [CrossRef] []
  • Maybauer MO, Maybauer DM, Herndon DN, 2006. Incidence and outcomes of acute lung injury. N Engl J Med, 354(4): 416-417. 10.1056/NEJMc053159 [PubMed] [CrossRef] []
  • Mo XY, Li XM, She CS, et al., 2019. Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperusion-induced apoptosis through VDAC1 via Bcl-2. Brain Res, 1706: 110-115. 10.1016/j.brainres.2018.09.037 [PubMed] [CrossRef] []
  • Murthy S, Adamcakova-Dodd A, Perry SS, et al., 2009. Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am J Phys Lung Cell Mol Phys, 297(5): L846-L855. 10.1152/ajplung.90590.2008 [PMC free article] [PubMed] [CrossRef] []
  • Newgard CB, Sharpless NE, 2013. Coming of age: molecular drivers of aging and therapeutic opportunities. J Clin Invest, 123(3): 946-950. 10.1172/JCI68833 [PMC free article] [PubMed] [CrossRef] []
  • Nie CQ, Ding X, A R, et al., 2021. Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats. Life Sci, 272: 119248. 10.1016/j.lfs.2021.119248 [PubMed] [CrossRef] []
  • Ning YY, Shang Y, Huang HD, et al., 2013. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats. PLoS ONE, 8(12): e83429. 10.1371/journal.pone.0083429 [PMC free article] [PubMed] [CrossRef] []
  • Ohsawa I, Ishikawa M, Takahashi K, et al., 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med, 13(6): 688-694. 10.1038/nm1577 [PubMed] [CrossRef] []
  • Ohta S, 2012. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta Gener Subj, 1820(5): 586-594. 10.1016/j.bbagen.2011.05.006 [PubMed] [CrossRef] []
  • Ohta S, 2014. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther, 144(1): 1-11. 10.1016/j.pharmthera.2014.04.006 [PubMed] [CrossRef] []
  • Ohta S, 2015. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol, 555: 289-317. 10.1016/BS.MIE.2014.11.038 [PubMed] [CrossRef] []
  • Osborn-Heaford HL, Murthy S, Gu LL, et al., 2015. Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis. Free Radic Biol Med, 86: 47-56. 10.1016/j.freeradbiomed.2015.04.031 [PMC free article] [PubMed] [CrossRef] []
  • Park I, Kim M, Choe K, et al., 2019. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J, 53(3): 1800786. 10.1183/13993003.00786-2018 [PMC free article] [PubMed] [CrossRef] []
  • Paulin R, Courboulin A, Meloche J, et al., 2011. Signal transducers and activators of transcription-3/Pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension. Circulation, 123(11): 1205-1215. 10.1161/CIRCULATIONAHA.110.963314 [PMC free article] [PubMed] [CrossRef] []
  • Perez-Vizcaino F, Cogolludo A, Moreno L, 2010. Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Phys Neurobiol, 174(3): 212-220. 10.1016/j.resp.2010.08.009 [PubMed] [CrossRef] []
  • Pinamonti S, Muzzoli M, Chicca MC, et al., 1996. Xanthine oxidase activity in bronchoalveolar lavage fluid from patients with chronic obstructive pulmonary disease. Free Radic Biol Med, 21(2): 147-155. 10.1016/0891-5849(96)00030-5 [PubMed] [CrossRef] []
  • Pistritto G, Trisciuoglio D, Ceci C, et al., 2016. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 8(4): 603-619. 10.18632/aging.100934 [PMC free article] [PubMed] [CrossRef] []
  • Porteous MK, Diamond JM, Christie JD, 2015. Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Trans, 20(5): 506-514. 10.1097/MOT.0000000000000232 [PMC free article] [PubMed] [CrossRef] []
  • Price LC, Wort SJ, Perros F, et al., 2012. Inflammation in pulmonary arterial hypertension. Chest, 141(1): 210-221. 10.1378/chest.11-0793 [PubMed] [CrossRef] []
  • Qian LR, Cao F, Cui JG, et al., 2010. Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res, 44(3): 275-282. 10.3109/10715760903468758 [PubMed] [CrossRef] []
