10 december 2025: Bron:  2025 Oct;31(10):3464-3474

Uit de resultaten van de fase II studie CLEVER blijkt everolimus (Afinitor) gecombineerd met hydroxychloroquine uitstekende ziektevrije overleving en overall overlevingsresultaten te geven bij borstkankerpatiënten met aantoonbaar gemeten slapende tumorcellen in hun beenmerg en wervels. Ook wanneer de twee medicijnen alleen werden gegeven waren de resultaten uitstekend. Na een mediane follow-up van 42 maanden was de 3-jaars recidiefvrije overleving voor hydroxychloroquine alleen 91,7 procent, everolimus (Afinitor) alleen 92,9 procent en hydroxychloroquine plus everolimus (Afinitor) samen 100 procent. 

Hoewel de CLEVER studie over kleine groep patiënten ging; N = 15 voor hydroxychloroquine alleen, N = 15 voor everolimus (Afinitor) alleen en 21 deelnemende patiënten voor hydroxychloroquine plus everolimus (Afinitor) samen, zijn dit wel uitstekende resultaten en worden snel studies opgezet met grotere aantallen borstkankerpatiënten

Hier het abstract van de studie:

Abstract

Breast cancer recurrence may arise from dormant disseminated tumor cells (DTCs) that persist in bone marrow and other sites. Clinically, DTCs are independently associated with breast cancer recurrence and death. Preclinical studies in mouse models identified autophagy and mammalian target of rapamycin (mTOR) signaling as critical mechanisms of tumor dormancy and escape. We subsequently tested the effects of transient versus chronic inhibition of autophagy with chloroquine or hydroxychloroquine (HCQ) and mTOR signaling with rapamycin (RAPA) or everolimus (EVE) on residual tumor cell (RTC) burden and recurrence-free survival (RFS). In mice harboring dormant RTCs, inhibition of mTOR alone or in combination with autophagy inhibition decreased RTC burden and improved RFS in a duration-dependent manner. RTC number was strongly and inversely correlated with RFS, suggesting that RTC reduction mediated an improvement in RFS. To translate findings clinically, we performed a randomized phase 2 trial (CLEVER) of HCQ, EVE or their combination in breast cancer survivors within 5 years of diagnosis who had detectable DTCs on bone marrow aspirate. Primary endpoints were feasibility and safety; secondary endpoints included DTC reduction/clearance and RFS. In total, 51 DTC+ patients initiated HCQ (n = 15), EVE (n = 15) or HCQ + EVE (n = 21). Treatment was feasible and tolerable; only one patient discontinued early for grade 3 toxicity. At 42 months median follow-up, landmark 3-year RFS for HCQ, EVE and HCQ + EVE was 91.7%, 92.9% and 100%, respectively, and was greater in those who cleared DTCs versus those who did not (hazard ratio (HR) = 0.21 (95% confidence interval 0.01-3.4)). Posterior probabilities were 98-99.9% that three cycles of HCQ, EVE or HCQ + EVE led to reduced or undetectable DTCs compared to observation alone, with estimated DTC reductions of 80%, 78% and 87%, respectively. These findings provide proof-of-concept that targeting dormant RTCs with HCQ, EVE or their combination in breast cancer survivors or mouse models depletes minimal residual disease, warranting a definitive human randomized controlled trial. ClinicalTrials.gov registration: NCT03032406 .

PubMed Disclaimer

Conflict of interest statement

Competing interests: A.D. has received institutional research funding from Novartis, Genentech, Pfizer and NeoGenomics. L.A.C. has received institutional research funding from Novartis, AstraZeneca and Merck Research Laboratories, and has served as an expert consultant to Teva Pharmaceuticals, Eisai, Sanofi, Takeda Pharmaceuticals, Eli Lilly, Whittaker, Clark and Daniels, Wyeth, Imerys, Becton Dickinson, Sterigenics and the U.S. Department of Justice in litigation. The other authors declare no competing interests.

