3 januari 2025: zie ook dit artikel: https://kanker-actueel.nl/bloedtest-panseer-kan-met-zogenoemde-ctmdna-technologie-verschillende-vormen-kanker-opsporen-jaren-voordat-de-eerste-symptomen-zich-voordoen.html

4 juni 2023: zie ook dit artikel: https://kanker-actueel.nl/galleri-bloedtest-geeft-uitstekende-resultaten-via-ctdna-en-voorspelt-voor-85-procent-plaats-van-primaire-tumor-en-slechts-paar-procent-vals-positieve-uitslag.html

13 oktober 2022: met dank aan Freddie die mij de vertaling van dit persbericht stuurde. Maar ik heb er nog meer informatie aan toegevoegd en vertaald.

Op ESMO 2022 werden de resultaten van de Pathfinderstudie gepresenteerd. Specificiteit voor detectie van kankersignalen was 99,5% [95% betrouwbaarheidsinterval (BI): 99,0% tot 99,8%]. Een studie waarin via de Galleri test via in bloed circulerend DNA ver van te voren beginnende kanker wordt opgespoord. Vaak nog voordat er zich symptomen of klachten voordoen. Daarmee werden twee keer zoveel vormen van kanker opgespoord dan wordt gevonden via klassieke screeningsmethoden en bevolkingsonderzoeken. Simpelweg omdat bij bv alvleesklierkanker en eierstokkanker pas laat klachten ontstaan en mensen dan pas naar een arts of oncoloog gaan. En dan zijn deze vormen van kanker vaak al uitgezaaid. Maar dat geldt eigenlijk voor de meeste vormen van kanker. En hoe eerder een vorm van kanker wordt ontdekt hoe groter de kans dat er een genezende behandeling mogelijk is. 

Dit waren de belangrijkste punten die uit de Pathfinderstudie naar voren kwamen:

  • Het toevoegen van Multi-Cancer Early Detection (MCED)-screening aan de standaard van zorgscreening heeft het aantal gedetecteerde kankers meer dan verdubbeld
  • Specificiteit voor detectie van kankersignalen was 99,5% [95% betrouwbaarheidsinterval (BI): 99,0% tot 99,8%].
  • 71% van de deelnemers met MCED-gedetecteerde kankers had kankertypes waarvoor geen routinematige screeningtests beschikbaar waren
  • Ongeveer de helft van de MCED-gedetecteerde nieuwe kankers waren stadium I of II
  • MCED-voorspelde oorsprong van kankersignalen had een nauwkeurigheid van 97,1% en maakte gerichte diagnostische evaluaties mogelijk
  • MCED-screening werd geïmplementeerd bij volwassenen met een verhoogd risico op kanker zonder studiegerelateerde ernstige bijwerkingen
  • Deelnemers rapporteerden hoge tevredenheid en lage negatieve psychologische impact met MCED-screening
De Pathfinderstudie studie maakt gebruik van de Galleri test, een test die ontworpen is om via één enkele bloedtest meerdere soorten kanker op te sporen. De bloedtest zoekt naar DNA-fragmenten van mogelijke tumoren in het bloed. Als er chemische veranderingen in deze stukjes DNA optreden, kan de bloedtest ze ontdekken en zo eventuele kanker opsporen, ook al heeft de man of vrouw nog geen symptomen ontwikkeld.

6.600 mensen ouder dan 50 jaar namen deel aan de studie. Zij kregen de bloedtest aangeboden, maar daarnaast ook de veelgebruikte screeningsmethoden als mammografie onderdeel van het bevolkkingsonderzoek voor borstkanker bv. of een colonoscopie onderdeel van het bevolkingsonderzoek naar darmkanker.

Uit de test kwam naar voren dat deze manier van screenen het mogelijk maakte 36 verschillende vormen van kanker bij 35 verschillende mensen te ontdekken. Veel diagnoses werden al gesteld nog voor er symptomen van de kanker werden waargenomen. "Als men de MCED-test toevoegt aan de standaardscreening, wordt het aantal ontdekte kankers meer dan verdubbeld in vergelijking met de standaardscreening alleen", aldus dr. Jeffrey Venstrom, hoofdonderzoeker van de Pathfinderstudie in een verklaring van GRAIL

Dit was de studieopzet grafisch weergegeven: 

Figure thumbnail gr1


Figure 1 Study design.

