21 juni 2025: Bron: Science en de Volkskrant

Naar aanleiding van een dierstudie gepubliceerd in Science komt de Volkskrant met een paginagroot artikel over een nieuwe vorm van CAR-T celtherapie bij LUPUS, een auto-immuunziekte en bij vormen van lymfklierkanker en leukemie
De onderzoekers gebruikten een heel klein beetje mRNA in hun studie met proefdieren. Theresa Hunter en collega’s gebruikten daarvoor hele kleine vetbolletjes met daarin de mRNA. De ingespoten mRNA gaan in het lichaam op zoek naar T-cellen. Heeft het nanodeeltje een T-cel gevonden, dan hecht het vetbolletje zich via een speciaal zuignapje vast aan de T-cel en zorgt hetmRNA ervoor dat de T-cel een extra pootje aanmaakt. Een pootje, waarmee hij bijvoorbeeld kankercellen aanvalt. 

Al drie uur na injectie van de vetbolletjes waren de B-cellen van de muizen nagenoeg volledig weg. 

In het Volkskrantartikel staat grafisch mooi weergegeven hoe deze methode werkt bij LUPUS cellen en leukemiercellen. 

Het summiere abstract van de dierstudie met deze nieuwe vorm van CAR-T celtherapie is gepubliceerd in Science, Het artikel in de Volkskrant geeft een veel betere beschrijving van de methode en is ook in het Nederlands. Is echter alleen voor abonnees, maar via archive.ph wel volledig te lezen. zie 

Veelbelovende truc verlost proefdieren binnen paar uur van lupus- of lymfklierkankercellen


Klik hier voor het artikel in Archive.ph

Hier het abstract van het originele studieverslag

Editor’s summary

Chimeric antigen receptor (CAR)–T cell therapies have been highly successful for treating B cell malignancies and also have potential for the treatment of autoimmune disease. However, complex manufacturing and conditioning regimens have limited their accessibility and scalability. Hunter et al. report a gene-delivery system to generate CAR-T cells in vivo by dosing of a CD8-targeted lipid nanoparticle carrying anti-CD19 CAR mRNA (see the Perspective by Peche and Gottschalk). Data from rodent and nonhuman primate (NHP) models demonstrated tumor control. In autoimmune models, deep and transient depletion of B cells was observed in the blood and tissues of NHPs, resulting in an “immune reset.” Such a strategy may provide an off-the-shelf, nonviral, and scalable alternative to ex vivo CAR-T cell immunotherapy. —Priscilla N. Kelly

Abstract

Chimeric antigen receptor (CAR) T cell therapies have transformed treatment of B cell malignancies. However, their broader application is limited by complex manufacturing processes and the necessity for lymphodepleting chemotherapy, restricting patient accessibility. We present an in vivo engineering strategy using targeted lipid nanoparticles (tLNPs) for messenger RNA delivery to specific T cell subsets. These tLNPs reprogrammed CD8+ T cells in both healthy donor and autoimmune patient samples, and in vivo dosing resulted in tumor control in humanized mice and B cell depletion in cynomolgus monkeys. In cynomolgus monkeys, the reconstituted B cells after depletion were predominantly naïve, suggesting an immune system reset. By eliminating the requirements for complex ex vivo manufacturing, this tLNP platform holds the potential to make CAR T cell therapies more accessible and applicable across additional clinical indications.

By Vivek Peche, Stephen GottschalkScience19 Jun 2025


Supplementary Materials

The PDF file includes:

Materials and Methods
Figs. S1 to S15
Tables S1 and S2
References (4041)

Other Supplementary Material for this manuscript includes the following:

