26 juni 2024: Bron: 2021 Sep 16;385(12):1091-1103.

Met dank aan Joge die me vroeg naar deze studie omdat een kennis van haar met in de botten uitgezaaide prostaatkanker na drie injecties met Lutetium-177 PSMA-617 klinisch kankervrij werd verklaard. En deze man kreeg zijn behandeling bij dr. Andre Bergman werkzaam in het Antoni van Leeuwenhoek ziekenhuis (AvL). Overigens ook in Utrecht in het UMC-MC worden prostaatkankerpatiënten behandeld met 177Lu-PSMA-617.

Al in 2021 werd een studie met 177Lu-PSMA-617 gepubliceerd (abstract staat verderop in dit artikel) en de FDA gaf toestemming tot gebruik in 2023, zie dit artikel.

Eind 2023 werd een fase III studie gepubliceerd bij patiënten die geen chemo hadden gehad maar wel uitgezaaide prostaatkanker, zie deze studie (abstract verderop).

Een aparte substudie naar de bijwerkingen op korte en lange termijn werd afgelopen jaar gepubliceerd, zie dit studiesverslag. (abstract verderop in dit artikel: 

Je kunt je natuurlijk afvragen waarom wordt 177Lu-PSMA-617 niet in een veel vroeger stadium ingezet.

En waarom wordt 177Lu-PSMA-617 niet ingezet bij in de botten uitgezaaide borstkanker? Ik vind 1 studie bij 1 patiënt met uitgezaaide triple negatieve borstkanker, zie abstract verderop in dit artikel.

Samenvattend kun je zeggen dat 177Lu-PSMA-617 een veelbelovende behandeling is zonder ernstige bijwerkingen voor in de botten uitgezaaide prostaatkanker. In verschillende ziekenhuizen in Nederland wordt dus deze behandeling gegeven, zie eeerder in dit artikel.

Hier volgen de abstracten van genoemde studies:


Radioligand therapy with 177Lu-PSMA-617 prolonged imaging-based progression-free survival and overall survival when added to standard care in patients with advanced PSMA-positive metastatic castration-resistant prostate cancer.

Abstract

Background: Metastatic castration-resistant prostate cancer remains fatal despite recent advances. Prostate-specific membrane antigen (PSMA) is highly expressed in metastatic castration-resistant prostate cancer. Lutetium-177 (177Lu)-PSMA-617 is a radioligand therapy that delivers beta-particle radiation to PSMA-expressing cells and the surrounding microenvironment.

Methods: We conducted an international, open-label, phase 3 trial evaluating 177Lu-PSMA-617 in patients who had metastatic castration-resistant prostate cancer previously treated with at least one androgen-receptor-pathway inhibitor and one or two taxane regimens and who had PSMA-positive gallium-68 (68Ga)-labeled PSMA-11 positron-emission tomographic-computed tomographic scans. Patients were randomly assigned in a 2:1 ratio to receive either 177Lu-PSMA-617 (7.4 GBq every 6 weeks for four to six cycles) plus protocol-permitted standard care or standard care alone. Protocol-permitted standard care excluded chemotherapy, immunotherapy, radium-223 (223Ra), and investigational drugs. The alternate primary end points were imaging-based progression-free survival and overall survival, which were powered for hazard ratios of 0.67 and 0.73, respectively. Key secondary end points were objective response, disease control, and time to symptomatic skeletal events. Adverse events during treatment were those occurring no more than 30 days after the last dose and before subsequent anticancer treatment.

Results: From June 2018 to mid-October 2019, a total of 831 of 1179 screened patients underwent randomization. The baseline characteristics of the patients were balanced between the groups. The median follow-up was 20.9 months. 177Lu-PSMA-617 plus standard care significantly prolonged, as compared with standard care, both imaging-based progression-free survival (median, 8.7 vs. 3.4 months; hazard ratio for progression or death, 0.40; 99.2% confidence interval , 0.29 to 0.57; P<0.001) and overall survival (median, 15.3 vs. 11.3 months; hazard ratio for death, 0.62; 95% CI, 0.52 to 0.74; P<0.001). All the key secondary end points significantly favored 177Lu-PSMA-617. The incidence of adverse events of grade 3 or above was higher with 177Lu-PSMA-617 than without (52.7% vs. 38.0%), but quality of life was not adversely affected.

Conclusions: Radioligand therapy with 177Lu-PSMA-617 prolonged imaging-based progression-free survival and overall survival when added to standard care in patients with advanced PSMA-positive metastatic castration-resistant prostate cancer. (Funded by Endocyte, a Novartis company; VISION ClinicalTrials.gov number, NCT03511664.).

PubMed Disclaimer

Figures

Figure 1
 
Figure 2

177Lu-PSMA-617 prolonged rPFS vs ARPI change in taxane-naive pts with PSMA+ mCRPC, with a favourable safety profile.

PROSTATE CANCER| VOLUME 34, SUPPLEMENT 2S1324-S1325, OCTOBER 2023

LBA13 Phase III trial of Lu-PSMA-617 in taxane-naive patients with metastatic castration-resistant prostate cancer (PSMAfore)

DOI:https://doi.org/10.1016/j.annonc.2023.10.085  

Background

[177Lu]Lu-PSMA-617 (177Lu-PSMA-617) prolongs rPFS and OS in patients (pts) with mCRPC and prior ARPI and taxane therapy. PSMAfore (NCT04689828) examined 177Lu-PSMA-617 in taxane-naive pts.

