Zie ook literatuurlijst van voeding, niet-toxische middelen en weinig belastende behandelingen specifiek bij blaaskanker van arts-bioloog drs. Engelbert Valstar.  

6 augustus 2022: Bron: Front. Surg., 21 February 2022 Sec. Genitourinary Surgery

Een zo vroeg mogelijke diagnose van niet-spierinvasieve blaaskanker is heel belangrijk omdat zodra er sprake is van spierinvasieve blaaskanker dit meestal leidt tot een hoog risico op zeer belastende behandelingen en groot risico op overlijden als gevolg van blaaskanker. 
In Frontiers Surgery werd dit jaar een analytische review gepubliceerd van de ontwikkeling van de zogeheten macroscopische beeldvorming. Fotodynamische diagnose (PDD), smalbandbeeldvorming (NBI) en Storz-beeld 1 S-verbetering (voorheen bekend als SPIES) zijn macroscopische beeld verbeterende manieren.

Cystoscopie met wit licht beeldvorming (WLI) werd en wordt nog wel beschouwd als een goede manier bij de diagnose van blaaskanker. Maar de  praktijk wijst uit dat bij een aanzienlijk percentage van de patiënten afwijkingen worden gemist en is het zeer waarschijnlijk dat carcinoom in situ en dysplasie worden gemist. Tumormarge detectie door WLI kan onnauwkeurig zijn. Bovendien kan WLI soms ontoereikend zijn in het onderscheiden van ontstekingen en maligniteiten.

In een analytische review, een artikel uit deze reeks van artikelen, uitgevoerd naar literatuur die macroscopische beeldverbeteringsmodaliteiten beschrijft, zoals PDD, NBI en beeld 1S-verbetering worden de voordelen, beperkingen en bruikbaarheid van elk van deze bij de diagnose van blaaskanker onderzocht en beschreven:
  • Fotodynamische diagnose vereist intravesicale instillatie van een fotosensibiliserend middel en een speciaal cystoscoopsysteem met blauw licht. Het is aangetoond dat PDD gevoeliger is dan WLI bij de detectie van blaaskanker. Het is superieur aan WLI bij de detectie van platte laesies.
  • Blaastumorresectie (TURBT) door PDD resulteert in een meer complete resectie en verminderde recidief percentages. PDD-geleide TURBT kan een rol spelen bij het verminderen van het risico op progressie.
  • Narrow-band imaging zorgt voor een verhoogd contrast tussen normale en abnormale weefsels op basis van neovascularisatie, waardoor WLI wordt vergroot. NBI vereist een speciale lichtbron. Er is geen intravesicale contrastinstillatie nodig. NBI is superieur aan WLI bij de detectie van blaaskanker.
  • De toevoeging van NBI aan WLI verbetert de detectie van vlakke laesies zoals carcinoom in situ. NBI is niet nuttig bij het voorspellen van invasieve tumoren of gradaties van tumoren. NBI-gerichte TURBT vermindert recidiefpercentages en recidiefvrije overleving. Maar de werkzaamheid ervan bij het vertragen van de progressie is niet bewezen.
Het volledige artikel is gratis in te zien en / of te downloaden. Dit specifieke artikel is onderdeel van 10 andere artikelen: 

Recent Advances in Bladder Cancer Diagnosis and Treatment


Klik op de titel van het abstract voor volledige dat hierboven is beschreven. Met meer dan 100 referenties:

REVIEW article

Front. Surg., 21 February 2022
Sec. Genitourinary Surgery
https://doi.org/10.3389/fsurg.2022.762027
This article is part of the Research Topic

Recent Advances in Bladder Cancer Diagnosis and Treatment

Role of Macroscopic Image Enhancement in Diagnosis of Non-Muscle-Invasive Bladder Cancer: An Analytical Review