  • Qin C, Bian YX, Feng TT, et al., 2017. Effects of hydrogen on the lung damage of mice at early stage of severe burn. Chin J Burns, 33(11): 682-687 (in Chinese). 10.3760/cma.j.issn.1009-2587.2017.11.005 [PubMed] [CrossRef] []
  • Qiu XC, Dong KS, Guan JZ, et al., 2020. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol, 84: 106517. 10.1016/j.intimp.2020.106517 [PubMed] [CrossRef] []
  • Reuter S, Gupta SC, Chaturvedi MM, et al., 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med, 49(11): 1603-1616. 10.1016/j.freeradbiomed.2010.09.006 [PMC free article] [PubMed] [CrossRef] []
  • Ricciardolo FLM, di Stefano A, Sabatini F, et al., 2006. Reactive nitrogen species in the respiratory tract. Eur J Pharmacol, 533(1-3): 240-252. 10.1016/j.ejphar.2005.12.057 [PubMed] [CrossRef] []
  • Saito M, Chen-Yoshikawa TF, Takahashi M, et al., 2020. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation. J Thorac Cardiovasc Surg, 159(5): 2110-2118. 10.1016/j.jtcvs.2019.09.175 [PubMed] [CrossRef] []
  • Sakai T, Kurokawa R, Hirano SI, et al., 2019. Hydrogen indirectly suppresses increases in hydrogen peroxide in cytoplasmic hydroxyl radical-induced cells and suppresses cellular senescence. Int J Mol Sci, 20(2): 456. 10.3390/ijms20020456 [PMC free article] [PubMed] [CrossRef] []
  • Schnittler H, 2016. Contraction of endothelial cells: 40 years of research, but the debate still lives. Histochem Cell Biol, 146(6): 651-656. 10.1007/s00418-016-1501-0 [PubMed] [CrossRef] []
  • Shalini S, Dorstyn L, Dawar S, et al., 2015. Old, new and emerging functions of caspases. Cell Death Differ, 22(4): 526-539. 10.1038/cdd.2014.216 [PMC free article] [PubMed] [CrossRef] []
  • Shao AW, Wu HJ, Hong Y, et al., 2016. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-‍κB pathway and NLRP3 inflammasome. Mol Neurobiol, 53(5): 3462-3476. 10.1007/s12035-015-9242-y [PubMed] [CrossRef] []
  • Shi JJ, Gao WQ, Shao F, 2017. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci, 42(4): 245-254. 10.1016/j.tibs.2016.10.004 [PubMed] [CrossRef] []
  • Shi Q, Chen C, Deng WH, et al., 2016. Hydrogen-rich saline attenuates acute hepatic injury in acute necrotizing pancreatitis by inhibiting inflammation and apoptosis, involving JNK and p38 mitogen-activated protein kinase-dependent reactive oxygen species. Pancreas, 45(10): 1424-1431. 10.1097/MPA.0000000000000678 [PubMed] [CrossRef] []
  • Shinbo T, Kokubo K, Sato Y, et al., 2013. Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am J Phys Heart Circ Phys, 305(4): H542-H550. 10.1152/AJPHEART.00844.2012 [PubMed] [CrossRef] []
  • Simonneau G, Montani D, Celermajer DS, et al., 2019. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J, 53(1): 1801913. 10.1183/13993003.01913-2018 [PMC free article] [PubMed] [CrossRef] []
  • Singer M, Deutschman CS, Seymour CW, et al., 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8): 801-810. 10.1001/jama.2016.0287 [PMC free article] [PubMed] [CrossRef] []
  • Singh R, Letai A, Sarosiek K, 2019. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol, 20(3): 175-193. 10.1038/s41580-018-0089-8 [PMC free article] [PubMed] [CrossRef] []
  • Song YL, Ma TH, Matthay MA, et al., 2000. Role of aquaporin-4 in airspace-to-capillary water permeability in intact mouse lung measured by a novel gravimetric method. J Gen Phys, 115(1): 17-27. 10.1085/jgp.115.1.17 [PMC free article] [PubMed] [CrossRef] []
  • Song YL, Jayaraman S, Yang BX, et al., 2001. Role of aquaporin water channels in airway fluid transport, humidification, and surface liquid hydration. J Gen Phys, 117(6): 573-582. 10.1085/jgp.117.6.573 [PMC free article] [PubMed] [CrossRef] []