Methods

Eligible adults had mCRPC, were candidates for ARPI change after one progression on prior ARPI, and had ≥1 PSMA+ and no exclusionary PSMA– lesions by [68Ga]Ga-PSMA-11 PET/CT. Candidates for PARP inhibition and pts with prior systemic radiotherapy (<6 months ago), immunotherapy (except sipuleucel-T), or chemotherapy (except adjuvant >12 months ago) were ineligible. Randomization was 1:1 to open-label 177Lu-PSMA-617 (7.4 GBq q6w; 6 cycles) or ARPI change (abiraterone/enzalutamide). Pts randomized to ARPI could crossover to 177Lu-PSMA-617 following centrally reviewed radiographic progression (rPD). Endpoints included: rPFS (PCWG3/RECIST v1.1; primary), OS (key secondary) (both overall α=0.025, one-sided), FACT-P (secondary) and ORR/DOR (exploratory). Primary analysis was to occur at ∼156 rPFS events and second OS interim analysis (IA) at ∼125 deaths. Crossover-adjusted analysis was the prespecified method for OS by rank-preserving structural failure time (RPSFT).

Results

468 pts were randomized. At primary analysis (median follow-up, 7.3 months; N = 467), the primary endpoint of rPFS was met (HR, 0.41; 95% CI: 0.29, 0.56; p<0.0001); this was similar at second IA (table). At second IA (45.1% of target deaths), 123/146 (84.2%) pts with rPD who discontinued ARPI crossed over; there was a positive OS trend in favour of 177Lu-PSMA-617 per RPFST but not per unadjusted OS analysis. FACT-P and ORR/DOR favoured the 177Lu-PSMA-617 arm (table). For 177Lu-PSMA-617 vs ARPI change, incidence of grade ≥3 AEs was 34% (most common: anaemia, dry mouth) vs 44%, serious AEs 20% vs 28%, and AEs leading to discontinuation 5.7% vs 5.2%.

Table: LBA13
Second OS IA (DCO, 21 Jun 2023; median follow-up, 15.9 months)177Lu-PSMA-617 (N=234)ARPI change (N=234)
Cycles, median (range) 6.0 (1–6)
rPFSa
Events, n (%) 115 (49.1) 168 (71.8)
Median (95% CI), months 12.02 (9.30, 14.42) 5.59 (4.17, 5.95)
HR (95% CI), p 0.43 (0.33, 0.54), <0.0001
TTW in FACT-P Totalb
Events, n (%) 167 (71.4) 187 (79.9)
Median (95% CI), months 7.46 (6.08, 8.51) 4.27 (3.48, 4.53)
HR (95% CI) 0.59 (0.47, 0.72)
N=105 N=103
ORRc, % (95% CI) 41.9 (32.3, 51.9) 12.6 (6.9, 20.6)
N=44 N=13
DORc, median (95% CI), months 17.1 (11.6, NE) 10.1 (4.6, NE)
aRadiographic progression or death bTime to worsening in FACT-P Total, clinical disease progression, or death cSoft tissue only NE, not estimable.

Conclusions

177Lu-PSMA-617 prolonged rPFS vs ARPI change in taxane-naive pts with PSMA+ mCRPC, with a favourable safety profile.
Drs. O. Sartor, M.J. Morris and K. Fizazi have equally contributed to the study.

Clinical trial identification

EudraCT 2020-003969-19. NCT04689828. Protocol release date: 13 January 2022.

Editorial acknowledgement

Under direction of the authors, Katie Willetts, PhD, Sarah Sabir, PhD and Matt Cottingham, PhD, of Oxford PharmaGenesis, Oxford, UK provided medical writing support, which was funded by Novartis, in accordance with Good Publication Practice (GPP 2022) guidelines.

Legal entity responsible for the study

Novartis.

Funding

Novartis.