Prashant Motiram Mulawkar1,2*†, Gyanendra Sharma3†, Ashwin Tamhankar4†, Utsav Shah5† and Rickaz Raheem6
  • 1Department of Urology, Tirthankar Superspeciality Hospital, Akola, India
  • 2Tutor in Urology, University of Edinburgh, Edinburgh, United Kingdom
  • 3Chitale Clinics Private Ltd., Solapur, India
  • 4Apollo Hospital, Navi Mumbai, India
  • 5Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
  • 6Milton Keynes University Hospital, Eaglestone, United Kingdom

Early diagnosis of non-muscle-invasive bladder cancer (NMIBC) is of paramount importance to prevent morbidity and mortality due to bladder cancer. Although white light imaging (WLI) cystoscopy has long been considered the gold standard in the diagnosis of bladder cancer, it can miss lesions in a substantial percentage of patients and is very likely to miss carcinoma in situ and dysplasia. Tumor margin detection by WLI can be inaccurate. Moreover, WLI could, sometimes, be inadequate in distinguishing inflammation and malignancy. To improve the diagnostic efficacy of cystoscopy, various optical image enhancement modalities have been studied. These image enhancement modalities have been classified as macroscopic, microscopic, or molecular. Photodynamic diagnosis (PDD), narrow band imaging (NBI), and Storz image 1 S enhancement (formerly known as SPIES) are macroscopic image enhancement modalities. A relevant search was performed for literature describing macroscopic image enhancement modalities like PDD, NBI, and image 1 S enhancement. The advantages, limitations, and usefulness of each of these in the diagnosis of bladder cancer were studied. Photodynamic diagnosis requires intravesical instillation of a photosensitizing agent and a special blue light cystoscope system. PDD has been shown to be more sensitive than WLI in the detection of bladder cancer. It is superior to WLI in the detection of flat lesions. Bladder tumor resection (TURBT) by PDD results in more complete resection and reduced recurrence rates. PDD-guided TURBT may have some role in reducing the risk of progression. Narrow band imaging provides increased contrast between normal and abnormal tissues based on neovascularization, thereby augmenting WLI. NBI requires a special light source. There is no need for intravesical contrast instillation. NBI is superior to WLI in the detection of bladder cancer. The addition of NBI to WLI improves the detection of flat lesions like carcinoma in situ. NBI is not useful in predicting invasive tumors or grades of tumors. NBI-directed TURBT reduces recurrence rates and recurrence free survival. But its efficacy in retarding progression is unproven. Image 1 S-enhancement utilizes software-based image enhancement modes without the need for a special light source or intravesical contrast instillation. This system provides high-quality images and identifies additional abnormal-looking areas. Another advantage of this system is simultaneous side-by-side visualization of WLI and enhanced image, providing WLI images as the control for comparison. As with PDD, S-enhancement produces a lower rate of a missed bladder cancer diagnosis. The system significantly improves the diagnosis of NMIBC. The sensitivity and negative predictive value of image 1 S enhancement increase with the increase in cancer grade. A negative test by S-enhancement effectively rules out NMIBC. All the image enhancement modalities have proven their utility in improving detection and short-term cancer control. But none of these modalities have proven their utility in delaying progression, or in long-term cancer control. Cancer progression and long-term control are governed by the biological nature of cancer cells. Early detection by optical enhancement may not be of utility in this regard. Well-designed studies are needed to establish the efficacy of these modalities in the evaluation of patients with bladder cancer. The last word, in this regard, is yet to be written.


