8 oktober 2021: Bron: Journal of Urology 1 oktober 2021

Het is al eerder in studies aangetoond dat intermitterende hormoontherapie (androgeendeprivatietherapie) (IADT) bij prostaatkanker dezelfde resultaten geeft op ziekteprogressietijd en overall overleving in vergelijking met doorlopend hormoontherapie (ADT). Uit Canadees onderzoek onder 8544 mannen ouder dan 65 jaar met prostaatkanker blijkt dat het gebruik van deze strategie in de praktijk niet goed bekend is en niet heel vaak wordt toegepast (16 tot 25 procent). Althans in Canada. Of dat ook geldt voor Nederland en België durf ik niet te zeggen. Ik ken wel mannen waarbij intermitterende hormoontherapie wordt toegepast, maar ik vermoed dat ze er zelf om moeten vragen.  Dit staat er in de richtlijnen

Een interessante studie naar de effecten van inmitterende hormoontherapie is deze studie waarbij de onderzoekers onderzochten wat het effect is van hormoontherapie op de kankerstamcellen. Elke individuele patiënt uit een studie met totaal 70 patiënten werden jarenlang gevolgd wat voor invloed de intermitterende hormoontherapie had op hun PSA en de tijd tot zich weer progressie van de ziekte voordeed door PSA stijging. Deze studie is niet voor leken maar artsen en wetenschappers begrijpen denk ik wel wat er met deze studie is onderzocht en aangetoond (abstract staat onderaan artikel): 

Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation


ad Treatment times for a Bruchovsky trial data and simulations of b extrapolated IADT with induction, c IADT without induction, and d continuous ADT. Red and black denote when treatment is on and off, respectively. e Kaplan–Meier estimates of progression comparing IADT with induction (black curve) against IADT without induction (blue) and continuous ADT (gray) (double S indicates predictive model simulation). With and without induction period, IADT TTP increases when compared with continuous therapy TTP. Red symbols denote patients who experienced an adverse event/death prior to the conclusion of the trial. Statistical significance was determined using logrank test (IADT w/o induction vs. continuous: p = 0.073, IADT w/induction vs. continuous: p = 0.129, IADT w/induction vs. w/o induction: p = 0.795). f TTP comparison between IADT with induction (black), continuous therapy (gray), and IADT without induction (blue). Open circles denote end of simulation (EOS). Red dots denote patients who experienced an adverse event/death prior to the conclusion of the trial. Solid lines denote mean TTP (67.11, 57.25, and 71.87 months for IADT with induction, continuous therapy, and IADT without induction, respectively). The average TTP is longer with IADT without induction, compared with IADT with induction and continuous ADT. g Simulation results for Patient 054 (IADT with induction (black curve), without induction (blue curve), and continuous ADT (gray)). With IADT with induction, the patient became resistant after 49 months. Simulating continuous ADT would result in progression after 24 months. Simulating IADT without the induction would increase TTP by 5 months. PCaSC dynamics show that treatment selects for PCaSC population, accelerating resistance development. Dashed curve represent time when ADT is off.

De auteurs van de retrospectieve studie evalueerden 8544 mannen ouder dan 65 jaar met prostaatkanker en die hormoontherapie (ADT) ondergingen. De gemiddelde follow-up was 8,3 jaar. IADT werd gebruikt bij 16,4% van de bevolking. Mannen met een grotere kans om IADT te ondergaan, waren onder meer degenen met eerdere lokale therapie en degenen in het hoogste inkomenskwintiel. Op het niveau van de zorgverlener gebruikten radiotherapeut-oncologen vaker IADT, net als zorgverleners met meer dan 10 jaar ervaring.

Het studierapport van deze studie is tegen betaling in te zien. Klik op de titel van het abstract.


Phase-III randomized control trial evidence suggests intermittent androgen deprivation therapy (IADT) is not significantly inferior to continuous androgen deprivation therapy (ADT) for patients with prostate cancer (PC). However, clinical practice and guidelines differ in their recommendations. We evaluate real-world utilization and practice patterns of IADT.