Disclosure

O. Sartor: Financial Interests, Personal, Speaker, Consultant, Advisor: Advanced Accelerator Applications, Amgen, ArtBio, Astellas, AstraZeneca, Bayer, Blue Earth Diagnostics, Clarity, Clovis, Constellation, Convergent, Dendreon, EMD Serono, Foundation Medicine, Fusion, Hengrui, Isotopen Technologien Meunchen, Janssen, Merck, Morphimmune, Myovant, Myriad, NorthStar, Novartis, PointBiopharma, Pfizer, Ratio, Sanofi, Telix, Theragnostics; Financial Interests, Institutional, Research Grant: Advanced Accelerator Applications, Amgen, Janssen, Merck; Financial Interests, Institutional, Research Funding: Bayer, Constellation; Non-Financial Interests, Institutional, Research Grant: Endocyte, Invitae, Progenics, Tenebio; Non-Financial Interests, Personal, Speaker, Consultant, Advisor: Genzyme, Noria Therapeutics, Inc, Noxopharm, Progenics, Tenebio, Tessa, Z-alpha; Financial Interests, Personal, Stocks/Shares: Ratio, Tellix. D.E. Castellano Gauna: Financial Interests, Personal, Advisory Board: Pfizer, Roche, BMS, Janssen, Astellas, MSD, Ipsen, AstraZeneca, Novartis, GSK; Financial Interests, Institutional, Local PI: Pfizer, Roche, MSD, BMS, AstraZeneca, Janssen, Astellas, Ipsen, Exelisis, Eisai, Lilly, Bayer, GSK, Clovis, QED Therapeutics; Non-Financial Interests, Personal, Other, Executive member: SOGUG (Spanish Oncology Genito-Urinary Group) Foundation. K. Herrmann: Financial Interests, Personal, Advisory Board: Bayer, Adacap/Novartis, Curium, Boston Scientific, GE Healthcare, AstraZeneca; Financial Interests, Personal, Invited Speaker: Sirtex, Siemens Healthineers, Monrol; Financial Interests, Personal, Other, Consultant: Amgen; Financial Interests, Personal, Other, DMSB: ymabs; Financial Interests, Personal, Advisory Board, Scientific Advisor: AdvanceCell; Financial Interests, Personal, Advisory Board, Advisor, Consultant: Janssen; Financial Interests, Personal, Advisory Board, Consultant: Eco1R, Fusion Pharmaceuticals, Genentech; Financial Interests, Personal, Member of Board of Directors: Sofie Biosciences, Pharma 15; Financial Interests, Personal, Ownership Interest: Sofie Biosciences; Financial Interests, Personal, Stocks/Shares: Aktis Oncology, AdvanCell, Convergent Therapeutics; Non-Financial Interests, Leadership Role, Chair Oncology&Theragnostics Committee: EANM. J.S. de Bono: Financial Interests, Personal, Advisory Board: Amgen, Astellas, AstraZeneca, Bayer, Bioxcel Therapeutics, Boehringer Ingelheim, Cellcentric, Daiichi, Eisai, Genentech Roche, Genmab, GSK, Janssen, Merck Serono, Merck Sharp & Dohme, Orion Pharma, Pfizer, Qiagen, Sanofi Aventis, Sierra Oncology, Taiho, Terumo, Vertex Pharmaceuticals, Menarini Silicon Biosystems, ImCheck Therapeutics, Crescendo; Financial Interests, Institutional, Advisory Board: Harpoon; Financial Interests, Institutional, Research Grant: Astellas, AstraZeneca, Bayer, Cellcentric, Daiichi, Genentech Roche, Genmab, GSK, Harpoon, Janssen, Merck Serono, Merck Sharp & Dohme, Orion Pharma, Pfizer, Sanofi Aventis, Sierra Oncology, Taiho, Vertex Pharmaceuticals, Crescendo Biologics, Menarini Silicon Biosystems; Non-Financial Interests, Principal Investigator: Amgen, Astellas, AstraZeneca, Bayer, Bioxcel Therapeutics, Boehringer Ingelheim, Cellcentric, Daiichi, Eisai, Genentech Roche, Genmab, Menarini Silicon Biosystems, GSK, Harpoon, Janssen, Pfizer, Merck Serono, Merck Sharp & Dohme, Orion Pharma, Qiagen, Sanofi Aventis, Sierra Oncology, Taiho, Terumo, Vertex Pharmaceuticals, Crescendo, ImCheck Therapeutics; Non-Financial Interests, Institutional, Product Samples: Daiichi, Bayer, Merck Serono, AstraZeneca, Harpoon, Pfizer, Sierra Oncology, Genentech/Roche, Sanofi Aventis, GSK. N.D. Shore: Financial Interests, Personal, Advisory Board: AbbVie, Amgen, Astellas, AstraZeneca, Bayer, Bristol Myers Squibb, Boston Scientific, Clovis Oncology, Cold Genesys, Dendreon, Exact Imaging, Exact Sciences, FerGene, Genesis Care Us, Invitae, Janssen, MDxhealth, Merck, Myovant, Myriad, Nymox, Pacific Edge, Pfizer, Propella, PreView, Sanofi Genzyme, Speciality Networks, Sesen Bio, Tolmar, Urogen, Clarity, Lantheus, Lilly, Photocure, Telix, Photocure, Vaxiion, Asieris, Alessa Therapeutics, Akido, Arquer, Fize medical, GConcology, Genetech, Guardant, Ferring, Foundation Medicine, Immunitybio, Incyte, Minomic, NGM, Nonagen, Novartis, PlatformQ, Profound, Promaxo, Protara, Vessi; Financial Interests, Personal, Member of Board of Directors: Photocure. K.N.N. Chi: Financial Interests, Personal, Invited Speaker: Astellas, AstraZeneca, Janssen, Point Biopharma, Roche; Financial Interests, Personal, Advisory Board: AstraZeneca, AstraZeneca, Janssen, Merck, Novartis, Pfizer, Point Biopharma, Roche, BMS; Financial Interests, Institutional, Steering Committee Member: AstraZeneca, Janssen, Novartis, Roche; Financial Interests, Institutional, Trial Chair: AstraZeneca, Arvinas, Janssen, Novartis; Financial Interests, Institutional, Local PI: Arvinas. J.M. Piulats Rodriguez: Financial Interests, Personal, Advisory Board: Janssen, Astellas, Roche, BMS, MSD, BeiGene, VCN, AstraZeneca; Financial Interests, Personal and Institutional, Research Grant: BMS, Pfizer, Janssen, BeiGene, Mirati. A. Flechon: Financial Interests, Personal, Advisory Board: Novartis, AstraZeneca, Bayer, Jannssen, Loxo, Pfizer; Financial Interests, Personal, Advisory Role: Astellas; Financial Interests, Personal, Ownership Interest: Novartis, Astellas, AstraZeneca, Bayer, Janssen, Loxo, Pfizer. X.X. Wei: Financial Interests, Personal, Advisory Board: Novartis; Financial Interests, Institutional, Coordinating PI: Bristol Myers Squibb. H. Mahammedi: Financial Interests, Personal, Advisory Board: BMS, Bayer, Janssen, MSD, Astellas, Pfizer; Financial Interests, Personal, Invited Speaker: Novartis, Amgen; Financial Interests, Institutional, Advisory Board: Merck; Financial Interests, Personal, Steering Committee Member: curium; Non-Financial Interests, Principal Investigator: BMS, Janssen, Roche, MSD, Pfizer, Novartis, curium, Exelixis, AstraZeneca. G. Roubaud: Financial Interests, Personal, Advisory Board: Janssen, Astellas, Bayer; Financial Interests, Institutional, Advisory Board: Pfizer, AstraZeneca; Financial Interests, Institutional, Invited Speaker: Novartis; Financial Interests, Institutional, Coordinating PI: Bayer. H. Studentova: Financial Interests, Personal, Advisory Board: Novartis, Bayer, Janssen, Astellas, Ipsen, MSD, Pfizer, Merck, BMS; Financial Interests, Personal, Principal Investigator: Novartis, MSD; Financial Interests, Personal, Invited Speaker: Janssen, Ipsen, MSD, Novartis, Merck, BMS. S. Ghebremariam: Financial Interests, Personal, Full or part-time Employment: Novartis; Financial Interests, Personal, Stocks/Shares: Novartis. E. Kpamegan: Financial Interests, Personal, Full or part-time Employment: Novartis. N. Delgoshaie: Financial Interests, Personal, Full or part-time Employment: Novartis. K. Lehnhoff: Financial Interests, Personal, Full or part-time Employment: Novartis. M.J. Morris: Financial Interests, Personal, Advisory Board: Oric, Pfizer, Exelixis, Lantheus, AstraZeneca, Amgen, Daiichi, Convergent, Clarity Pharmaceuticals, Blue Earth Diagnostics, POINT Biopharma, Telix, Z-alpha; Financial Interests, Personal, Stocks/Shares: Doximity; Financial Interests, Personal, Invited Speaker: Progenics, ITM Isotope Technologies; Financial Interests, Institutional, Coordinating PI: Novartis, Celgen; Financial Interests, Institutional, Local PI: Corcept, Janssen, Astellas; Non-Financial Interests, Advisory Role: Bayer, Janssen Oncology, Novartis; Other, Travel/lodging at conference: APCCC; Other, Travel to conference: AstraZeneca. K. Fizazi: Financial Interests, Institutional, Advisory Board: Astellas, Bayer, Janssen, AAA, MSD, AstraZeneca, Novartis/AAA, Pfizer, Daiichi Sankyo; Financial Interests, Institutional, Invited Speaker: Astellas, Bayer, Janssen, Sanofi, MSD, AstraZeneca, Novartis, Pfizer; Financial Interests, Personal, Advisory Board: Curevac, Orion; Financial Interests, Institutional, Research Grant, Trial chair: Pfizer, Bayer, AstraZeneca, Orion, MSD, BMS, Janssen; Financial Interests, Personal, Advisory Board, February 2022: Arvinas; Financial Interests, Personal, Advisory Board, April 2022: Macrogenics; Non-Financial Interests, Principal Investigator, Chair of the 7DX phase 3 trial: BMS; Non-Financial Interests, Principal Investigator, Chair of the Docetaxel-pembrolizumab phase 3 trial: Merck; Non-Financial Interests, Principal Investigator, Chair of the Darolutamide BCR phase 3 trial: Bayer; Non-Financial Interests, Principal Investigator, Chair of the PSMAfore phase 3 trial: AAA/Novartis; Non-Financial Interests, Principal Investigator, Chair of the CYPIDES ODM-208 Phase I-II trial: Orion; Non-Financial Interests, Principal Investigator, Chair of the STESIDES ODM-209 Phase I-II trial: Orion; Non-Financial Interests, Principal Investigator, Chair of the CAPITELLO 281 phase 3 trial: AstraZeneca; Non-Financial Interests, Principal Investigator, Chair of the TRITON-3 phase 3 trial: Clovis; Non-Financial Interests, Principal Investigator, Chair of the TALAPRO-2 and TALAPRO-3 phase 3 trials: Pfizer; Non-Financial Interests, Principal Investigator, Chair of the RADIANT phase 3 trial: Bayer. All other authors have declared no conflicts of interest.