Data S1 and S2
MDAR Reproducibility Checklist

References and Notes

1
V. Wang, M. Gauthier, V. Decot, L. Reppel, D. Bensoussan, Systematic Review on CAR-T Cell Clinical Trials Up to 2022: Academic Center Input. Cancers 15, 1003 (2023).
2
K. M. Cappell, J. N. Kochenderfer, Long-term outcomes following CAR T cell therapy: What we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).
3
J. J. Melenhorst, G. M. Chen, M. Wang, D. L. Porter, C. Chen, M. A. Collins, P. Gao, S. Bandyopadhyay, H. Sun, Z. Zhao, S. Lundh, I. Pruteanu-Malinici, C. L. Nobles, S. Maji, N. V. Frey, S. I. Gill, A. W. Loren, L. Tian, I. Kulikovskaya, M. Gupta, D. E. Ambrose, M. M. Davis, J. A. Fraietta, J. L. Brogdon, R. M. Young, A. Chew, B. L. Levine, D. L. Siegel, C. Alanio, E. J. Wherry, F. D. Bushman, S. F. Lacey, K. Tan, C. H. June, Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).
4
A. Gajra, A. Zalenski, A. Sannareddy, Y. Jeune-Smith, K. Kapinos, A. Kansagra, Barriers to Chimeric Antigen Receptor T-Cell (CAR-T) Therapies in Clinical Practice. Pharmaceut. Med. 36, 163–171 (2022).
5
G. Schett, A. Mackensen, D. Mougiakakos, CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).
6
C. Bergmann, F. Müller, J. H. W. Distler, A.-H. Györfi, S. Völkl, M. Aigner, S. Kretschmann, H. Reimann, T. Harrer, N. Bayerl, S. Boeltz, A. Wirsching, J. Taubmann, W. Rösler, B. Spriewald, J. Wacker, A. Atzinger, M. Uder, T. Kuwert, A. Mackensen, G. Schett, Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).
7
D. Mougiakakos, G. Krönke, S. Völkl, S. Kretschmann, M. Aigner, S. Kharboutli, S. Böltz, B. Manger, A. Mackensen, G. Schett, CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus. N. Engl. J. Med. 385, 567–569 (2021).
8
A. Mackensen, F. Müller, D. Mougiakakos, S. Böltz, A. Wilhelm, M. Aigner, S. Völkl, D. Simon, A. Kleyer, L. Munoz, S. Kretschmann, S. Kharboutli, R. Gary, H. Reimann, W. Rösler, S. Uderhardt, H. Bang, M. Herrmann, A. B. Ekici, C. Buettner, K. M. Habenicht, T. H. Winkler, G. Krönke, G. Schett, Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).
9
A.-C. Pecher, L. Hensen, R. Klein, R. Schairer, K. Lutz, D. Atar, C. Seitz, A. Stanger, J. Schneider, C. Braun, M. Schmidt, M. Horger, A. Bornemann, C. Faul, W. Bethge, J. Henes, C. Lengerke, CD19-Targeting CAR T Cells for Myositis and Interstitial Lung Disease Associated With Antisynthetase Syndrome. JAMA 329, 2154–2162 (2023).
10
A. Haghikia, T. Hegelmaier, D. Wolleschak, M. Böttcher, C. Desel, D. Borie, J. Motte, G. Schett, R. Schroers, R. Gold, D. Mougiakakos, Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).
11
N. Conrad, S. Misra, J. Y. Verbakel, G. Verbeke, G. Molenberghs, P. N. Taylor, J. Mason, N. Sattar, J. J. V. McMurray, I. B. McInnes, K. Khunti, G. Cambridge, Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).
12
M. H. Roberts, E. Erdei, Comparative United States autoimmune disease rates for 2010-2016 by sex, geographic region, and race. Autoimmun. Rev. 19, 102423 (2020).
13
F. W. Miller, The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 80, 102266 (2023).
14
J. G. Rurik, I. Tombácz, A. Yadegari, P. O. Méndez Fernández, S. V. Shewale, L. Li, T. Kimura, O. Y. Soliman, T. E. Papp, Y. K. Tam, B. L. Mui, S. M. Albelda, E. Puré, C. H. June, H. Aghajanian, D. Weissman, H. Parhiz, J. A. Epstein, CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).
15
L. Zhang, K. R. More, A. Ojha, C. B. Jackson, B. D. Quinlan, H. Li, W. He, M. Farzan, N. Pardi, H. Choe, Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. NPJ Vaccines 8, 156 (2023).
16
A. Kheirolomoom, A. J. Kare, E. S. Ingham, R. Paulmurugan, E. R. Robinson, M. Baikoghli, M. Inayathullah, J. W. Seo, J. Wang, B. Z. Fite, B. Wu, S. K. Tumbale, M. N. Raie, R. H. Cheng, L. Nichols, A. D. Borowsky, K. W. Ferrara, In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift. Biomaterials 281, 121339 (2022).