  • Stump CS, Clark SE, Sowers JR, 2005. Oxidative stress in insulin-resistant conditions: cardiovascular implications. Treat Endocrinol, 4(6): 343-351. 10.2165/00024677-200504060-00003 [PubMed] [CrossRef] []
  • Sun Q, Kawamura T, Masutani K, et al., 2012. Oral intake of hydrogen-rich water inhibits intimal hyperplasia in arterialized vein grafts in rats. Cardiovasc Res, 94(1): 144-153. 10.1093/cvr/cvs024 [PMC free article] [PubMed] [CrossRef] []
  • Sun Q, Han WJ, Hu HJ, et al., 2017. Hydrogen alleviates hyperoxic acute lung injury related endoplasmic reticulum stress in rats through upregulation of SIRT1. Free Radic Res, 51(6): 622-632. 10.1080/10715762.2017.1351027 [PubMed] [CrossRef] []
  • Suzuki Y, Sato T, Sugimoto M, et al., 2017. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice. Biochem Biophys Res Commun, 492(1): 74-81. 10.1016/j.bbrc.2017.08.035 [PubMed] [CrossRef] []
  • Tang DL, Kang R, Coyne CB, et al., 2012. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev, 249(1): 158-175. 10.1111/j.1600-065X.2012.01146.x [PMC free article] [PubMed] [CrossRef] []
  • Tang YJ, Liu JJ, Zhang DY, et al., 2020. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol, 11: 1708. 10.3389/fimmu.2020.01708 [PMC free article] [PubMed] [CrossRef] []
  • Tao BD, Liu LD, Wang N, et al., 2016. Effects of hydrogen-rich saline on aquaporin 1, 5 in septic rat lungs. J Surg Res, 202(2): 291-298. 10.1016/j.jss.2016.01.009 [PubMed] [CrossRef] []
  • Terasaki Y, Terasaki M, Kanazawa S, et al., 2019a. Effect of H2 treatment in a mouse model of rheumatoid arthritis-associated interstitial lung disease. J Cell Mol Med, 23(10): 7043-7053. 10.1111/JCMM.14603 [PMC free article] [PubMed] [CrossRef] []
  • Terasaki Y, Suzuki T, Tonaki K, et al., 2019b. Molecular hydrogen attenuates gefitinib-induced exacerbation of naphthalene-evoked acute lung injury through a reduction in oxidative stress and inflammation. Lab Invest, 99(6): 793-806. 10.1038/s41374-019-0187-z [PubMed] [CrossRef] []
  • Thiery JP, Acloque H, Huang RYJ, et al., 2009. Epithelial-mesenchymal transitions in development and disease. Cell, 139(5): 871-890. 10.1016/j.cell.2009.11.007 [PubMed] [CrossRef] []
  • Vaziri ND, Rodríguez-Iturbe B, 2006. Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol, 2(10): 582-593. 10.1038/ncpneph0283 [PubMed] [CrossRef] []
  • Wang C, Li J, Liu Q, et al., 2011. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-‍κB activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neurosci Lett, 491(2): 127-132. 10.1016/j.neulet.2011.01.022 [PubMed] [CrossRef] []
  • Wang DC, Wang LF, Zhang Y, et al., 2018. Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother, 104: 788-797. 10.1016/j.biopha.2018.05.055 [PubMed] [CrossRef] []
  • Wang ST, Bao C, He Y, et al., 2020. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients. QJM Int J Med, 113(12): 870-875. 10.1093/qjmed/hcaa164 [PMC free article] [PubMed] [CrossRef] []
  • Wang Y, Jing L, Zhao XM, et al., 2011. Protective effects of hydrogen-rich saline on monocrotaline-induced pulmonary hypertension in a rat model. Respir Res, 12: 26. 10.1186/1465-9921-12-26 [PMC free article] [PubMed] [CrossRef] []
  • Wang Y, Zhang JH, Bo JS, et al., 2019. Hydrogen-rich saline ameliorated LPS-induced acute lung injury via autophagy inhibition through the ROS/AMPK/mTOR pathway in mice. Exp Biol Med, 244(9): 721-727. 10.1177/1535370219847941 [PMC free article] [PubMed] [CrossRef] []
