22 februari 2022: Bron: European Journal of Nuclear Medicine and Molecular Imaging (2022)

Wanneer bij mensen met schildklierknobbeltjes Bethesda III of IV vooraf aan de geplande operatie een nauwkeuriger diagnose werd gedaan met een FDG-PET/CT-scan dan bleek 42 procent van de operaties niet nodig te zijn omdat de knobbeltjes goedaardig bleken. Hiermee werd dus het verschil tussen goedaardige en kwaadaardige knobbeltjes aangetoond met alle gevolgen vandien voor de patiënt. Zij kregen dus veel meer zekerheid welke behandeling nodig was. 

Het primaire doel van de Nederlandse studie was het nauwkeurig verminderen van ongunstige patiëntenzorg, d.w.z. het vermijden van diagnostische chirurgie voor goedaardige knobbeltjes en het vermijden van surveillance voor kwaadaardige en borderline knobbeltjes die een chirurgische ingreep vereisen.
Secundaire doelstellingen waren het bepalen van de impact van FDG-PET/CT-gestuurd management op het aantal chirurgische complicaties, HRQoL - kwaliteit van leven, maatschappelijke kosten en gevolgen van incidentele PET/CT-bevindingen en het beoordelen van de implementeerbaarheid van FDG-PET /CT.

Vertaalde resultaten uit het abstract:

  • Patiëntenbehandeling was niet gunstig bij 42% (38/91 [95% betrouwbaarheidsinterval , 32-53%]) van de patiënten in de FDG-PET/CT-aangedreven groep, vergeleken met 83% (34/ 41 [95% BI, 68-93%]) in de groep voor diagnostische chirurgie (p < 0,001).
  • FDG-PET/CT-gestuurde behandeling vermeden 40% (25/63 [95% BI, 28–53%]) diagnostische operaties voor goedaardige knobbeltjes: 48% (23/48 [95% BI, 33–63%] ]) in niet-Hürthle-cellen en 13% (2/15 [95% BI, 2-40%]) in Hürthle-celknobbeltjes (p = 0.02).
  • Er werden geen kwaadaardige of borderline-tumoren waargenomen bij patiënten onder toezicht.
  • Gevoeligheid, specificiteit, negatief en positief voorspellende waarde en goedaardige call rate (95% BI) van FDG-PET/CT waren 94,1% (80,3-99,3%), 39,8% (30,0-50,2%), 95,1% ( 83,5-99,4%), 35,2% (25,4-45,9%) en 31,1% (23,3-39,7%), respectievelijk.

figure 1
Trial profile. The dashed line indicates the patients who deviated from the treatment advise per protocol. NIFTP, non-invasive follicular thyroid neoplasm with papillary-like nuclear features. FT-UMP-OV, follicular tumour of uncertain malignant potential, Hürthle cell type. *: a specification of reasons for ineligibility is provided in Supplementary Table 2

Conclusie
:
Een FDG-PET/CT-gestuurde diagnostische verbetering van onbepaalde schildklierknobbeltjes leidt tot praktijkverandering van management, is nauwkeurig en oncologisch veilig, waardoor nutteloze operaties met 40% kunnen worden verminderd. Voor een optimale therapeutische opbrengst zou de toepassing van de FDG-PET/CT kunnen worden beperkt tot niet-Hürthle-celknobbeltjes.

Het volledige studierapport is gratis in te zien of te downloaden. Klik daarvoor op de titel van het abstract:

[18F]FDG-PET/CT to prevent futile surgery in indeterminate thyroid nodules: a blinded, randomised controlled multicentre trial

Abstract

Purpose

To assess the impact of an [18F]FDG-PET/CT-driven diagnostic workup to rule out malignancy, avoid futile diagnostic surgeries, and improve patient outcomes in thyroid nodules with indeterminate cytology.

Methods

In this double-blinded, randomised controlled multicentre trial, 132 adult euthyroid patients with scheduled diagnostic surgery for a Bethesda III or IV thyroid nodule underwent [18F]FDG-PET/CT and were randomised to an [18F]FDG-PET/CT-driven or diagnostic surgery group. In the [18F]FDG-PET/CT-driven group, management was based on the [18F]FDG-PET/CT result: when the index nodule was visually [18F]FDG-positive, diagnostic surgery was advised; when [18F]FDG-negative, active surveillance was recommended. The nodule was presumed benign when it remained unchanged on ultrasound surveillance. In the diagnostic surgery group, all patients were advised to proceed to the scheduled surgery, according to current guidelines. The primary outcome was the fraction of unbeneficial patient management in one year, i.e., diagnostic surgery for benign nodules and active surveillance for malignant/borderline nodules. Intention-to-treat analysis was performed. Subgroup analyses were performed for non-Hürthle cell and Hürthle cell nodules.