17
M. M. Billingsley, N. Gong, A. J. Mukalel, A. S. Thatte, R. El-Mayta, S. K. Patel, A. E. Metzloff, K. L. Swingle, X. Han, L. Xue, A. G. Hamilton, H. C. Safford, M.-G. Alameh, T. E. Papp, H. Parhiz, D. Weissman, M. J. Mitchell, In Vivo mRNA CAR T Cell Engineering via Targeted Ionizable Lipid Nanoparticles with Extrahepatic Tropism. Small 20, 2304378 (2024).
18
N. N. Parayath, S. B. Stephan, A. L. Koehne, P. S. Nelson, M. T. Stephan, In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).
19
M. Sedic, J. J. Senn, A. Lynn, M. Laska, M. Smith, S. J. Platz, J. Bolen, S. Hoge, A. Bulychev, E. Jacquinet, V. Bartlett, P. F. Smith, Safety Evaluation of Lipid Nanoparticle-Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey. Vet. Pathol. 55, 341–354 (2018).
20
Z. Good, J. Y. Spiegel, B. Sahaf, M. B. Malipatlolla, Z. J. Ehlinger, S. Kurra, M. H. Desai, W. D. Reynolds, A. Wong Lin, P. Vandris, F. Wu, S. Prabhu, M. P. Hamilton, J. S. Tamaresis, P. J. Hanson, S. Patel, S. A. Feldman, M. J. Frank, J. H. Baird, L. Muffly, G. K. Claire, J. Craig, K. A. Kong, D. Wagh, J. Coller, S. C. Bendall, R. J. Tibshirani, S. K. Plevritis, D. B. Miklos, C. L. Mackall, Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28, 1860–1871 (2022).
21
V. R. Moulton, G. C. Tsokos, T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J. Clin. Invest. 125, 2220–2227 (2015).
22
M. Boulch, M. Cazaux, A. Cuffel, M. Ruggiu, V. Allain, B. Corre, Y. Loe-Mie, B. Hosten, S. Cisternino, S. Auvity, C. Thieblemont, S. Caillat-Zucman, P. Bousso, A major role for CD4+ T cells in driving cytokine release syndrome during CAR T cell therapy. Cell Rep. Med. 4, 101161 (2023).
23
J. N. Brudno, N. Lam, D. Vanasse, Y.-W. Shen, J. J. Rose, J. Rossi, A. Xue, A. Bot, N. Scholler, L. Mikkilineni, M. Roschewski, R. Dean, R. Cachau, P. Youkharibache, R. Patel, B. Hansen, D. F. Stroncek, S. A. Rosenberg, R. E. Gress, J. N. Kochenderfer, Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).
24
L. Alabanza, M. Pegues, C. Geldres, V. Shi, J. J. W. Wiltzius, S. A. Sievers, S. Yang, J. N. Kochenderfer, Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Mol. Ther. 25, 2452–2465 (2017).
25
D. M. Barrett, Y. Zhao, X. Liu, S. Jiang, C. Carpenito, M. Kalos, R. G. Carroll, C. H. June, S. A. Grupp, Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum. Gene Ther. 22, 1575–1586 (2011).
26
A. Taraseviciute, V. Tkachev, R. Ponce, C. J. Turtle, J. M. Snyder, H. D. Liggitt, D. Myerson, L. Gonzalez-Cuyar, A. Baldessari, C. English, A. Yu, H. Zheng, S. N. Furlan, D. J. Hunt, V. Hoglund, O. Finney, H. Brakke, B. R. Blazar, C. Berger, S. R. Riddell, R. Gardner, L. S. Kean, M. C. Jensen, Chimeric Antigen Receptor T Cell–Mediated Neurotoxicity in Nonhuman Primates. Cancer Discov. 8, 750–763 (2018).
27
M. R. Hines, T. E. Knight, K. O. McNerney, M. B. Leick, T. Jain, S. Ahmed, M. J. Frigault, J. A. Hill, M. D. Jain, W. T. Johnson, Y. Lin, K. M. Mahadeo, G. M. Maron, R. A. Marsh, S. S. Neelapu, S. Nikiforow, A. K. Ombrello, N. N. Shah, A. C. Talleur, D. Turicek, A. Vatsayan, S. W. Wong, M. V. Maus, K. V. Komanduri, N. Berliner, J.-I. Henter, M.-A. Perales, N. V. Frey, D. T. Teachey, M. J. Frank, N. N. Shah, Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant. Cell. Ther. 29, 438.e1–438.e16 (2023).
28
E. C. Morris, S. S. Neelapu, T. Giavridis, M. Sadelain, Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).
29
F. Müller, J. Taubmann, L. Bucci, A. Wilhelm, C. Bergmann, S. Völkl, M. Aigner, T. Rothe, I. Minopoulou, C. Tur, J. Knitza, S. Kharboutli, S. Kretschmann, I. Vasova, S. Spoerl, H. Reimann, L. Munoz, R. G. Gerlach, S. Schäfer, R. Grieshaber-Bouyer, A.-S. Korganow, D. Farge-Bancel, D. Mougiakakos, A. Bozec, T. Winkler, G. Krönke, A. Mackensen, G. Schett, CD19 CAR T-Cell Therapy in Autoimmune Disease - A Case Series with Follow-up. N. Engl. J. Med. 390, 687–700 (2024).