Materials and Methods:

Ontario men ≥65 years of age with PC who initiated ADT for ≥3 months were identified (1997–2017). Lapses in ADT ≥6 months (initial gap) and ≥3 months (subsequent gaps) were used to classify IADT. Neoadjuvant/adjuvant therapy was excluded. Disease stage adjustment was completed for patients with likely metastatic disease based on de novo presentation with ADT. Patient and physician predictors of IADT were analyzed using multivariable logistic regression.


We identified 8,544 patients with 1,715 having previously received local therapy. Among all patients, 16.4% received IADT. This ranged from 11.4%–24.8% across health-planning regions and increased to 26.6% in those with previous local therapy. Mean followup was 8.3 years. Patients with prior local therapy (OR 1.85, 95% CI 1.59–2.17, p <0.001) and those in the highest income quintile (OR 1.32, 95% CI 1.08–1.60, p=0.005) had increased odds of receiving IADT. Radiation oncologists were more likely to use IADT than urologists (OR 1.99, 95% CI 1.59–2.50, p <0.001), as were physicians with more experience (≥10 years in practice: OR 1.44, 95% CI 1.11–1.88, p=0.007). In specialty-stratified analyses, case volume was significantly associated with IADT for radiation oncologists (highest quartile: OR 1.73, 95% CI 1.14–2.62, p=0.009).


IADT remains underutilized for patients with PC who ≥65 years of age with only 1 in 4 to 1 in 6 eligible patients receiving this form of care. Clinical, sociodemographic and physician characteristics play an important role in treatment selection.

Funding: This study was supported by ICES, which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). This study also received funding from the Princess Margaret Cancer Foundation and the Urologic Oncology Research and Innovation Fund provided by Astellas Pharma Canada, Inc. and jointly established by Astellas Pharma Canada, Inc. and The University of Toronto. Parts of this material are based on data and information compiled and provided by MOHLTC, Cancer Care Ontario, and the Canadian Institute for Health Information. The analyses, conclusions, opinions and statements expressed herein are solely those of the authors and do not reflect those of the funding or data sources; no endorsement is intended or should be inferred.

Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation

Prostate-specific antigen dynamics predict individual responses to intermittent androgen deprivation


Intermittent androgen deprivation therapy (IADT) is an attractive treatment for biochemically recurrent prostate cancer (PCa), whereby cycling treatment on and off can reduce cumulative dose and limit toxicities. We simulate prostate-specific antigen (PSA) dynamics, with enrichment of PCa stem-like cell (PCaSC) during treatment as a plausible mechanism of resistance evolution. Simulated PCaSC proliferation patterns correlate with longitudinal serum PSA measurements in 70 PCa patients. Learning dynamics from each treatment cycle in a leave-one-out study, model simulations predict patient-specific evolution of resistance with an overall accuracy of 89% (sensitivity = 73%, specificity = 91%). Previous studies have shown a benefit of concurrent therapies with ADT in both low- and high-volume metastatic hormone-sensitive PCa. Model simulations based on response dynamics from the first IADT cycle identify patients who would benefit from concurrent docetaxel, demonstrating the feasibility and potential value of adaptive clinical trials guided by patient-specific mathematical models of intratumoral evolutionary dynamics.


Prostate cancer (PCa) is the most common type of cancer in American men and the second leading cause of cancer mortality1. Following surgery or radiation, the standard treatment for hormone-sensitive PCa is continuous androgen deprivation therapy (ADT) at the maximum tolerable dose (MTD) with or without continuous abiraterone acetate (AA) until the tumor becomes castration resistant2. Importantly, advanced PCa is not curable because PCa routinely evolves resistance to all current treatment modalities. Continuous treatment approaches fail to consider the evolutionary dynamics of treatment response where competition, adaptation, and selection between treatment sensitive and resistant cells contribute to therapy failure3. In fact, continuous treatment, by maximally selecting for resistant phenotypes and eliminating other competing populations, may actually accelerate the emergence of resistant populations—a well-studied evolutionary phenomenon termed competitive release4.