Results

Patient management was unbeneficial in 42% (38/91 [95% confidence interval , 32–53%]) of patients in the [18F]FDG-PET/CT-driven group, as compared to 83% (34/41 [95% CI, 68–93%]) in the diagnostic surgery group (p < 0.001). [18F]FDG-PET/CT-driven management avoided 40% (25/63 [95% CI, 28–53%]) diagnostic surgeries for benign nodules: 48% (23/48 [95% CI, 33–63%]) in non-Hürthle cell and 13% (2/15 [95% CI, 2–40%]) in Hürthle cell nodules (p = 0.02). No malignant or borderline tumours were observed in patients under surveillance. Sensitivity, specificity, negative and positive predictive value, and benign call rate (95% CI) of [18F]FDG-PET/CT were 94.1% (80.3–99.3%), 39.8% (30.0–50.2%), 95.1% (83.5–99.4%), 35.2% (25.4–45.9%), and 31.1% (23.3–39.7%), respectively.

Conclusion

An [18F]FDG-PET/CT-driven diagnostic workup of indeterminate thyroid nodules leads to practice changing management, accurately and oncologically safely reducing futile surgeries by 40%. For optimal therapeutic yield, application should be limited to non-Hürthle cell nodules.

Trial registration number

This trial is registered with ClinicalTrials.gov: NCT02208544 (5 August 2014), https://clinicaltrials.gov/ct2/show/NCT02208544.

References

  1. National Cancer Institute. Surveillance, epidemiology, and end results (SEER) program. CancerStat Facts: Thyroid Cancer. Bethesda, MD: National Cancer Institute, DCCPS, Surveillance Research Program; 2020.

  2. Durante C, Grani G, Lamartina L, Filetti S, Mandel SJ, Cooper DS. The diagnosis and management of thyroid nodules: a review. JAMA. 2018;319:914–24. https://doi.org/10.1001/jama.2018.0898.

    Article PubMed Google Scholar 

  3. Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid. 2017;27:1341–6. https://doi.org/10.1089/thy.2017.0500.

    Article PubMed Google Scholar 

  4. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.

    Article PubMed PubMed Central Google Scholar 

  5. Vriens D, de Wilt JH, van der Wilt GJ, Netea-Maier RT, Oyen WJ, de Geus-Oei LF. The role of -2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy: systematic review and meta-analysis of the literature. Cancer. 2011;117:4582–94. https://doi.org/10.1002/cncr.26085.

    Article PubMed Google Scholar 

  6. Rosato L, Avenia N, Bernante P, De Palma M, Gulino G, Nasi PG, et al. Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in Italy over 5 years. World J Surg. 2004;28:271–6. https://doi.org/10.1007/s00268-003-6903-1.

    Article PubMed Google Scholar 

  7. Vriens D, Adang EM, Netea-Maier RT, Smit JW, de Wilt JH, Oyen WJ, et al. Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: a decision analytic approach. J Clin Endocrinol Metab. 2014;99:3263–74. https://doi.org/10.1210/jc.2013-3483.

    CAS Article PubMed Google Scholar 

  8. Merten MM, Castro MR, Zhang J, Durski JM, Ryder M. Examining the role of preoperative positron emission tomography/computerized tomography (PET/CT) in combination with ultrasonography in discriminating benign from malignant cytologically indeterminate thyroid nodules. Thyroid. 2017;27:95–102. https://doi.org/10.1089/thy.2016.0379.

    Article PubMed Google Scholar 

  9. Piccardo A, Puntoni M, Dezzana M, Bottoni G, Foppiani L, Marugo A, et al. Indeterminate thyroid nodules. The role of (18)F-FDG PET/CT in the “era” of ultrasonography risk stratification systems and new thyroid cytology classifications. Endocrine. 2020;69:553–61. https://doi.org/10.1007/s12020-020-02239-y.