Higher SUVmean is strongly associated with improved outcomes with 177Lu-PSMA-617; clinical efficacy for different SUV levels vs the SoC arm is being assessed. Data support use of 68Ga-PSMA-11 PET/CT scan to identify pts who will benefit from PSMA-targeted radioligand therapy.

Meeting Abstract: 2022 ASCO Annual Meeting I
FREE ACCESS
Genitourinary Cancer—Prostate, Testicular, and Penile
June 02, 2022

[68Ga]Ga-PSMA-11 PET baseline imaging as a prognostic tool for clinical outcomes to [177Lu]Lu-PSMA-617 in patients with mCRPC: A VISION substudy.

PublicationJournal of Clinical Oncology
https://doi.org/10.1200/JCO.2022.40.16_suppl.5002

Abstract

5002
Background: In the phase 3 VISION study, gallium (68Ga) gozetotide (68Ga-PSMA-11) PET/CT imaging was used to determine eligibility for lutetium (177Lu) vipivotide tetraxetan (177Lu-PSMA-617). Given that 177Lu-PSMA-617 targets PSMA, we assessed the association between quantitative PSMA imaging parameters and treatment outcomes. Methods: In VISION, adults with mCRPC with ≥ 1 PSMA-positive (+) and no PSMA-negative lesions meeting the exclusion criteria were enrolled. In this sub-study, the association between imaging data from pre-enrollment 68Ga-PSMA-11 PET/CT scans of pts in the 177Lu-PSMA-617 group and clinical outcomes was assessed. Imaging data meeting quality requirements were analyzed for 548/551 pts. PSMA expression was quantified by 5 PET parameters: PSMA+ lesions by region, mean standardized uptake value (SUVmean), maximum SUV (SUVmax), PSMA+ tumor volume, and tumor load (PSMA+ tumor volume × SUVmean). Parameters were extracted from the whole body and 4 regions. Association between PET parameters and radiographic progression-free survival (rPFS; primary objective), overall survival (OS), objective response rate (ORR), and prostate–specific antigen 50 (PSA50) response was assessed. Results: Most pts (92.7%) had PSMA uptake in bone. In both the whole-body and regional analyses, statistically significant associations of PSMA PET parameters to clinical outcomes were observed (whole-body data shown in Table). Higher whole-body SUVmean was associated with improved clinical outcomes; pts in the highest quartile (SUVmean: rPFS, ≥ 10.2; OS, ≥ 9.9) had a median rPFS and OS of 14.1 and 21.4 months, vs 5.8 and 14.5 months for those in the lowest quartile (< 6.0; < 5.7), respectively. Absence of PSMA+ lesions in bone, liver, and lymph node, and lower PSMA+ tumor load, were indicators of good prognosis. Conclusions: Higher SUVmean is strongly associated with improved outcomes with 177Lu-PSMA-617; clinical efficacy for different SUV levels vs the SoC arm is being assessed. Data support use of 68Ga-PSMA-11 PET/CT scan to identify pts who will benefit from PSMA-targeted radioligand therapy.
Multivariate analysis of whole-body PSMA imaging parameters.a

aPer unit increase for continuous variables. bHazard ratio [95% CI], p value; cOdds ratio [95% CI], p value. NS, not significant.