In part to address this issue, prior trials have used intermittent ADT (IADT) to reduce toxicity and potentially delay time to progression (TTP). However, these trials were typically not designed with a detailed understanding of the underlying evolutionary dynamics. For example, a prospective Phase II trial of IADT for advanced PCa included an 9-month induction period in which patients were treated at MTD prior to beginning intermittent therapy5. We have previously postulated that only a small number of ADT-sensitive cells would typically remain after the induction period, thereby significantly reducing the potential of intermittent treatment to take advantage of the evolutionary dynamics3.

Fully harnessing the potential of intermittent PCa therapy requires identifying ADT resistance mechanisms, predicting individual responses, and determining potentially highly patient-specific, clinically actionable triggers for pausing and resuming IADT cycles. Progress in integrated mathematical oncology may make such analysis possible. Many mathematical models based on a variety of plausible resistance mechanisms have been proposed to simulate IADT responses3,6,7,8,9,10,11,12,13,14. Although these models can fit clinical data, they often rely on numerous model variables and parameters that in combination fail to adequately predict responses and outcomes for individual patients10. We hypothesize that PCa cells with stem-like properties (PCaSCs) may be, at least in part, responsible for tumor heterogeneity and treatment failure owing to their self-renewing, differentiating and quiescent nature15,16,17. Here, we define PCaSCs to be a population of cells that are less sensitive to low testosterone environments but still somewhat dependent on androgen receptor pathways. Simulating longitudinal prostate-specific antigen (PSA) levels in early IADT treatment cycles could help identify patient-specific PCaSC dynamics to computationally forecast individual disease dynamics and reliably predict IADT response or resistance in subsequent treatment cycles.

The first evidence of stem cells in the prostate was provided by Isaacs and Coffey18, who used androgen cycling experiments in rodents to show that castration resulted in involution of the prostate, whereas restored androgen levels resulted in complete regeneration of the prostate. These findings demonstrated that the normal prostate depends on androgens for maintenance. A small population of androgen-independent stem cells within the prostate epithelium divide to give rise to amplifying cells, which do not directly depend on androgen for their continuous maintenance, but respond to androgens by generating androgen-dependent transit cells. Approximately 0.1% of cells in prostate tumors express the stem cell markers CD44+/α2β1hi/CD133+19. A pre-clinical study by Bruchovsky et al. showed ADT selects for murine PCaSCs20. Analogously, Lee et al.21 demonstrated increased PCaSCs populations after ADT in patient-derived PCa cell lines, which can be reverted by the addition of functional AR. Combined, these results suggest evolution of or selection for pre-existing androgen-independent PCaSCs as a plausible explanation of the development of ADT resistance.

The purpose of this study is to evaluate individual PSA dynamics in early IADT treatment cycles as a predictive marker of response or resistance in subsequent treatment cycles. We hypothesize that patient-specific PCaSC division patterns underlie the measurable longitudinal PSA dynamics, and that a mathematical model of PCaSCs can be trained to predict treatment responses on a per-patient basis. Here, we present an innovative framework to simulate and predict the dynamics of PCaSCs, androgen-dependent non-stem PCa cells (PCaCs), and blood PSA concentrations during IADT. Our mathematical model of PCaSC enrichment is calibrated and validated with longitudinal PSA measurements in individual patients to identify model dynamics that correlate with treatment resistance. The model’s predictive power to accurately forecast individual patients’ responses to IADT cycles is evaluated in an independent patient cohort. These analyses suggest that PCaSC and PSA dynamics may potentially be used to personalize IADT, maximize TTP, and ultimately improve PCa outcomes. The calibrated and validated model is then used to generate testable hypotheses about patients that may benefit from concurrent chemotherapy.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The clinical data used to conduct this study are available in a public repository at http://www.nicholasbruchovsky.com/clinicalResearch.html. A reporting summary for this article is available as a Supplementary Information file.