En zo waren de resultaten zoals in deze grafiek weergegeven.


Figure thumbnail gr2

Hier het abstract van de studie zoals die op ESMO 2022 is gepresenteerd. Klik op de titel voor het volledige studieverslag:

ORIGINAL ARTICLE| VOLUME 32, ISSUE 9P1167-1177, SEPTEMBER 01, 2021

Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set

Open AccessPublished:June 24, 2021DOI:https://doi.org/10.1016/j.annonc.2021.05.806


Highlights

  • In a validation study, an MCED test identified a diversity of cancer signals with high specificity.
  • The MCED test predicted the origin of the cancer signal with high accuracy across multiple cancer types.
  • Results support the use of this MCED test on a population scale as a complement to existing single-cancer screening tests.

Background

A multi-cancer early detection (MCED) test used to complement existing screening could increase the number of cancers detected through population screening, potentially improving clinical outcomes. The Circulating Cell-free Genome Atlas study (CCGA; NCT02889978) was a prospective, case-controlled, observational study and demonstrated that a blood-based MCED test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy. The objective of this third and final CCGA substudy was to validate an MCED test version further refined for use as a screening tool.

Patients and methods

This pre-specified substudy included 4077 participants in an independent validation set (cancer: n = 2823; non-cancer: n = 1254, non-cancer status confirmed at year-one follow-up). Specificity, sensitivity, and CSO prediction accuracy were measured.

Results

Specificity for cancer signal detection was 99.5% [95% confidence interval (CI): 99.0% to 99.8%]. Overall sensitivity for cancer signal detection was 51.5% (49.6% to 53.3%); sensitivity increased with stage [stage I: 16.8% (14.5% to 19.5%), stage II: 40.4% (36.8% to 44.1%), stage III: 77.0% (73.4% to 80.3%), stage IV: 90.1% (87.5% to 92.2%)]. Stage I-III sensitivity was 67.6% (64.4% to 70.6%) in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths and was 40.7% (38.7% to 42.9%) in all cancers. Cancer signals were detected across >50 cancer types. Overall accuracy of CSO prediction in true positives was 88.7% (87.0% to 90.2%).

Conclusion

In this pre-specified, large-scale, clinical validation substudy, the MCED test demonstrated high specificity and accuracy of CSO prediction and detected cancer signals across a wide diversity of cancers. These results support the feasibility of this blood-based MCED test as a complement to existing single-cancer screening tests.

Clinical trial number



Figure thumbnail gr3ab

Figure 3MCED test performance for cancer signal detection (A) overall sensitivity and specificity, (B) sensitivity by cancer class, and (C) sensitivity by stage in 12 pre-specified cancers.

Conclusion

Taken together, these results demonstrate that this targeted methylation-based MCED test has high specificity that is generalizable across study populations, detects cancer signals across a broad range of cancer types with diverse biologic features (including those that currently lack screening tests), and provides accurate CSO prediction that may inform patient management. These results support that this blood-based MCED test may complement existing single-cancer screening tests and result in reduced cancer mortality.

Acknowledgements

The authors thank the following GRAIL, Inc. colleagues for critical input and help with manuscript development: Eric Fung, Earl Hubbell, and Ruhi Ubale. The following GRAIL, Inc. colleagues are acknowledged for significant contributions to the assay design: Farnaz Absalan, Leila Bazargan, Jen Berman, Jeremy Carter, Chenlu Hou, Byoungsok Jung, and Kristan Steffen. The following GRAIL, Inc. colleagues are acknowledged for biostatistical support: Gregory Alexander, Lane Eubank, Tony Wu, Lori (Quan) Zhang, and Nan Zhang. Authors also thank the members of the GRAIL, Inc. Data Sciences group: Hamed Amini, Siddhartha Bagaria, John Beausang, Joerg Bredno, Jackie Brooks, Robert Calef, Daniel Civello, Soleil Damangir, Konstantin Davydov, Zhao Dong, Alexander Fields, Peter Freese, Sam Gross, Earl Hubbell, Payam Khodabakhshi, Ting-Chin Liu, Ting Ma, Cyrus Maher, Collin Melton, Patriss Mordi, Josh Newman, Costanza Rojo, Neda Ronaghi, Onur Sakarya, Jan Schellenberger, Eric Scott, Avinash Shanmugam, Nima Shojajee, Pranav Singh, Archana Shenoy, Oliver Venn, Sharon Wootton, and Chris Yakym. The following GRAIL, Inc. colleagues are acknowledged for clinical development: Jason Carlson, Xiaoji Chen, Beth Chang, Kalyani Chilukuri, Clarice Grant-Coles, Jordan Frisbie, Neelima Gandepally, Nathan Gliner, David Jones, Smit Shah, Robert Shortt, Jessica Quan, Jennifer Woo, and Dave Nguyen.
Editorial and writing support was funded by GRAIL, Inc. and provided by Jennifer Hepker and Merrilee R. Johnstone from Prescott Medical Communications Group (Chicago, IL).