OPEN IN VIEWER
This is an ASCO Meeting Abstract from the 2022 ASCO Annual Meeting I. This abstract does not include a full text component.

the findings provide valuable insights into the expression of PSMA in TNBC and underscore the potential clinical significance of PSMA-1007 PET/CT in enhancing both diagnostic and therapeutic approaches for this aggressive breast cancer subtype.

 2024 Feb; 16(3): 667.
Published online 2024 Feb 4. doi: 10.3390/cancers16030667
PMCID: PMC10854516
PMID: 38339419

Head-to-Head Comparison of [18F]PSMA-1007 and [18F]FDG PET/CT in Patients with Triple-Negative Breast Cancer

Natalia AndryszakConceptualizationMethodologyResourcesWriting – original draftVisualizationFunding acquisition,1,2,* Daria ŚwiniuchResourcesWriting – original draft,3 Elżbieta WójcikResourcesData curationVisualization,4 Rodryg RamlauData curationWriting – review & editing,3 Marek RuchałaWriting – review & editingSupervisionProject administration,1 and Rafał CzepczyńskiConceptualizationValidationWriting – review & editingSupervisionProject administration1,2
David Wong, Academic Editor

Abstract

Simple Summary

This study investigates a promising avenue for improving the diagnosis and treatment of triple-negative breast cancer (TNBC), a highly aggressive form of breast cancer with limited therapeutic options. The researchers focus on the prostate-specific membrane antigen (PSMA), known for its presence in prostate cancer but also identified in breast cancer. Using 18F-PSMA-1007 PET/CT, the study aims to assess PSMA’s in vivo expression in TNBC patients and compare it with the standard [18F]FDG PET/CT. The findings suggest that [18F]PSMA-1007 PET/CT may outperform current methods in detecting distant metastases, especially in the brain. This research not only enhances our understanding of PSMA expression in TNBC but also hints at potential advancements in diagnostic imaging and targeted therapies for this challenging cancer type.

Abstract

Background: Triple-negative breast cancer (TNBC) exhibits high aggressiveness and a notably poorer prognosis at advanced stages. Nuclear medicine offers new possibilities, not only for diagnosis but also potentially promising therapeutic strategies. This prospective study explores the potential of prostate-specific membrane antigen (PSMA) as a diagnostic and therapeutic target in TNBC. Methods: the research investigates PSMA expression in vivo among TNBC patients using [18F]PSMA-1007 PET/CT and compares it head-to-head with the standard-of-care [18F]FDG PET/CT. Results: The study involves 10 TNBC patients, revealing comparable uptake of [18F]PSMA-1007 and [18F]FDG in primary and metastatic lesions. Nodal metastases were found in eight patients, showing similar SUVmax values in both modalities. Two patients had uncountable lung metastases positive in both [18F]FDG and [18F]PSMA-1007 scans. PET-positive bone metastases were identified by 18F-PSMA in four patients, while elevated [18F]FDG uptake was found only in three of them. Distant metastases displayed higher SUVmax values in the [18F]PSMA-1007 PET/CT, as compared to [18F]FDG. Additionally, brain metastases were exclusively detected using [18F]PSMA-1007. Conclusions: the findings provide valuable insights into the expression of PSMA in TNBC and underscore the potential clinical significance of [18F]PSMA-1007 PET/CT in enhancing both diagnostic and therapeutic approaches for this aggressive breast cancer subtype

References studies with Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

Comment in

Similar articles

Cited by

References

    1. Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med 2018;378:645–57. - PubMed
    1. Nuhn P, De Bono JS, Fizazi K, et al.Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol 2019;75:88–99. - PubMed
    1. de Bono J, Mateo J, Fizazi K, et al.Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382:2091–102. - PubMed
    1. Hussain M, Mateo J, Fizazi K, et al.Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med 2020;383:2345–57. - PubMed
    1. Antonarakis ES, Piulats JM, Gross-Goupil M, et al.Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J Clin Oncol 2020;38:395–405. - PMC PubMed
    1. Abida W, Patnaik A, Campbell D, et al.Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38:3763–72. - PMC PubMed
    1. Rowe SP, Gorin MA, Pomper MG. Imaging of prostate-specific membrane antigen with small-molecule PET radiotracers: from the bench to advanced clinical applications. Annu Rev Med 2019;70:461–77. - PubMed
    1. Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993; 53:227–30. - PubMed
    1. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987;7:927–35. - PubMed
    1. Hupe MC, Philippi C, Roth D, et al.Expression of prostate-specific membrane antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front Oncol 2018;8:623. - PMC PubMed
    1. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998;82:2256–61. - PubMed
    1. Minner S, Wittmer C, Graefen M, et al.High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 2011;71:281–8. - PubMed
    1. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998;52:637–40. - PubMed
    1. Paschalis A, Sheehan B, Riisnaes R, et al.Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol 2019;76:469–78. - PMC PubMed
    1. Vlachostergios PJ, Niaz MJ, Sun M, et al.Prostate-specific membrane antigen uptake and survival in metastatic castration-resistant prostate cancer. Front Oncol 2021;11:630589. - PMC PubMed
    1. Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al.The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 2015;56:1697–705. - PubMed
    1. Violet J, Jackson P, Ferdinandus J, et al.Dosimetry of 177Lu-PSMA-617 in meta-static castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med 2019;60:517–23. - PubMed
    1. Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015;115:2934–74. - PubMed
    1. Rahbar K, Ahmadzadehfar H, Kratochwil C, et al.German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 2017;58:85–90. - PubMed
    1. Yadav MP, Ballal S, Sahoo RK, Dwivedi SN, Bal C. Radioligand therapy with 177Lu-PSMA for metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 2019;213:275–85. - PubMed
    1. Kim YJ, Kim Y-I. Therapeutic responses and survival effects of 177Lu-PSMA-617 radioligand therapy in metastatic castrate-resistant prostate cancer: a meta-analysis. Clin Nucl Med 2018;43:728–34. - PubMed
    1. von Eyben FE, Roviello G, Kiljunen T, et al.Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging 2018;45:496–508. - PMC PubMed
    1. Hofman MS, Violet J, Hicks RJ, et al.-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018;19:825–33. - PubMed
    1. Violet J, Sandhu S, Iravani A, et al.Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J Nucl Med 2020;61:857–65. - PMC PubMed
    1. Hofman MS, Emmett L, Sandhu S, et al.Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 2021;397:797–804. - PubMed
    1. Rahbar K, Bodei L, Morris MJ. Is the vision of radioligand therapy for prostate cancer becoming a reality? An overview of the phase III VISION trial and its importance for the future of theranostics. J Nucl Med 2019;60:1504–6. - PubMed
    1. Fendler WP, Eiber M, Beheshti M, et al.68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017;44:1014–24. - PubMed
    1. Oken MM, Creech RH, Tormey DC, et al.Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982;5:649–55. - PubMed
    1. Scher HI, Morris MJ, Stadler WM, et al.Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 2016;34:1402–18. - PMC PubMed
    1. Parker C, Nilsson S, Heinrich D, et al.Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213–23. - PubMed
    1. Eisenhauer EA, Therasse P, Bogaerts J, et al.New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47. - PubMed
    1. Hochberg Y, Tamhane A. Multiple comparison procedures New York: John Wiley, 1987.
    1. Lu K, Li D, Koch GG. Comparison between two controlled multiple imputation methods for sensitivity analyses of time-to-event data with possibly informative censoring. Stat Biopharm Res 2015;7:199–213.
    1. Atkinson A, Kenward MG, Clayton T, Carpenter JR. Reference-based sensitivity analysis for time-to-event data. Pharm Stat 2019;18:645–58. - PMC PubMed 