Code availability

Code supporting the findings of this study are available at https://github.com/reneebrady/IADT_PCaSC.


  1. 1.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article Google Scholar 

  2. 2.

    Fizazi K., et al. LATITUDE: A phase III, double-blind, randomized trial of androgen deprivation therapy with abiraterone acetate plus prednisone or placebos in newly diagnosed high-risk metastatic hormone-naive prostate cancer. J Clin Oncol 35, LBA3-LBA3 (2017).

  3. 3.

    Zhang J., Cunningham J. J., Brown J. S., Gatenby R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

  4. 4.

    Wargo, A. R., Huijben, S., de Roode, J. C., Shepherd, J. & Read, A. F. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc. Natl. Acad. Sci. USA 104, 19914–19919 (2007).

    ADS CAS Article Google Scholar 

  5. 5.

    Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med 367, 895–903 (2012).

    ADS CAS Article Google Scholar 

  6. 6.

    Baez, J. & Kuang, Y. Mathematical models of androgen resistance in prostate cancer patients under intermittent androgen suppression therapy. Appl. Sci. 6, 352 (2016).

    Article Google Scholar 

  7. 7.

    Cunningham J. J., Brown J. S., Gatenby R. A., Stankova K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).

  8. 8.

    Hirata Y., et al. Intermittent androgen suppression: estimating parameters for individual patients based on initial PSA data in response to androgen deprivation therapy. PLoS ONE 10, e0130372 (2015).

  9. 9.

    Hirata Y., Morino K., Akakura K., Higano C. S., Aihara K. Personalizing androgen suppression for prostate cancer using mathematical modeling. Sci. Rep. 8, 2673 (2018).

  10. 10.

    Hirata, Y., Bruchovsky, N. & Aihara, K. Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J. Theor. Biol. 264, 517–527 (2010).

    MathSciNet CAS Article Google Scholar 

  11. 11.

    Ideta, A. M., Tanaka, G., Takeuchi, T. & Aihara, Z. A mathematical model of intermittent androgen suppression for prostate cancer. J. Nonlinear Sci. 18, 593–614 (2008).

    ADS CAS Article Google Scholar 

  12. 12.

    Morken, J. D., Packer, A., Everett, R. A., Nagy, J. D. & Kuang, Y. Mechanisms of resistance to intermittent androgen deprivation in patients with prostate cancer identified by a novel computational method. Cancer Res. 74, 3673–3683 (2014).

    CAS Article Google Scholar 

  13. 13.

    Portz T., Kuang, Y., Nagy, J. A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy AIP Advances 2, 0110022 (2012).

  14. 14.

    Elishmereni, M. et al. Predicting time to castration resistance in hormone sensitive prostate cancer by a personalization algorithm based on a mechanistic model integrating patient data. Prostate 76, 48–57 (2016).

    CAS Article Google Scholar 

  15. 15.

    Collins, A. T. & Maitland, N. J. Prostate cancer stem cells. Eur. J. Cancer 42, 1213–1218 (2006).

    CAS Article Google Scholar 

  16. 16.

    Enderling, H. Cancer stem cells: small subpopulation or evolving fraction? Integr. Biol. 7, 14–23 (2015).

    Article Google Scholar 

  17. 17.

    Maitland, N. J. & Collins, A. T. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol. 26, 2862–2870 (2008).

    Article Google Scholar 

  18. 18.

    Isaacs, J. T. & Coffey, D. S. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 2, 33–50 (1989).

    CAS Article Google Scholar 

  19. 19.

    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946–10951 (2005).

    CAS Article Google Scholar 

  20. 20.

    Bruchovsky, N., Rennie, P. S., Coldman, A. J., Goldenberg, S. L., To M & Lawson, D. Effects of androgen withdrawal on the stem cell composition of the Shionogi carcinoma. Cancer Res. 50, 2275–2282 (1990).

    CAS PubMed Google Scholar 

  21. 21.

    Lee, S. O. et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. J. Mol. Cell Biol. 5, 14–26 (2013).