Funding

This work was supported by GRAIL, Inc., and GRAIL, Inc. was involved in the study’s design, conduct, data collection, analysis and interpretation, and reporting (no grant number).

Disclosure

EAK is a consultant for GRAIL, Inc.; DC is a consultant for Pfizer and Merck; AJ and KNK are full-time employees of GRAIL, Inc. and have stock in Illumina and GRAIL, Inc.; JG and NH are full-time employees of GRAIL Inc. and own stock in GRAIL, Inc. MVS has stock in McKesson Corporation, is a clinical adviser for GRAIL, Inc. and a director of Next Oncology and Nemucore Medical Innovations; CS has stock in GRAIL, Inc., Epic Biosciences and Apogen Biotech, grants from Pfizer and AstraZeneca, received honoraria or consultant fees from Roche Ventana, Celgene, Pfizer, Novartis, Genentech, and BMS, and is a co-founder of Achilles Therapeutics; MCL participated as an advisory board member for GRAIL, Inc. All other authors have declared no conflicts of interest.

Supplementary data

References

    • Dagenais G.R.
    • Leong D.P.
    • Rangarajan S.
    • et al.
    Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study.
    Lancet. 2020; 395785-794
    • Raza A.
    The First Cell: And the Human Costs of Pursuing Cancer to the Last.
    Basic BooksNew York, NY2019
    • Ofman J.J.
    • Raza A.
    Taking early cancer detection to the next level.
    New York, NY: Scientific American. 2020;
    • Ofman J.J.
    • Raza A.
    The cancer detection rate—a public health approach to early detection.
    Cancer Lett. 2020; 4648-50
    • Ahlquist D.A.
    Universal cancer screening: revolutionary, rational, and realizable.
    Npj Precis Oncol. 2018; 223
    • Etzioni R.
    • Urban N.
    • Ramsey S.
    • et al.
    The case for early detection.
    Nat Rev Cancer. 2003; 3243-252
    • Clarke C.A.
    • Hubbell E.
    • Kurian A.W.
    • Colditz G.A.
    • Hartman A.-R.
    • Gomez S.L.
    Projected reductions in absolute cancer-related deaths from diagnosing cancers before metastasis, 2006–2015.
    Cancer Epidemiol Biomarkers Prev. 2020; 29895-902
    • Hawkes N.
    Cancer survival data emphasise importance of early diagnosis.
    Br Med J. 2019; 364l408
    • Cancer Research UK
    Why is early diagnosis important?.
    (Available at) (Accessed March 22, 2021)
    • National Cancer Institute
    Research Areas: Detection and Diagnosis.
    (Available at) (Accessed March 22, 2021)
    • The ASCO Post
    World Cancer Day 2019: Emphasis on Early Detection.
    (Available at) (Accessed March 2, 2021)
    • Curry S.J.
    • Krist A.H.
    • Owens D.K.
    • et al.
    Screening for cervical cancer: US preventive services task force recommendation statement.
    J Am Med Assoc. 2018; 320674-686
    • Bibbins-Domingo K.
    • Grossman D.C.
    • Curry S.J.
    • et al.
    Screening for colorectal cancer: US preventive services task force recommendation statement.
    J Am Med Assoc. 2016; 3152564-2575
    • Grossman D.C.
    • Curry S.J.
    • Owens D.K.
    • et al.
    Screening for prostate cancer: US preventive services task force recommendation statement.
    J Am Med Assoc. 2018; 3191901-1913
    • Siu A.L
    • on behalf of the U.S. Preventive Services Task Force
    Screening for breast cancer: U.S. preventive services task force recommendation statement.
    Ann Intern Med. 2016; 164279-296
    • Moyer V.A.
    • LeFevre M.L.
    • Siu A.L.
    • et al.
    Screening for lung cancer: U.S. preventive services task force recommendation statement.
    Ann Intern Med. 2014; 160330-338
    • Siegel R.L.
    • Miller K.D.
    • Jemal A.
    Cancer statistics, 2018.
    CA Cancer J Clin. 2018; 687-30
    • Black W.C.
    Overdiagnosis: an underrecognized cause of confusion and harm in cancer screening.
    J Natl Cancer Inst. 2000; 921280-1282
    • Srivastava S.
    • Koay E.J.
    • Borowsky A.D.
    • et al.
    Cancer overdiagnosis: a biological challenge and clinical dilemma.
    Nat Rev Cancer. 2019; 19349-358
    • Smith R.A.
    • Andrews K.S.
    • Brooks D.
    • et al.
    Cancer screening in the United States, 2019: a review of current American Cancer Society guidelines and current issues in cancer screening.
    CA Cancer J Clin. 2019; 69184-210
    • Hall I.J.
    • Tangka F.K.L.
    • Sabatino S.A.
    • Thompson T.D.
    • Graubard B.I.
    • Breen N.
    Patterns and trends in cancer screening in the United States.
    Prev Chronic Dis. 2018; 15170465
    • Narayan A.
    • Fischer A.
    • Zhang Z.
    • Woods R.
    • Morris E.
    • Harvey S.
    Nationwide cross-sectional adherence to mammography screening guidelines: national behavioral risk factor surveillance system survey results.
    Breast Cancer Res Treat. 2017; 164719-725
    • Limmer K.
    • LoBiondo-Wood G.
    • Dains J.
    Predictors of cervical cancer screening adherence in the United States: a systematic review.