REFERENCES

1. Sartor O, de Bono JS. Metastatic prostate cancer. N Engl J Med 2018;378:645–57. [PubMed[]
2. Nuhn P, De Bono JS, Fizazi K, et al. Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol 2019;75:88–99. [PubMed[]
3. de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 2020; 382:2091–102. [PubMed[]
4. Hussain M, Mateo J, Fizazi K, et al. Survival with olaparib in metastatic castration-resistant prostate cancer. N Engl J Med 2020;383:2345–57. [PubMed[]
5. Antonarakis ES, Piulats JM, Gross-Goupil M, et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J Clin Oncol 2020;38:395–405. [PMC free article] [PubMed[]
6. Abida W, Patnaik A, Campbell D, et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin Oncol 2020;38:3763–72. [PMC free article] [PubMed[]
7. Rowe SP, Gorin MA, Pomper MG. Imaging of prostate-specific membrane antigen with small-molecule PET radiotracers: from the bench to advanced clinical applications. Annu Rev Med 2019;70:461–77. [PubMed[]
8. Israeli RS, Powell CT, Fair WR, Heston WD. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993; 53:227–30. [PubMed[]
9. Horoszewicz JS, Kawinski E, Murphy GP. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res 1987;7:927–35. [PubMed[]
10. Hupe MC, Philippi C, Roth D, et al. Expression of prostate-specific membrane antigen (PSMA) on biopsies is an independent risk stratifier of prostate cancer patients at time of initial diagnosis. Front Oncol 2018;8:623. [PMC free article] [PubMed[]
11. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998;82:2256–61. [PubMed[]
12. Minner S, Wittmer C, Graefen M, et al. High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 2011;71:281–8. [PubMed[]
13. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998;52:637–40. [PubMed[]
14. Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol 2019;76:469–78. [PMC free article] [PubMed[]
15. Vlachostergios PJ, Niaz MJ, Sun M, et al. Prostate-specific membrane antigen uptake and survival in metastatic castration-resistant prostate cancer. Front Oncol 2021;11:630589. [PMC free article] [PubMed[]
16. Afshar-Oromieh A, Hetzheim H, Kratochwil C, et al. The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 2015;56:1697–705. [PubMed[]
17. Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in meta-static castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med 2019;60:517–23. [PubMed[]
18. Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015;115:2934–74. [PubMed[]
19. Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 2017;58:85–90. [PubMed[]
20. Yadav MP, Ballal S, Sahoo RK, Dwivedi SN, Bal C. Radioligand therapy with 177Lu-PSMA for metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. AJR Am J Roentgenol 2019;213:275–85. [PubMed[]
21. Kim YJ, Kim Y-I. Therapeutic responses and survival effects of 177Lu-PSMA-617 radioligand therapy in metastatic castrate-resistant prostate cancer: a meta-analysis. Clin Nucl Med 2018;43:728–34. [PubMed[]
22. von Eyben FE, Roviello G, Kiljunen T, et al. Third-line treatment and 177Lu-PSMA radioligand therapy of metastatic castration-resistant prostate cancer: a systematic review. Eur J Nucl Med Mol Imaging 2018;45:496–508. [PMC free article] [PubMed[]
23. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018;19:825–33. [PubMed[]
24. Violet J, Sandhu S, Iravani A, et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J Nucl Med 2020;61:857–65. [PMC free article] [PubMed[]
25. Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 2021;397:797–804. [PubMed[]
26. Rahbar K, Bodei L, Morris MJ. Is the vision of radioligand therapy for prostate cancer becoming a reality? An overview of the phase III VISION trial and its importance for the future of theranostics. J Nucl Med 2019;60:1504–6. [PubMed[]
27. Fendler WP, Eiber M, Beheshti M, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017;44:1014–24. [PubMed[]
28. Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 1982;5:649–55. [PubMed[]
29. Scher HI, Morris MJ, Stadler WM, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 2016;34:1402–18. [PMC free article] [PubMed[]
30. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213–23. [PubMed[]
31. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47. [PubMed[]
32. Hochberg Y, Tamhane A. Multiple comparison procedures New York: John Wiley, 1987. []
33. Lu K, Li D, Koch GG. Comparison between two controlled multiple imputation methods for sensitivity analyses of time-to-event data with possibly informative censoring. Stat Biopharm Res 2015;7:199–213. []
34. Atkinson A, Kenward MG, Clayton T, Carpenter JR. Reference-based sensitivity analysis for time-to-event data. Pharm Stat 2019;18:645–58. [PMC free article] [PubMed[]  