Conclusions

All these macroscopic image enhancement modalities have proven their utility in improved detection and short-term cancer control. Some studies have shown beneficial effects in terms of delayed progression and improved post cystectomy outcomes with PDD. NBI may be an acceptable alternative to PDD if some of the meta-analyses are to be believed. Most of the image enhancement modalities have not proven their utility in delaying progression or long-term cancer control. Most of these modalities claim to result in more complete TURBT. The presence of detrusor muscle is the surrogate marker for the completeness of TURBT. Data on the effect of an image enhancement modality on the presence of detrusor muscle in TURBT specimens are lacking. Cancer progression and long-term control are governed by the biological nature of cancer cells. PDD may have some role in early detection in this regard. However, well-designed studies are needed to establish the efficacy of these modalities in the evaluation of patients with bladder cancer. The last word in this regard is yet to be written.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Conflict of Interest

GS was employed by Chitale Clinics Private Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Lerner SP, Goh A. Novel endoscopic diagnosis for bladder cancer. Cancer. (2015) 121:169–78. doi: 10.1002/cncr.28905

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Li K, Lin T, Xue W, Mu X, Xu E, Yang X, et al. Current status of diagnosis and treatment of bladder cancer in china e analyses of Chinese bladder cancer consortium database. Asian J Urol. (2015) 2:63–9. doi: 10.1016/j.ajur.2015.04.016

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Schubert T, Rausch S, Fahmy O, Gakis G, Stenzl A. Optical improvements in the diagnosis of bladder cancer: implications for clinical practice. Ther Adv Urol. (2017) 9:251–60. doi: 10.1177/1756287217720401

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Riedl CR, Plas E, Pflüger H. Fluorescence detection of bladder tumors with 5-amino-levulinic acid. J Endourol. (1999) 13:755–9. doi: 10.1089/end.1999.13.755

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Motlagh RS, Rajwa P, Mori K, Laukhtina E, Aydh A, Katayama S, et al. Comparison of clinicopathologic and oncological outcomes between transurethral en bloc resection and conventional transurethral resection of bladder tumor: A systematic review, meta-analysis and network meta-analysis with focus on different energy sources. J Endourol. (2021) 36:1–13. doi: 10.1089/end.2021.0688

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Brausi M, Collette L, Kurth K, Van Der Meijden AP, Oosterlinck W, Witjes JA, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: a combined analysis of seven EORTC studies. Eur Urol. (2002) 41:523–31. doi: 10.1016/S0302-2838(02)00068-4

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Jakse G, Algaba F, Malmström PU, Oosterlinck W. A second-look TUR in T1 transitional cell carcinoma: why? Eur Urol. (2004) 45:539–46. doi: 10.1016/j.eururo.2003.12.016

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Babjuk M, Soukup V, Petrík R, Jirsa M, Dvorácek J. 5-aminolaevulinic acid-induced fluorescence cystoscopy during transurethral resection reduces the risk of recurrence in stage Ta/T1 bladder cancer. BJU Int. (2005) 96:798–802. doi: 10.1111/j.1464-410X.2004.05715.x

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Cina SJ, Epstein JI, Endrizzi JM, Harmon WJ, Seay TM, Schoenberg MP. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol. (2001) 32:630–7. doi: 10.1053/hupa.2001.24999

PubMed Abstract | CrossRef Full Text | Google Scholar

10. He Z, Wang P, Liang Y, Fu Z, Ye X. Clinically available optical imaging technologies in endoscopic lesion detection: current status and future perspective. J Healthc Eng. (2021) 2021:7594513. doi: 10.1155/2021/7594513

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Bach T, Muschter R, Herrmann TRW, Knoll T, Scoffone CM, Laguna MP, et al. Technical solutions to improve the management of non-muscle-invasive transitional cell carcinoma: summary of a european association of urology section for uro-technology (ESUT) and section for uro-oncology (ESOU) expert meeting and current and future pers. BJU Int. (2015) 115:14–23. doi: 10.1111/bju.12664

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Kaplan-Marans E, Fulla J, Tomer N, Bilal K, Palese M. Indocyanine green (ICG) in urologic surgery. Urology. (2019) 132:10–7. doi: 10.1016/j.urology.2019.05.008

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Polom W, Markuszewski M, Rho YS, Matuszewski M. Usage of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urological oncology. Part 1. Cent Eur J Urol. (2014) 67:142–8. doi: 10.5173/ceju.2014.02.art5

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Cauberg ECC, de Bruin DM, Faber DJ, van Leeuwen TG, de la Rosette JJMCH, de Reijke TM. A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. Eur Urol. (2009) 56:287–97. doi: 10.1016/j.eururo.2009.02.033

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Mark JR, Gelpi-Hammerschmidt F, Trabulsi EJ, Gomella LG. Blue light cystoscopy for detection and treatment of non-muscle invasive bladder cancer. Can J Urol. (2012) 19:6227–31.