    CAS Article Google Scholar 

  22. 22.

    Bruchovsky, N. et al. Final results of the Canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer: clinical parameters. Cancer 107, 389–395 (2006).

    Article Google Scholar 

  23. 23.

    Baxter W. C., Stanley J. S., Zhang Q., Smith W. D. Developing artificial neural network models of water treatment processes: a guide for utilities. J. Environ. Eng. Sci. 1, 201–211 (2002).

  24. 24.

    Johnson, C. H. Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9, 3864–3873 (2010).

    CAS Article Google Scholar 

  25. 25.

    Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2005).

  26. 26.

    Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    CAS Article Google Scholar 

  27. 27.

    Chi, K. N. et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 381, 13–24 (2019).

    CAS Article Google Scholar 

  28. 28.

    Hoyle, A. P. et al. Abiraterone in “high-“ and “low-risk” metastatic hormone-sensitive prostate cancer. Eur. Urol. 76, 719–728 (2019).

    CAS Article Google Scholar 

  29. 29.

    James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 387, 1163–1177 (2016).

    CAS Article Google Scholar 

  30. 30.

    Kyriakopoulos, C. E. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J. Clin. Oncol. 36, 1080–1087 (2018).

    CAS Article Google Scholar 

  31. 31.

    Vale, C. L. et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol. 17, 243–256 (2016).

    CAS Article Google Scholar 

  32. 32.

    Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS PubMed Google Scholar 

  33. 33.

    Boerrigter E., Groen L. N., Van Erp N. P., Verhaegh G. W., Schalken J. A. Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert. Rev. Mol. Diagn. 20, 219–230 (2020).

  34. 34.

    Stankova, K., Brown, J. S., Dalton, W. S. & Gatenby, R. A. Optimizing cancer treatment using game theory: a review. JAMA Oncol. 5, 96–103 (2019).

    Article Google Scholar 

  35. 35.

    Gravis, G. et al. Androgen deprivation therapy (ADT) plus docetaxel versus ADT alone in metastatic non castrate prostate cancer: impact of metastatic burden and long-term survival analysis of the randomized phase 3 GETUG-AFU15 trial. Eur. Urol. 70, 256–262 (2016).

    CAS Article Google Scholar 

  36. 36.

    Brady R., Enderling H. Mathematical models of cancer: when to predict novel therapies, and when not to. Bull. Math Biol. 81, 3722–3731 (2019).

  37. 37.

    Lee, D. K. et al. Progression of prostate cancer despite an extremely low serum level of prostate-specific antigen. Korean J. Urol. 51, 358–361 (2010).

    Article Google Scholar 

  38. 38.

    Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    CAS Article Google Scholar 

  39. 39.

    Danila, D. C. et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res 13, 7053–7058 (2007).

    CAS Article Google Scholar 

  40. 40.

    Aragon-Ching, J. B. et al. Circulating tumor cells in biochemical recurrence of prostate cancer. Clin. Genitourin. Cancer 13, e341–e345 (2015).

    Article Google Scholar 

  41. 41.

    Tu, S. M. & Lin, S. H. Prostate cancer stem cells. Clin. Genitourin. Cancer 10, 69–76 (2012).

    Article Google Scholar 

  42. 42.

    Glass, L. Synchronization and rhythmic processes in physiology. Nature 410, 277–284 (2001).

    ADS CAS Article Google Scholar 

  43. 43.

    Matsu-Ura, T. et al. Intercellular coupling of the cell cycle and circadian clock in adult stem cell culture. Mol. Cell 64, 900–912 (2016).

    CAS Article Google Scholar 

  44. 44.

    Banks H. T., Tran H. T. Mathematical and Experimental Modeling of Physical and Biological Processes. Chapman and Hall (2009).

  45. 45.

    Olufsen, M. S. & Ottesen, J. T. A practical approach to parameter estimation applied to model predicting heart rate regulation. J. Math. Biol. 67, 39–68 (2013).

    MathSciNet Article Google Scholar 

  46. 46.