  • Wang YF, Wang L, Hu TP, et al., 2020. Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a microvascular endothelial cell model of traumatic brain injury. Neurol Res, 42(6): 487-496. 10.1080/01616412.2020.1747717 [PubMed] [CrossRef] []
  • Westphal D, Kluck RM, Dewson G, 2014. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ, 21(2): 196-205. 10.1038/cdd.2013.139 [PMC free article] [PubMed] [CrossRef] []
  • Wu D, Liang ML, Dang HX, et al., 2018. Hydrogen protects against hyperoxia-induced apoptosis in type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a signaling pathway. Biochem Biophys Res Commun, 495(2): 1620-1627. 10.1016/j.bbrc.2017.11.193 [PubMed] [CrossRef] []
  • Wu JQ, Kosten TR, Zhang XY, 2013. Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psych, 46: 200-206. 10.1016/j.pnpbp.2013.02.015 [PubMed] [CrossRef] []
  • Wu MY, Yiang GT, Liao WT, et al., 2018. Current mechanistic concepts in ischemia and reperfusion injury. Cell Phys Biochem, 46(4): 1650-1667. 10.1159/000489241 [PubMed] [CrossRef] []
  • Xiao M, Zhu T, Wang T, et al., 2013. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-‍κB in a murine model of asthma. Eur Rev Med Pharmacol Sci, 17(8): 1033-1043. [PubMed] []
  • Xie KL, Yu YH, Pei YP, et al., 2010. Protective effects of hydrogen gas on murine polymicrobial sepsis via reducing oxidative stress and HMGB1 release. Shock, 34(1): 90-97. 10.1097/SHK.0b013e3181cdc4ae [PubMed] [CrossRef] []
  • Xie KL, Yu YH, Huang Y, et al., 2012. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis. Shock, 37(5): 548-555. 10.1097/SHK.0b013e31824ddc81 [PubMed] [CrossRef] []
  • Xie KL, Zhang Y, Wang YQ, et al., 2020. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation. Inflamm Res, 69(7): 697-710. 10.1007/s00011-020-01347-9 [PubMed] [CrossRef] []
  • Xu FF, Yu SQ, Qin ML, et al., 2018. Hydrogen-rich saline ameliorates allergic rhinitis by reversing the imbalance of Th1/Th2 and up-regulation of CD4+CD25+Foxp3+regulatory T Cells, interleukin-10, and membrane-bound transforming growth factor-‍β in guinea pigs. Inflammation, 41(1): 81-92. 10.1007/s10753-017-0666-6 [PubMed] [CrossRef] []
  • Xu Z, Shi L, Wang YJ, et al., 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8(4): 420-422. 10.1016/S2213-2600(20)30076-X [PMC free article] [PubMed] [CrossRef] []
  • Yan MY, Yu Y, Mao X, et al., 2019. Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner. Int Immunopharmacol, 71: 61-67. 10.1016/j.intimp.2019.03.021 [PubMed] [CrossRef] []
  • Yan WM, Zhang L, Chen T, et al., 2017. Effects of hydrogen-rich saline on endotoxin-induced uveitis. Med Gas Res, 7(1): 9-18. 10.4103/2045-9912.202905 [PMC free article] [PubMed] [CrossRef] []
  • Yang FX, Yue RM, Luo XX, et al., 2020. Hydrogen: a potential new adjuvant therapy for COVID-19 patients. Front Pharmacol, 11: 543718. 10.3389/fphar.2020.543718 [PMC free article] [PubMed] [CrossRef] []
  • Yang M, Yu Y, Xie KL, et al., 2019. Effects of hydrogen on lung injury in wild-type and Nrf2 gene knockout mice: relationship with Nrf2/HO-1/HMGB1 pathway. Chin Crit Care Med, 31(7): 862-866 (in Chinese). 10.3760/cma.j.issn.2095-4352.2019.07.013 [PubMed] [CrossRef] []
  • Yang T, Wang L, Sun RQ, et al., 2016. Hydrogen-rich medium ameliorates lipopolysaccharide-induced barrier dysfunction via RhoA-mDia1 signaling in Caco-2 cells. Shock, 45(2): 228-237. 10.1097/SHK.0000000000000503 [PubMed] [CrossRef] []
  • Yang Y, Liu PY, Bao W, et al., 2020. Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer, 20: 28. 10.1186/s12885-019-6491-6 [PMC free article] [PubMed] [CrossRef] []
  • Yang ZF, Klionsky DJ, 2010. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol, 22(2): 124-131. 10.1016/j.ceb.2009.11.014 [PMC free article] [PubMed] [CrossRef] []