PubMed Abstract | Google Scholar

16. Karl Storz Urology Catalogue (2015). Available online at: https://www.karlstorz.com/cps/rde/xbcr/karlstorz_assets/ASSETS/3331222.pdf (accessed June 7, 2021).

Google Scholar

17. GmbH, RW,. System Blue. Available online at: https://www.richard-wolf.com/en/disciplines/urology/system-blue/ (accessed June 19, 2021).

Google Scholar

18. Zaak D, Hungerhuber E, Schneede P, Stepp H, Frimberger D, Corvin S, et al. Role of 5-aminolevulinic acid in the detection of urothelial premalignant lesions. Cancer. (2002) 95:1234–8. doi: 10.1002/cncr.10821

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Lange N, Jichlinski P, Zellweger M, Forrer M, Marti A, Guillou L, et al. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br J Cancer. (1999) 80:185–93. doi: 10.1038/sj.bjc.6690338

PubMed Abstract | CrossRef Full Text | Google Scholar

20. Marti A, Jichlinski P, Lange N, Ballini JP, Guillou L, Leisinger HJ, et al. Comparison of aminolevulinic acid and hexylester aminolevulinate induced protoporphyrin IX distribution in human bladder cancer. J Urol. (2003) 170:428–32. doi: 10.1097/01.ju.0000075054.38441.2d

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Colapaoli L, Thorsen J, Nopp A, Guttormsen AB. A case of anaphylactic shock possibly caused by intravesical Hexvix®. Acta Anaesthesiol Scand. (2006) 50:1165–7. doi: 10.1111/j.1399-6576.2006.01110.x

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Inoue K, Anai S, Fujimoto K, Hirao Y, Furuse H, Kai F, et al. Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer: a randomized, double-blind, multicentre phase II/III study. Photodiagnosis Photodyn Ther. (2015) 12:193–200. doi: 10.1016/j.pdpdt.2015.03.008

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Nakai Y, Inoue K, Tsuzuki T, Shimamoto T, Shuin T, Nagao K, et al. Oral 5-aminolevulinic acid-mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer: a multicenter phase III study. Int J Urol. (2018) 25:723–9. doi: 10.1111/iju.13718

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Goh AC, Lerner SP. Application of new technology in bladder cancer diagnosis and treatment. World J Urol. (2009) 27:301–7. doi: 10.1007/s00345-009-0387-z

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Straub M, Russ D, Horn T, Gschwend JE, Abrahamsberg C. A phase IIA dose-finding study of PVP-hypericin fluorescence cystoscopy for detection of nonmuscle-invasive bladder cancer. J Endourol. (2015) 29:216–22. doi: 10.1089/end.2014.0282

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Jiang B, Dong Y, He H, Han C. Application of pirarubicin photosensitizer fluorescence cystoscopy in early detection of bladder cancer. Oncol Lett. (2017) 14:3309–12. doi: 10.3892/ol.2017.6570

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Grimbergen MCM, Van Swol CFP, Jonges TGN, Boon TA, Van Moorselaar RJA. Reduced specificity of 5-ALA induced fluorescence in photodynamic diagnosis of transitional cell carcinoma after previous intravesical therapy. Eur Urol. (2003) 44:51–6. doi: 10.1016/S0302-2838(03)00210-0

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Gravas S, Efstathiou K, Zachos I, Melekos MD, Tzortzis V. Is there a learning curve for photodynamic diagnosis of bladder cancer with hexaminolevulinate hydrochloride? Can J Urol. (2012) 19:6269–73.