    Poli, R., Kennedy, J. & Blackwell, T. Particle swarm optimization. Swarm Intell. 1, 33 (2007).

    Article Google Scholar 

  47. 47.

    Jaworska D., Szliszka E. Targeting apoptotic activity against prostate cancer stem cells. Int. J. Mol. Sci. 18, pii: E1648 (2017).

Download references


We thank participants of the clinical trial and Dr. Bruchovsky for sharing the data. We also thank our patient advocate Mr. Robert Butler for fruitful discussions. This work was supported by NIH/NCI 1R21CA234787-01A1 “Predicting patient-specific responses to personalize ADT for prostate cancer”, and in part by NIH/NCI U54CA143970-05 (Physical Science Oncology Network) “Cancer as a complex adaptive system”, the Ocala Royal Dames for Cancer Research, Inc., and The JAYNE KOSKINAS TED GIOVANIS FOUNDATION FOR HEALTH AND POLICY, a Maryland private foundation dedicated to effecting change in health care for the public good. The opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and not necessarily those of the JAYNE KOSKINAS TED GIOVANIS FOUNDATION FOR HEALTH AND POLICY, its directors, officers, or staff.

Author information



R.B., A.Z.W., T.Z., J.D.N., and H.E. conceptualized the study. R.B, J.D.N, T.A.G., and H.E. performed the modeling and statistical analyses. R.B., J.D.N., T.A.G., T.Z., A.Z.W., J.Z., R.A.G., and H.E. wrote the manuscript.

Corresponding authors

Correspondence to Robert A. Gatenby or Heiko Enderling.

Ethics declarations

Competing interests

Provisional patent application entitled “Methods for PCa intermittent adaptive therapy”. Applicants/inventors: Renee Brady-Nicholls, Heiko Enderling; application number: 62/944.804; status: provisionally filed. The patent covers methods related to using the mathematical model to adjust an individual patient’s treatment administration (both timing and alternative treatment options), thereby increasing TTP. T.Z.: Research funding: Acerta, Novartis, Merrimack, Abbvie/StemCentrx, Merck, Regeneron, Mirati Therapeutics, Janssen, Astra Zeneca, Pfizer, OmniSeq, Personal Genome Diagnostics, Seattle Genetics; Speakers Bureau: Genentech/Roche, Exelixis, Sanofi-Aventis, Genomic Health; Advisory Board: Genentech/Roche, Merck, Exelixis, Sanofi-Aaventis, Janssen, Astra Zeneca, Pfizer, Amgen, BMS, Pharmacyclics, Seattle Genetics, Bayer; Consultant: Bayer, Astra Zeneca, Foundation Medicine; Employee: Capio Biosciences, Archimmune Therapeutics (spouse); Stockholder: Capio Biosciences, Archimmune Therapeutics (spouse); A.Z.W.: Cofounder, stockholder and consultant: Capio Biosciences, Archimmune Therapeutics; J.Z.: Consultant: Dendreon, Advisory Board: AstraZeneca, Bayer, Clovis Oncology, Seattle Genetics, Speaker Bureau: Merck, Sanofi. All other authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks Martin Nowak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Plaats een reactie ...

1 Reactie op "Intermitterende hormoontherapie (IADT) geeft zelfde resultaten op progressievrije tijd en overall overleving als continue hormoontherapie ADT, maar wordt in de praktijk niet vaak toegepast ondanks de voordelen van minder bijwerkingen"

  • e.valstar :
    Het gebeurt te vaak dat ik het als eerste noem.

Gerelateerde artikelen

Gerelateerde artikelen

Intermitterende hormoontherapie >> Hormoontherapie plus palbociclib >> Hormoontherapie na radiotherapie >> Hormoonbehandeling regelmatig >> Hormoontherapie plus bestraling >> APD - Androgen Deprivation >> Hormoontherapie bij patiënten >> Hormoontherapie bij oudere >> Hormoontherapie bij mannen >> Hormoontherapie zorgt voor >>