30
M. T. Abrams, M. L. Koser, J. Seitzer, S. C. Williams, M. A. DiPietro, W. Wang, A. W. Shaw, X. Mao, V. Jadhav, J. P. Davide, P. A. Burke, A. B. Sachs, S. M. Stirdivant, L. Sepp-Lorenzino, Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: Effect of dexamethasone co-treatment. Mol. Ther. 18, 171–180 (2010).
31
I. Urits, D. Swanson, M. C. Swett, A. Patel, K. Berardino, A. Amgalan, A. A. Berger, H. Kassem, A. D. Kaye, O. Viswanath, A Review of Patisiran (ONPATTRO®) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. Neurol. Ther. 9, 301–315 (2020).
32
T. H. Ramwadhdoebe, L. G. M. van Baarsen, M. J. H. Boumans, S. T. G. Bruijnen, M. Safy, F. H. Berger, J. F. Semmelink, C. J. van der Laken, D. M. Gerlag, R. M. Thurlings, P. P. Tak, Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology 58, 1075–1085 (2019).
33
M. Nakou, G. Katsikas, P. Sidiropoulos, G. Bertsias, E. Papadimitraki, A. Raptopoulou, H. Koutala, H. A. Papadaki, H. Kritikos, D. T. Boumpas, Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: Depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 11, R131 (2009).
34
C. Tur, M. Eckstein, J. Velden, S. Rauber, C. Bergmann, J. Auth, L. Bucci, G. Corte, M. Hagen, A. Wirsching, R. Grieshaber-Bouyer, P. Reis, N. Kittan, J. Wacker, A. R. Rigau, A. Ramming, M.-A. D’Agostino, A. Hartmann, F. Müller, A. Mackensen, A. Bozec, G. Schett, M. G. Raimondo, CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. 84, 106–114 (2024).
35
A. G. Stewart, A. S. Henden, Infectious complications of CAR T-cell therapy: A clinical update. Ther. Adv. Infect. Dis. 8, 20499361211036773 (2021).
36
M. Suran, FDA Adds Boxed Warning to CAR T-Cell Therapies, but Says Benefits Outweigh Risks of Secondary Cancers. JAMA 331, 818–820 (2024).
37
G. Ghilardi, J. A. Fraietta, J. N. Gerson, V. M. Van Deerlin, J. J. D. Morrissette, G. C. Caponetti, L. Paruzzo, J. C. Harris, E. A. Chong, S. P. Susanibar Adaniya, J. Svoboda, S. D. Nasta, O. H. Ugwuanyi, D. J. Landsburg, E. Fardella, A. J. Waxman, E. R. Chong, V. Patel, R. Pajarillo, I. Kulikovskaya, D. B. Lieberman, A. D. Cohen, B. L. Levine, E. A. Stadtmauer, N. V. Frey, D. T. Vogl, E. O. Hexner, S. K. Barta, D. L. Porter, A. L. Garfall, S. J. Schuster, C. H. June, M. Ruella, T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat. Med. 30, 984–989 (2024).
38
C. J. Nicolai, M. H. Parker, J. Qin, W. Tang, J. T. Ulrich-Lewis, R. J. Gottschalk, S. E. Cooper, S. A. Hernandez Lopez, D. Parrilla, R. S. Mangio, N. G. Ericson, A. H. Brandes, S. Umuhoza, K. R. Michels, M. M. McDonnell, L. Y. Park, S. Shin, W.-H. Leung, A. M. Scharenberg, H.-P. Kiem, R. P. Larson, L. O. Beitz, B. Y. Ryu, In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand. Blood 144, 977–987 (2024).
39
N. Verdun, P. Marks, Secondary Cancers after Chimeric Antigen Receptor T-Cell Therapy. N. Engl. J. Med. 390, 584–586 (2024).
40
G. Pesole, M. Attimonelli, S. Liuni, A backtranslation method based on codon usage strategy. Nucleic Acids Res. 16, 1715–1728 (1988).
41
P. M. Sharp, W. H. Li, The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.


Plaats een reactie ...

Reageer op "CAR-T-celtherapie geneest patienten met Lupus en leukemie maar is duur, ziekmakende afweercellen wegzuigen uit bloed van proefdieren via mRNA is even effectief en goedkoper"


Gerelateerde artikelen
 

Gerelateerde artikelen

CAR-T-celtherapie geneest >> CAR-T celtherapie maakt dat >> CD19 Fast-CAR-T-cel therapie >> CAR-T celtherapie brengt binnen >> CAR-T celtherapie is zeer >> Immuuntherapie met gemanipuleerde >> Immuuntherapie met gemanipuleerde >> Dendritische celtherapie met >> Longkanker: Dendritische celtherapie >> Immuuntherapie met TIL - tumor >>