    J Adv Pract Oncol. 2014; 531-41
    • Daskalakis C.
    • DiCarlo M.
    • Hegarty S.
    • Gudur A.
    • Vernon S.W.
    • Myers R.E.
    Predictors of overall and test-specific colorectal cancer screening adherence.
    Prev Med. 2020; 133106022
    • Cossu G.
    • Saba L.
    • Minerba L.
    • Mascalchi M.
    Colorectal cancer screening: the role of psychological, social and background factors in decision-making process.
    Clin Pract Epidemiol Ment Health. 2018; 1463-69
    • Lehman C.D.
    • Arao R.F.
    • Sprague B.L.
    • et al.
    National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium.
    Radiology. 2017; 28349-58
    • Pinsky P.F.
    • Gierada D.S.
    • Black W.
    • et al.
    Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment.
    Ann Intern Med. 2015; 162485-491
    • Kim J.J.
    • Burger E.A.
    • Regan C.
    • Sy S.
    Screening for cervical cancer in primary care: a decision analysis for the US Preventive Services Task Force.
    J Am Med Assoc. 2018; 320706-714
    • Croswell J.M.
    • Kramer B.S.
    • Kreimer A.R.
    • et al.
    Cumulative incidence of false-positive results in repeated, multimodal cancer screening.
    Ann Fam Med. 2009; 7212-222
    • Liu M.C.
    • Oxnard G.R.
    • Klein E.A.
    • Swanton C.
    • Seiden M.V.
    Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA.
    Ann Oncol. 2020; 31745-759
    • Li B.
    • Wang C.
    • Xu J.
    • et al.
    Abstract A06: Multiplatform analysis of early-stage cancer signatures in blood.
    Clin Cancer Res. 2020; 26A06
    • Shen S.Y.
    • Singhania R.
    • Fehringer G.
    • et al.
    Sensitive tumour detection and classification using plasma cell-free DNA methylomes.
    Nature. 2018; 563579-583
    • Chen X.
    • Gole J.
    • Gore A.
    • et al.
    Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.
    Nat Commun. 2020; 113475
    • Cohen J.D.
    • Li L.
    • Wang Y.
    • et al.
    Detection and localization of surgically resectable cancers with a multi-analyte blood test.
    Science. 2018; 359926-930
    • Lennon A.M.
    • Buchanan A.H.
    • Kinde I.
    • et al.
    Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.
    Science. 2020; 369eabb9601
    • Cristiano S.
    • Leal A.
    • Phallen J.
    • et al.
    Genome-wide cell-free DNA fragmentation in patients with cancer.
    Nature. 2019; 570385-389
    • Hubbell E.
    • Clarke C.A.
    • Aravanis A.M.
    • Berg C.D.
    Modeled reductions in late-stage cancer with a multi-cancer early detection test.
    Cancer Epidemiol Biomarkers Prev. 2021; 30460-468
    • Klein E.A.
    • Hubbell E.
    • Maddala T.
    • et al.
    Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: The Circulating Cell-free Genome Atlas (CCGA) study.
    J Clin Oncol. 2018; 3612021
    • Liu M.C.
    • Klein E.
    • Hubbell E.
    • et al.
    Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: the Circulating Cell-free Genome Atlas (CCGA) study.
    Ann Oncol. 2018; 29500
    • American Cancer Society
    Cancer Facts & Figures.
    (Available at) (Accessed March 10, 2021)
    • Liu M.C.
    • Jamshidi A.
    • Venn O.
    • et al.
    Genome-wide cell-free DNA (cfDNA) methylation signatures and effect on tissue of origin (TOO) performance.
    J Clin Oncol. 2019; 373049
    • Bettegowda C.
    • Sausen M.
    • Leary R.J.
    • et al.
    Detection of circulating tumor DNA in early- and late-stage human malignancies.
    Sci Transl Med. 2014; 6224ra24
    • Amin M.B.
    • Greene F.L.
    • Edge S.B.
    • et al.
    The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging.
    CA Cancer J Clin. 2017; 6793-99
    • World Health Organization
    International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3).
    (Available at) (Accessed March 1, 2021)
    • Edge S.B.
    • Compton C.C.
    The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM.
    Ann Surg Oncol. 2010; 171471-1474
  1. R. The R Project for Statistical Computing.
    (Available at) (Accessed December 9, 2020)
    • Richards T.B.
    • Soman A.
    • Thomas C.C.
    • et al.
    Screening for Lung Cancer—10 States, 2017.
    MMWR Morb Mortal Wkly Rep. 2020; 69201-206
    • US Food and Drug Administration
    FDA Summary of Safety and Effectiveness Data. PMA P130017.
    US Dept of Health and Human ServicesSilver Spring, MD2014
    • Wolf A.M.D.
    • Wender R.C.
    • Etzioni R.B.
    • et al.
    American Cancer Society guideline for the early detection of prostate cancer: update 2010.
    CA Cancer J Clin. 2010; 6070-98
    • American Cancer Society
    Cancer Facts & Figures 2020.
    American Cancer SocietyAtlanta2020 (Accessed September 8, 2020.)
    • GRAIL, Inc
    GRAIL and UK Government to Make Galleri Multi-Cancer Early Detection Blood Test Available to Patients.
    (Available at) (Accessed February 11, 2021)