    CAS Article PubMed Google Scholar 

  10. Evidence based nation-wide guideline thyroid carcinoma version 2.0. 2014 ed. Rotterdam, the Netherlands: Integraal Kankercentrum Nederland; 2014. https://richtlijnendatabase.nl/richtlijn/schildkliercarcinoom/algemeen.html. Accessed 7 July 2021.

  11. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.

    CAS Article PubMed Google Scholar 

  12. Giovanella L, Avram AM, Iakovou I, Kwak J, Lawson SA, Lulaj E, et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur J Nucl Med Mol Imaging. 2019;46:2514–25. https://doi.org/10.1007/s00259-019-04472-8.

    CAS Article PubMed Google Scholar 

  13. EQ-5D-5L User Guide. Rotterdam, the Netherlands: EuroQol Research Foundation; 2019. https://euroqol.org/publications/user-guides/. Accessed 7 July 2021.

  14. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20:1727–36. https://doi.org/10.1007/s11136-011-9903-x.

    CAS Article PubMed PubMed Central Google Scholar 

  15. Bouwmans C, Krol M, Severens H, Koopmanschap M, Brouwer W, Hakkaart-van RL. The iMTA productivity cost questionnaire: a standardized instrument for measuring and valuing health-related productivity losses. Value in health. 2015;18:753–8. https://doi.org/10.1016/j.jval.2015.05.009.

    Article PubMed Google Scholar 

  16. iMTA Productivity and Health Research Group. Manual iMTA medical cost questionnaire (iMCQ). Rotterdam: Institute for Medical Technology Assessment (iMTA), Erasmus university Rotterdam. Rotterdam. https://www.imta.nl/. Accessed 14 April 2021.

  17. Dutch Healthcare Authority (NZa). Open data of the Dutch Healthcare Authority (NZa). Utrecht, the Netherlands: Dutch Healthcare Authority (NZa); 2020. https://opendisdata.nl/. Accessed 14 April 2021.

  18. Hakkaart-van Roijen L, van der Linden N, Bouwmans CAM, Kanters T, Tan SS. Costing manual: methodology of costing research and reference prices for economic evaluations in healthcare. Rotterdam, the Netherlands: Institute for Medical Technology Assessment (iMTA), Erasmus University Rotterdam; 2015.

  19. Haugen BR, Sawka AM, Alexander EK, Bible KC, Caturegli P, Doherty GM, et al. American thyroid association guidelines on the management of thyroid nodules and differentiated thyroid cancer task force review and recommendation on the proposed renaming of encapsulated follicular variant papillary thyroid carcinoma without invasion to noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 2017;27:481–3. https://doi.org/10.1089/thy.2016.0628.

    CAS Article PubMed Google Scholar 

  20. Lloyd RV, Osamura RY, Klöppel G, Rosai J. 2017 WHO classification of tumours of endocrine organs. WHO Classification of Tumours, 4th ed. Lyon, France: IARC

  21. Kahan BC, Morris TP. Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012;345: e5840. https://doi.org/10.1136/bmj.e5840.

    Article PubMed PubMed Central Google Scholar 

  22. Pathak KA, Klonisch T, Nason RW, Leslie WD. FDG-PET characteristics of Hurthle cell and follicular adenomas. Ann Nucl Med. 2016;30:506–9. https://doi.org/10.1007/s12149-016-1087-6.

    CAS Article PubMed Google Scholar 

  23. Ceriani L, Milan L, Virili C, Cascione L, Paone G, Trimboli P, et al. Radiomics analysis of [(18)F]-fluorodeoxyglucose-avid thyroid incidentalomas improves risk stratification and selection for clinical assessment. Thyroid. 2020. https://doi.org/10.1089/thy.2020.0224.

    Article PubMed Google Scholar 

  24. Giovanella L, Milan L, Piccardo A, Bottoni G, Cuzzocrea M, Paone G, et al. Radiomics analysis improves (18)FDG PET/CT-based risk stratification of cytologically indeterminate thyroid nodules. Endocrine. 2021. https://doi.org/10.1007/s12020-021-02856-1.

    Article PubMed Google Scholar 

  25. de Koster EJ, de Geus-Oei LF, Dekkers OM, van Engen-van GI, Hamming J, Corssmit EPM, et al. Diagnostic utility of molecular and imaging biomarkers in cytological indeterminate thyroid nodules. Endocr Rev. 2018;39:154–91. https://doi.org/10.1210/er.2017-00133.