PubMed Abstract | Google Scholar

29. Draga ROP, Grimbergen MCM, Kok ET, Jonges TN, Van Swol CFP, Bosch RJLH. The quality of 5-aminolevulinic acid-induced photodynamic diagnosis and transurethral resection of bladder tumors: does the urologist play a role? Urol Int. (2012) 89:326–31. doi: 10.1159/000341897

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Kriegmair M, Baumgartner R, Knuechel R, Steinbach P, Ehsan a, Lumper W, et al. Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology. (1994) 44:836–41. doi: 10.1016/S0090-4295(94)80167-3

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Filbeck T, Roessler W, Knuechel R, Straub M, Kiel HJ, Wieland WF. Clinical results of the transurethral resection and evaluation of superficial bladder carcinomas by means of fluorescence diagnosis after intravesical instillation of 5-aminolevulinic acid. J Endourol. (1999) 13:117–21. doi: 10.1089/end.1999.13.117

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Koenig F, McGovern FJ, Larne R, Enquist H, Schomacker KT, Deutsch TF. Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid. BJU Int. (1999) 83:129–35. doi: 10.1046/j.1464-410x.1999.00917.x

PubMed Abstract | CrossRef Full Text | Google Scholar

33. Jichlinski P, Guillou L, Karlsen SJ, Malmström PU, Jocham D, Brennhovd B, et al. Hexyl aminolevulinate fluorescence cystoscopy: a new diagnostic tool for the photodiagnosis of superficial bladder cancer - a multicenter study. J Urol. (2003) 170:226–9. doi: 10.1097/01.ju.0000060782.52358.04

PubMed Abstract | CrossRef Full Text | Google Scholar

34. Schmidbauer J, Witjes F, Schmeller N, Donat R, Susani M, Marberger M. Improved detection of urothelial carcinoma in situ with hexaminolevulinate fluorescence cystoscopy. J Urol. (2004) 171:135–8. doi: 10.1097/01.ju.0000100480.70769.0e

PubMed Abstract | CrossRef Full Text | Google Scholar

35. Grossman HB, Gomella L, Fradet Y, Morales A, Presti J, Ritenour C, et al. A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J Urol. (2007) 178:62–7. doi: 10.1016/j.juro.2007.03.034

PubMed Abstract | CrossRef Full Text | Google Scholar

36. Stenzl A, Burger M, Fradet Y, Mynderse LA, Soloway MS, Witjes JA, et al. Hexaminolevulinate guided fluorescence cystoscopy reduces recurrence in patients with nonmuscle invasive bladder cancer. J Urol. (2010) 184:1907–14. doi: 10.1016/j.juro.2010.06.148

PubMed Abstract | CrossRef Full Text | Google Scholar

37. Geavlete B, Multescu R, Georgescu D, Geavlete P. Hexaminolevulinate fluorescence cystoscopy and transurethral resection of the bladder in noninvasive bladder tumors. J Endourol. (2009) 23:977–81. doi: 10.1089/end.2008.0574

PubMed Abstract | CrossRef Full Text | Google Scholar

38. Geavlete B, Multescu R, Georgescu D, Jecu M, Stanescu F, Geavlete P. Treatment changes and long-term recurrence rates after hexaminolevulinate (HAL) fluorescence cystoscopy: does it really make a difference in patients with non-muscle-invasive bladder cancer (NMIBC)? BJU Int. (2012) 109:549–56. doi: 10.1111/j.1464-410X.2011.10374.x

PubMed Abstract | CrossRef Full Text | Google Scholar

39. Fradet Y, Grossman HB, Gomella L, Lerner S, Cookson M, Albala D, et al. A comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of carcinoma in situ in patients with bladder cancer: a phase iii, multicenter study. J Urol. (2007) 178:68–73. doi: 10.1016/j.juro.2007.03.028