Figures

  • Figure thumbnail gr1
    Figure 1Study design.
  • Figure thumbnail gr2
    Figure 2Participant disposition.
  • Figure thumbnail gr3ab
    Figure 3MCED test performance for cancer signal detection (A) overall sensitivity and specificity, (B) sensitivity by cancer class, and (C) sensitivity by stage in 12 pre-specified cancers.
  • Figure thumbnail gr3c
    Figure 3MCED test performance for cancer signal detection (A) overall sensitivity and specificity, (B) sensitivity by cancer class, and (C) sensitivity by stage in 12 pre-specified cancers.
  • Figure thumbnail gr4
    Figure 4Accuracy of CSO prediction (confusion matrix).

Tables


Plaats een reactie ...

Reageer op "Bloedtest (MCED) spoort kanker op nog voor de eerste symptomen optreden en geeft 97 procent zekerheid blijkt uit Pathfinderstudie"


Gerelateerde artikelen
 

Gerelateerde artikelen

Bloedtest PanSeer kan met >> Bloedtest Oncoseek om vroegtijdig >> Bloedtest (MCED) spoort kanker >> Bloedtest op in bloed circulerende >> Bloedtest via witte bloedcellen >> Bloedtest geeft voor 96 procent >> Bloedtest, uitgevoerd op in >>