  • Yao L, Chen HG, Wu QH, et al., 2019. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int J Mol Med, 44(3): 1048-1062. 10.3892/IJMM.2019.4264 [PMC free article] [PubMed] [CrossRef] []
  • Ying YG, Xu HZ, Yao M, et al., 2017. Protective effect of hydrogen-saturated saline on acute lung injury induced by oleic acid in rats. J Orthop Surg Res, 12: 134. 10.1186/s13018-017-0633-9 [PMC free article] [PubMed] [CrossRef] []
  • Yu Y, Yang YY, Yang M, et al., 2019. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway. Int Immunopharmacol, 69: 11-18. 10.1016/j.intimp.2019.01.022 [PubMed] [CrossRef] []
  • Yu Y, Feng JC, Lian NQ, et al., 2020. Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway. Int Immunopharmacol, 85: 106585. 10.1016/j.intimp.2020.106585 [PubMed] [CrossRef] []
  • Yue C, Ji C, Zhang H, et al., 2017. Protective effects of folic acid on PM2.5-induced cardiac developmental toxicity in zebrafish embryos by targeting AhR and Wnt/β‍-catenin signal pathways. Environ Toxicol, 32(10): 2316-2322. 10.1002/tox.22448 [PubMed] [CrossRef] []
  • Zha QB, Wei HX, Li CG, et al., 2016. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Front Immunol, 7: 597. 10.3389/FIMMU.2016.00597 [PMC free article] [PubMed] [CrossRef] []
  • Zhang GC, Li Z, Meng C, et al., 2018. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Transplantation, 102(8): 1253-1261. 10.1097/TP.0000000000002276 [PubMed] [CrossRef] []
  • Zhang HQ, Davies KJA, Forman HJ, 2015. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med, 88: 314-336. 10.1016/j.freeradbiomed.2015.05.036 [PMC free article] [PubMed] [CrossRef] []
  • Zhang M, Li ZH, Gao DW, et al., 2020. Hydrogen extends Caenorhabditis elegans longevity by reducing reactive oxygen species. PLoS ONE, 15: e0231972. 10.1371/JOURNAL.PONE.0231972 [PMC free article] [PubMed] [CrossRef] []
  • Zhang N, Deng CW, Zhang XX, et al., 2018. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice. Asthma Res Pract, 4: 3. 10.1186/s40733-018-0040-y [PMC free article] [PubMed] [CrossRef] []
  • Zhang WB, Huang C, Sun AJ, et al., 2018. Hydrogen alleviates cellular senescence via regulation of ROS/p53/p21 pathway in bone marrow-derived mesenchymal stem cells in vivo. Biomed Pharmacother, 106: 1126-1134. 10.1016/j.biopha.2018.07.020 [PubMed] [CrossRef] []
  • Zhang Y, Liu YM, Zhang J, 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. J Surg Res, 198(1): 41-49. 10.1016/j.jss.2015.04.055 [PubMed] [CrossRef] []
  • Zhang YQ, Liu YJ, Mao YF, et al., 2015. Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-‍β1 signaling. Clin Nutr, 34(4): 752-760. 10.1016/j.clnu.2014.08.014 [PubMed] [CrossRef] []
  • Zhao PH, Jin ZK, Chen Q, et al., 2018. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun, 9: 4241. 10.1038/s41467-018-06630-2 [PMC free article] [PubMed] [CrossRef] []
  • Zou R, Wang MH, Chen Y, et al., 2019. Hydrogen-rich saline attenuates acute lung injury induced by limb ischemia/reperfusion via down-regulating chemerin and NLRP3 in rats. Shock, 52(1): 134-141. 10.1097/SHK.0000000000001194 [PubMed] [CrossRef] []

Articles from Journal of Zhejiang University. Science. B are provided here courtesy of Zhejiang University Press

Plaats een reactie ...

Reageer op "Waterstof behandeling blijkt uitstekend therapeutische behandeling tegen ontstekingsgerelateerde chronische ziektes en zelfs kanker maar ook tegen bacterien en virussen, waaronder Covid-19 mutaties"


Gerelateerde artikelen
 

Gerelateerde artikelen

Waterstoftherapie zorgt voor >> Waterstof behandeling blijkt >> Waterstoftherapie bewijst >>