Referenties borstkankerstudie

References

1. Giaquinto A.N., Sung H., Miller K.D., Kramer J.L., Newman L.A., Minihan A., Jemal A., Siegel R.L. Breast Cancer Statistics, 2022. CA A Cancer J. Clin. 2022;72:524–541. doi: 10.3322/caac.21754. [PubMed] [CrossRef[]
2. Cardoso F., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rubio I.T., Zackrisson S., Senkus E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up Ann. Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173. [PubMed] [CrossRef[]
3. Sartor O., de Bono J., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021;385:1091–1103. doi: 10.1056/NEJMoa2107322. [PMC free article] [PubMed] [CrossRef[]
4. Rahbar K., Ahmadzadehfar H., Kratochwil C., Haberkorn U., Schäfers M., Essler M., Baum R.P., Kulkarni H.R., Schmidt M., Drzezga A., et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017;58:85–90. doi: 10.2967/jnumed.116.183194. [PubMed] [CrossRef[]
5. O’Keefe D.S., Bacich D.J., Huang S.S., Heston W.D.W. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J. Nucl. Med. 2018;59:1007–1013. doi: 10.2967/jnumed.117.203877. [PMC free article] [PubMed] [CrossRef[]
6. Chang S.S., Reuter V.E., Heston W.D., Bander N.H., Grauer L.S., Gaudin P.B. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–3198. [PubMed[]
7. Tolkach Y., Gevensleben H., Bundschuh R., Koyun A., Huber D., Kehrer C., Hecking T., Keyver-Paik M.-D., Kaiser C., Ahmadzadehfar H., et al. Prostate-specific membrane antigen in breast cancer: A comprehensive evaluation of expression and a case report of radionuclide therapy. Breast Cancer Res. Treat. 2018;169:447–455. doi: 10.1007/s10549-018-4717-y. [PubMed] [CrossRef[]
8. Uscanga-Perales G.I., Santuario-Facio S.K., Ortiz-López R. Triple negative breast cancer: Deciphering the biology and heterogeneity. Med. Univ. 2016;18:105–114. doi: 10.1016/j.rmu.2016.05.007. [CrossRef[]
9. Bareche Y., Buisseret L., Gruosso T., Girard E., Venet D., Dupont F., Desmedt C., Larsimont D., Park M., Rothé F., et al. Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. JNCI J. Natl. Cancer Inst. 2020;112:708–719. doi: 10.1093/jnci/djz208. [PMC free article] [PubMed] [CrossRef[]
10. Unger C., Bronsert P., Michalski K., Bicker A., Juhasz-Böss I. Expression of Prostate Specific Membrane Antigen (PSMA) in Breast Cancer. Geburtshilfe Und Frauenheilkd. 2022;82:50–58. doi: 10.1055/a-1638-9429. [PMC free article] [PubMed] [CrossRef[]
11. Wernicke A.G., Varma S., Greenwood E.A., Christos P.J., Chao K.S.C., Liu H., Bander N.H., Shin S.J. Prostate-specific membrane antigen expression in tumor-associated vasculature of breast cancers. APMIS. 2014;122:482–489. doi: 10.1111/apm.12195. [PubMed] [CrossRef[]
12. Kasoha M., Unger C., Solomayer E.F., Bohle R.M., Zaharia C., Khreich F., Wagenpfeil S., Juhasz-Böss I. Prostate-specific membrane antigen (PSMA) expression in breast cancer and its metastases. Clin. Exp. Metastasis. 2017;34:479–490. doi: 10.1007/s10585-018-9878-x. [PubMed] [CrossRef[]
13. Kinoshita Y., Kuratsukuri K., Landas S., Imaida K., Rovito P.M., Wang C.Y., Haas G.P. Expression of Prostate-Specific Membrane Antigen in Normal and Malignant Human Tissues. World J. Surg. 2006;30:628–636. doi: 10.1007/s00268-005-0544-5. [PubMed] [CrossRef[]
14. Ross J.S., Schenkein D., Webb I., Gray G., Deeds J., Meyer R., McDonald A., Sheehan C., Gray K. Expression of prostate specific membrane antigen in the neo-vasculature of non-prostate cancers. J. Clin. Oncol. 2004;22:3110. doi: 10.1200/jco.2004.22.90140.3110. [CrossRef[]
15. Hofman M.S., Emmett L., Sandhu S., Iravani A., Joshua A.M., Goh J.C., Pattison D.A., Tan T.H., Kirkwood I.D., Ng S., et al. Lu-PSMA-617 versus Cabazitaxel in Patients with Metastatic Castration-Resistant Prostate Cancer (TheraP): A Randomised, Open-Label, Phase 2 Trial. Lancet. 2021;397:797–804. doi: 10.1016/S0140-6736(21)00237-3. [PubMed] [CrossRef[]
16. Passah A., Arora S., Damle N.A., Tripathi M., Bal C., Subudhi T.K., Arora G. 68Ga–Prostate-Specific Membrane Antigen PET/CT in Triple-Negative Breast Cancer. Clin. Nucl. Med. 2018;43:460–461. doi: 10.1097/RLU.0000000000002071. [PubMed] [CrossRef[]
17. Arslan E., Ergül N., Beyhan E., Erol Fenercioglu Ö., Sahin R., Cin M., Battal Havare S., Can Trabulus F.D., Mermut Ö., Akbas S., et al. The roles of 68 Ga-PSMA PET/CT and 18 F-FDG PET/CT imaging in patients with triple-negative breast cancer and the association of tissue PSMA and claudin 1, 4, and 7 levels with PET findings. Nucl. Med. Commun. 2023;44:284–290. doi: 10.1097/MNM.0000000000001663. [PubMed] [CrossRef[]
18. Bertagna F., Albano D., Cerudelli E., Gazzilli M., Tomasini D., Bonù M., Giubbini R., Treglia G. Radiolabelled PSMA PET/CT in breast cancer. A systematic review. Nucl. Med. Rev. 2020;23:32–35. doi: 10.5603/NMR.2020.0004. [PubMed] [CrossRef[]