    Article PubMed Google Scholar 

  26. Gopal RK, Kubler K, Calvo SE, Polak P, Livitz D, Rosebrock D, et al. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hurthle cell carcinoma. Cancer Cell. 2018;34:242–55. https://doi.org/10.1016/j.ccell.2018.06.013.

    CAS Article PubMed PubMed Central Google Scholar 

  27. Doerfler WR, Nikitski AV, Morariu EM, Ohori NP, Chiosea SI, Landau MS, et al. Molecular alterations in Hurthle cell nodules and preoperative cancer risk. Endocr Relat Cancer. 2021. https://doi.org/10.1530/ERC-20-0435.

    Article PubMed Google Scholar 

  28. Rosario PW, Rocha TG, Calsolari MR. Fluorine-18-fluorodeoxyglucose positron emission tomography in thyroid nodules with indeterminate cytology: a prospective study. Nucl Med Commun. 2019;40:185–7. https://doi.org/10.1097/MNM.0000000000000946.

    Article PubMed Google Scholar 

  29. Qichang W, Jinming S, Lu L, Bin J, Renjie W, Xiuying Z. Comparison of 18F-FDG-PET and 18F-FDG-PET/CT for the diagnostic performance in thyroid nodules with indeterminate cytology: a meta-analysis. Medicine. 2020;99:1–9. https://doi.org/10.1097/MD.0000000000020446.

    Article Google Scholar 

  30. Kaida H, Hiromatsu Y, Kurata S, Kawahara A, Hattori S, Taira T, et al. Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patients with papillary thyroid cancer. Nucl Med Commun. 2011;32:690–8. https://doi.org/10.1097/MNM.0b013e32834754f1.

    CAS Article PubMed Google Scholar 

  31. Staibano P, Forner D, Noel CW, Zhang H, Gupta M, Monteiro E, et al. Ultrasonography and fine-needle aspiration in indeterminate thyroid nodules: a systematic review of diagnostic test accuracy. Laryngoscope. 2021. https://doi.org/10.1002/lary.29778.

    Article PubMed Google Scholar 

  32. Yip L, Sosa JA. Molecular-directed treatment of differentiated thyroid cancer: advances in diagnosis and treatment. JAMA Surg. 2016;151:663–70. https://doi.org/10.1001/jamasurg.2016.0825.

    Article PubMed Google Scholar 

  33. Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 2018;5:204–12. https://doi.org/10.1001/jamaoncol.2018.4616.

    Article Google Scholar 

  34. Angell TE, Heller HT, Cibas ES, Barletta JA, Kim MI, Krane JF, et al. Independent comparison of the Afirma genomic sequencing classifier and gene expression classifier for cytologically indeterminate thyroid nodules. Thyroid. 2019;29:650–6. https://doi.org/10.1089/thy.2018.0726.

    CAS Article PubMed Google Scholar 

  35. Eszlinger M, Bohme K, Ullmann M, Gorke F, Siebolts U, Neumann A, et al. Evaluation of a Two-year routine application of molecular testing of thyroid fine-needle aspirations using a seven-gene panel in a primary referral setting in Germany. Thyroid. 2017;27:402–11. https://doi.org/10.1089/thy.2016.0445.

    CAS Article PubMed Google Scholar 

  36. Bardet S, Goardon N, Lequesne J, Vaur D, Ciappuccini R, Leconte A, et al. Diagnostic and prognostic value of a 7-panel mutation testing in thyroid nodules with indeterminate cytology: the SWEETMAC study. Endocrine. 2021;71:407–17. https://doi.org/10.1007/s12020-020-02411-4.

    CAS Article PubMed Google Scholar 

  37. Paschke R, Cantara S, Crescenzi A, Jarzab B, Musholt TJ, Sobrinho SM. European thyroid association guidelines regarding thyroid nodule molecular fine-needle aspiration cytology diagnostics. Eur Thyroid J. 2017;6:115–29. https://doi.org/10.1159/000468519.

    Article PubMed PubMed Central Google Scholar 

  38. Balentine CJ, Vanness DJ, Schneider DF. Cost-effectiveness of lobectomy versus genetic testing (Afirma(R)) for indeterminate thyroid nodules: considering the costs of surveillance. Surgery. 2018;163:88–96. https://doi.org/10.1016/j.surg.2017.10.004.