Similar articles

Cited by

References

    1. Pedersen, R. N. et al. The incidence of breast cancer recurrence 10–32 years after primary diagnosis. J. Natl Cancer Inst. 114, 391–399 (2022). - PubMed DOI
    1. Colleoni, M. et al. Annual hazard rates of recurrence for breast cancer during 24 years of follow-up: results from the international breast cancer study group trials I to V. J. Clin. Oncol. 34, 927–935 (2016). - PubMed PMC DOI
    1. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 19, 27–39 (2018). - DOI
    1. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365, 1687–1717 (2005). - DOI
    1. Loi, S., Buyse, M., Sotiriou, C. & Cardoso, F. Challenges in breast cancer clinical trial design in the postgenomic era. Curr. Opin. Oncol. 16, 536–541 (2004). - PubMed DOI
    1. Cescon, D. W. et al. Therapeutic targeting of minimal residual disease to prevent late recurrence in hormone-receptor positive breast cancer: challenges and new approaches. Front. Oncol. 11, 667397 (2021). - PubMed DOI
    1. Banys-Paluchowski, M., Reinhardt, F. & Fehm, T. Disseminated tumor cells and dormancy in breast cancer progression. Adv. Exp. Med. Biol. 1220, 35–43 (2020). - PubMed DOI
    1. Roy, R. et al. Escape from breast tumor dormancy: the convergence of obesity and menopause. Proc. Natl Acad. Sci. USA 119, e2204758119 (2022). - PubMed PMC DOI
    1. Ruth, J. R. et al. Cellular dormancy in minimal residual disease following targeted therapy. Breast Cancer Res. 23, 63 (2021). - PubMed PMC DOI
    1. Ecker, B. L. et al. Impact of obesity on breast cancer recurrence and minimal residual disease. Breast Cancer Res. 21, 41 (2019). - PubMed PMC DOI
    1. Abravanel, D. L. et al. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J. Clin. Invest. 125, 2484–2496 (2015). - PubMed PMC DOI
    1. Dalla, E., Sreekumar, A., Aguirre-Ghiso, J. A. & Chodosh, L. A. Dormancy in breast cancer. Cold Spring Harb. Perspect. Med. 13, a041331 (2023). - PubMed PMC DOI
    1. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005). - PubMed DOI
    1. Hall, C. et al. Disseminated tumor cells predict survival after neoadjuvant therapy in primary breast cancer. Cancer 118, 342–348 (2012). - PubMed DOI
    1. Mathiesen, R. R. et al. Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival. Breast Cancer Res. 14, R117 (2012). - PubMed PMC DOI
    1. Hartkopf, A. D. et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: results from an international pooled analysis. Eur. J. Cancer 154, 128–137 (2021). - PubMed DOI
    1. Fehm, T. et al. Pooled analysis of the prognostic relevance of disseminated tumor cells in the bone marrow of patients with ovarian cancer. Int. J. Gynecol. Cancer 23, 839–845 (2013). - PubMed DOI
    1. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002). - PubMed DOI
    1. Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 17, 488–501 (2003). - PubMed PMC DOI
    1. Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005). - PubMed DOI
    1. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W. & Green, J. E. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 9, 1944 (2018). - PubMed PMC DOI
    1. Dwyer, S., Ruth, J., Seidel, H. E., Raz, A. A. & Chodosh, L. A. Autophagy is required for mammary tumor recurrence by promoting dormant tumor cell survival following therapy. Breast Cancer Res. 26, 143 (2024). - PubMed PMC DOI
    1. Paul, M. R. et al. Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J. Clin. Invest. 130, 4252–4265 (2020). - PubMed PMC
    1. D’Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat. Med. 7, 235–239 (2001). - PubMed DOI
    1. Sreekumar, A. et al. B3GALT6 promotes dormant breast cancer cell survival and recurrence by enabling heparan sulfate-mediated FGF signaling. Cancer Cell 42, 52–69 (2024). - PubMed DOI
    1. Finbloom, D. S., Silver, K., Newsome, D. A. & Gunkel, R. Comparison of hydroxychloroquine and chloroquine use and the development of retinal toxicity. J. Rheumatol. 12, 692–694 (1985). - PubMed
    1. La Belle Flynn, A. et al. Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat. Commun. 10, 3668 (2019). - PubMed PMC DOI
    1. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014). - PubMed PMC DOI
    1. Aqbi, H. F. et al. Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy. Oncotarget 9, 22113–22122 (2018). - PubMed PMC DOI
    1. Lu, Z. et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917–3929 (2008). - PubMed PMC
    1. Chery, L. et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5, 9939–9951 (2014). - PubMed PMC DOI
    1. Marshall, J. C. et al. Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J. Natl Cancer Inst. 104, 1306–1319 (2012). - PubMed PMC DOI
    1. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011). - PubMed PMC DOI
    1. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013). - PubMed PMC DOI
    1. Feng, Y. et al. SPSB1 promotes breast cancer recurrence by potentiating c-MET signaling. Cancer Discov. 4, 790–803 (2014). - PubMed PMC DOI
    1. Alvarez, J. V. et al. Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24, 30–44 (2013). - PubMed DOI
    1. Chen, S. et al. PAQR8 promotes breast cancer recurrence and confers resistance to multiple therapies. Breast Cancer Res. 25, 1 (2023). - PubMed PMC DOI
    1. Rueda, O. M. et al. Dynamics of breast-cancer relapse reveal late-recurring ER-positive genomic subgroups. Nature 567, 399–404 (2019). - PubMed PMC DOI
    1. Bidard, F. C. et al. Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin. Cancer Res. 14, 3306–3311 (2008). - PubMed DOI
    1. Naume, B. et al. Clinical outcome with correlation to disseminated tumor cell (DTC) status after DTC-guided secondary adjuvant treatment with docetaxel in early breast cancer. J. Clin. Oncol. 32, 3848–3857 (2014). - PubMed DOI
    1. Consortium, I. S. T. et al. Association of event-free and distant recurrence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial. JAMA Oncol. 6, 1355–1362 (2020). - DOI
    1. Chavez-MacGregor, M. et al. Phase III randomized, placebo-controlled trial of endocrine therapy ± 1 year of everolimus in patients with high-risk, hormone receptor-positive, early-stage breast cancer. J. Clin. Oncol. 42, 3012–3021 (2024). - PubMed DOI
    1. Coombes, R. C. et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25, 4255–4263 (2019). - PubMed DOI
    1. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015). - PubMed DOI
    1. Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958). - DOI
    1. Tukey, J. W. Exploratory Data Analysis (Addison-Wesley, 1977).
    1. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947). - DOI
    1. Fehm, T. et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107, 885–892 (2006). - PubMed DOI
    1. Tolaney, S. M. et al. Updated standardized definitions for efficacy end points (STEEP) in adjuvant breast cancer clinical trials: STEEP version 2.0. J. Clin. Oncol. 39, 2720–2731 (2021). - PubMed PMC DOI








Plaats een reactie ...

Reageer op "Everolimus (Afinitor) plus hydroxychloroquine doodt slapende tumorcellen bij borstkankerpatienten en geeft zeer goede ziektevrije overleving en overall overlevingsresultaten van 85 tot 100 procent blijkt uit de fase II studie CLEVER."


Gerelateerde artikelen
 

Gerelateerde artikelen

Everolimus (Afinitor) samen >> Reguliere behandelingen, medicijnen >>