19. Marta G.N., Wimana Z., Taraji L., Critchi G., Aftimos P.G., Piccart-Gebhart M.J., Flamen P., Gebhart G. Prostate-specific membrane antigen (PSMA) expression in patients with metastatic triple negative breast cancer: Initial results of the PRISMA study. JCO. 2023;41:1025. doi: 10.1200/JCO.2023.41.16_suppl.1025. [CrossRef[]
20. Sathekge M., Lengana T., Modiselle M., Vorster M., Zeevaart J., Maes A., Ebenhan T., Van de Wiele C. 68Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients. Eur. J. Nucl. Med. 2017;44:689–694. doi: 10.1007/s00259-016-3563-6. [PMC free article] [PubMed] [CrossRef[]
21. Medina-Ornelas S., García-Perez F., Estrada-Lobato E., Ochoa-Carrillo F. 68Ga-PSMA PET/CT in the evaluation of locally advanced and metastatic breast cancer, a single center experience. Am. J. Nucl. Med. Mol. Imaging. 2020;10:135–142. [PMC free article] [PubMed[]
22. Heesch A., Ortmanns L., Maurer J., Stickeler E., Sahnoun S.E.M., Mottaghy F.M., Morgenroth A. The Potential of PSMA as a Vascular Target in TNBC. Cells. 2023;12:551. doi: 10.3390/cells12040551. [PMC free article] [PubMed] [CrossRef[]
23. Zuazo-Gaztelu I., Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front. Oncol. 2018;8:248. doi: 10.3389/fonc.2018.00248. [PMC free article] [PubMed] [CrossRef[]
24. Bouron C., Mathie C., Seegers V., Morel O., Jézéquel P., Lasla H., Guillerminet C., Girault S., Lacombe M., Sher A., et al. Prognostic Value of Metabolic, Volumetric and Textural Parameters of Baseline [18F]FDG PET/CT in Early Triple-Negative Breast Cancer. Cancers. 2022;14:637. doi: 10.3390/cancers14030637. [PMC free article] [PubMed] [CrossRef[]
25. de Jong D., Desperito E., Al Feghali K.A., Dercle L., Seban R.D., Das J.P., Ma H., Sajan A., Braumuller B., Prendergast C., et al. Advances in PET/CT Imaging for Breast Cance. J. Clin. Med. 2023;12:4537. doi: 10.3390/jcm12134537. [PMC free article] [PubMed] [CrossRef[]
26. Romeo V., Kapetas P., Clauser P., Baltzer P.A.T., Rasul S., Gibbs P., Hacker M., Woitek R., Pinker K., Helbich T.H. A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer. Cancers. 2022;14:3944. doi: 10.3390/cancers14163944. [PMC free article] [PubMed] [CrossRef[]
27. Khreish F., Ebert N., Ries M., Maus S., Rosar F., Bohnenberger H., Stemler T., Saar M., Bartholomä M., Ezziddin S. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. 2020;47:721–728. doi: 10.1007/s00259-019-04612-0. [PubMed] [CrossRef[]
28. Kos-Kudła B., Foltyn W., Malczewska A., Bednarczuk T., Bolanowski M., Borowska M., Chmielik E., Ćwikła J.B., Gisterek I., Handkiewicz-Junak D., et al. Update of the diagnostic and therapeutic guidelines for gastro-entero-pancreatic neuroendocrine neoplasms (recommended by the Polish Network of Neuroendocrine Tumours) Endokrynol. Polska. 2022;73:387–454. doi: 10.5603/EP.a2022.0049. [PubMed] [CrossRef[]
29. Deshayes E., Fersing C., Thibault C., Roumiguie M., Pourquier P., Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers. 2023;15:3133. doi: 10.3390/cancers15123133. [PMC free article] [PubMed] [CrossRef[]
30. Farolfi A., Fendler W., Iravani A., Haberkorn U., Hicks R., Herrmann K., Walz J., Fanti S. Theranostics for Advanced Prostate Cancer: Current Indications and Future Developments. Eur. Urol. Oncol. 2019;2:152–162. doi: 10.1016/j.euo.2019.01.001. [PubMed] [CrossRef[]
31. Hoberück S., Löck S., Borkowetz A., Sommer U., Winzer R., Zöphel K., Fedders D., Michler E., Kotzerke J., Kopka K., et al. Intraindividual comparison of [68 Ga]-Ga-PSMA-11 and [18F]-F-PSMA-1007 in prostate cancer patients: A retrospective single-center analysis. EJNMMI Res. 2021;11:109. doi: 10.1186/s13550-021-00845-z. [PMC free article] [PubMed] [CrossRef[]
32. Alberts I., Mingels C., Zacho H.D., Lanz S., Schöder H., Rominger A., Zwahlen M., Afshar-Oromieh A. Comparing the clinical performance and cost efficacy of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 in the diagnosis of recurrent prostate cancer: A Markov chain decision analysis. Eur. J. Nucl. Med. 2022;49:4252–4261. doi: 10.1007/s00259-021-05620-9. [PMC free article] [PubMed] [CrossRef[]

Articles from Cancers are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

Plaats een reactie ...

Reageer op "177Lu-PSMA-617 geeft betere progressievrije overleving en algehele overleving naast standaardzorg bij patiënten met gevorderde PSMA-positieve gemetastaseerde castratieresistente prostaatkanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

177Lu-PSMA-617 geeft betere >> lutetium-177 PSMA-617 gerichte >> lutetium-177 PSMA-617 gerichte >> PSMA - Prostate Specific Membrane >> PSMA gerichte PET scan bij >>