    Article PubMed Google Scholar 

  39. Nicholson KJ, Roberts MS, McCoy KL, Carty SE, Yip L. Molecular testing versus diagnostic lobectomy in Bethesda III/IV thyroid nodules: a cost-effectiveness analysis. Thyroid. 2019;29:1237–43. https://doi.org/10.1089/thy.2018.0779.

    Article PubMed PubMed Central Google Scholar 

  40. Endo M, Porter K, Long C, Azaryan I, Phay JE, Ringel MD, et al. Features of cytologically indeterminate molecularly benign nodules treated with surgery. J Clin Endocrinol Metab. 2020;105:e3971–80. https://doi.org/10.1210/clinem/dgaa506.

    Article PubMed Central Google Scholar 

  41. Wang H, Dai H, Li Q, Shen G, Shi L, Tian R. Investigating (18)F-FDG PET/CT parameters as prognostic markers for differentiated thyroid cancer: a systematic review. Front Oncol. 2021;11:1–9. https://doi.org/10.3389/fonc.2021.648658.

    Article Google Scholar 

  42. Choi JW, Yoon YH, Yoon YH, Kim SM, Koo BS. Characteristics of primary papillary thyroid carcinoma with false-negative findings on initial (18)F-FDG PET/CT. Ann Surg Oncol. 2011;18:1306–11. https://doi.org/10.1245/s10434-010-1469-2.

    Article PubMed Google Scholar 

Download references

Acknowledgements

The authors like to thank all the patients who participated in the EfFECTS trial, all members of the EfFECTS trial consortium, and all others who were involved in any of the study procedures. In particular, we like to thank Dr. B. Küsters (BK), a pathologist at the Radboud university medical centre, Nijmegen, the Netherlands, for his assistance with the central review of cytology and histopathology samples, and Prof. dr. O.M. Dekkers, a clinical epidemiologist and endocrinologist at the Leiden University Medical Center, Leiden, the Netherlands, and Prof. dr. H. Putter, a statistician at the Leiden University Medical Center, Leiden, the Netherlands, for their expertise and guidance during the execution of the trial.

Funding

The EfFECTS trial was supported by a project grant from the Dutch Cancer Society (KUN 2014–6514).

Author information

Affiliations

Consortia

Contributions

Lioe-Fee de Geus-Oei, Wim J.G. Oyen, and Dennis Vriens conceptualised the study. Lioe-Fee de Geus-Oei was the project leader. Wim J.G. Oyen and Dennis Vriens were principal investigators. Elizabeth J. de Koster was the junior investigator. Adrienne H. Brouwers, Eveline W.C.M. van Dam, Lioe-Ting Dijkhorst-Oei, Tamira K. Klooker, Romana T. Netea-Maier, and Marieke Snel were local principal investigators in hospitals participating in the study. Adriana C.H. van Engen-van Grunsven was the principal central pathologist. Elizabeth J. de Koster prepared the dataset for analysis, drafted the manuscript and prepared the tables and figures. Elizabeth J. de Koster and Dennis Vriens verified the data and performed the statistical analysis. All authors contributed to data acquisition and the interpretation of the data, and critically reviewed this manuscript. All authors had full access to all the data in the study and approved the manuscript before submission. Dennis Vriens had final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Elizabeth J. de Koster.

Ethics declarations

Ethics approval

The study protocol was approved by the Medical Research Ethics Committee on Research Involving Human Subjects region Arnhem-Nijmegen, Nijmegen, the Netherlands, on 10 November 2014.

Consent to participate

Prior to any study activities, written informed consent was obtained from all individual participants included in the study.

Consent for publication

All patients signed informed consent regarding publishing their data.

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Endocrinology.


Plaats een reactie ...

Reageer op "[18F]FDG-PET/CT-gestuurde diagnose van verdachte schildklierknobbeltjes vermindert nutteloze operaties met 40 procent door goedaardig van kwaadaardig te onderscheiden."


Gerelateerde artikelen
 

Gerelateerde artikelen

Theranostiek, succesvol bij >> [18F]FDG-PET/CT-gestuurde >> Schildklierkanker: Bestraling >> Selpercatinib (LOXO-292), >> Oudere patiënten (40 plus) >> Vier internationale medisch-specialistische >> Anaplastische schildklierkanker >> Schildklierkanker: Lenvatinib >> Wie als baby/kind bestraald >>