PubMed Abstract | CrossRef Full Text | Google Scholar

40. Blanco S, Raber M, Leone BE, Nespoli L, Grasso M. Early detection of urothelial premalignant lesions using hexaminolevulinate fluorescence cystoscopy in high risk patients. J Transl Med. (2010) 8:3–6. doi: 10.1186/1479-5876-8-122

PubMed Abstract | CrossRef Full Text | Google Scholar

41. Filbeck T, Pichlmeier U, Knuechel R, Wieland WF, Roessler W. Do patients profit from 5-aminolevulinic acid-induced fluorescence diagnosis in transurethral resection of bladder carcinoma? Urology. (2002) 60:1025–8. doi: 10.1016/S0090-4295(02)01961-1

PubMed Abstract | CrossRef Full Text | Google Scholar

42. Jocham D, Witjes F, Wagner S, Zeylemaker B, Van Moorselaar J, Grimm MO, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. (2005) 174:862–6. doi: 10.1097/01.ju.0000169257.19841.2a

PubMed Abstract | CrossRef Full Text | Google Scholar

43. Hedelin H, Jonsson K, Salomonsson K, Boman H. Screening for bladder tumours in men aged 60-70 years with a bladder tumour marker (UBC) and dipstick-detected haematuria using both white-light and fluorescence cystoscopy. Scand J Urol Nephrol. (2006) 40:26–30. doi: 10.1080/00365590500368807

PubMed Abstract | CrossRef Full Text | Google Scholar

44. Witjes JA, Moonen PMJ, Van Der Heijden AG. Comparison of hexaminolevulinate based flexible and rigid fluorescence cystoscopy with rigid white light cystoscopy in bladder cancer: results of a prospective phase II study. Eur Urol. (2005) 47:319–22. doi: 10.1016/j.eururo.2004.09.017

PubMed Abstract | CrossRef Full Text | Google Scholar

45. Drejer D, Moltke AL, Nielsen AM, Lam GW, Jensen JB. DaBlaCa-11: photodynamic diagnosis in flexible cystoscopy—a randomized study with focus on recurrence. Urology. (2020) 137:91–6. doi: 10.1016/j.urology.2019.12.002

PubMed Abstract | CrossRef Full Text | Google Scholar

46. Mowatt G, N'Dow J, Vale L, Nabi G, Boachie C, Cook JA, et al. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int J Technol Assess Health Care. (2011) 27:3–10. doi: 10.1017/S0266462310001364

PubMed Abstract | CrossRef Full Text | Google Scholar

47. Schumacher MC, Holmäng S, Davidsson T, Friedrich B, Pedersen J, Wiklund NP. Transurethral resection of non-muscle-invasive bladder transitional cell cancers with or without 5-aminolevulinic acid under visible and fluorescent light: results of a prospective, randomised, multicentre study. Eur Urol. (2010) 57:293–9. doi: 10.1016/j.eururo.2009.10.030

PubMed Abstract | CrossRef Full Text | Google Scholar

48. Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, et al. Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol. (2012) 188:58–62. doi: 10.1016/j.juro.2012.03.007

PubMed Abstract | CrossRef Full Text | Google Scholar

49. Stenzl A, Penkoff H, Dajc-Sommerer E, Zumbraegel A, Hoeltl L, Scholz M, et al. Detection and clinical outcome of urinary bladder cancer with 5-aminolevulinic acid-induced fluorescence cystoscopy. Cancer. (2011) 117:938–47. doi: 10.1002/cncr.25523

PubMed Abstract | CrossRef Full Text | Google Scholar

50. Shen P, Yang J, Wei W, Li Y, Li D, Zeng H, et al. Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer: a systematic review and meta-analysis. BJU Int. (2012) 110:E209–15. doi: 10.1111/j.1464-410X.2011.10892.x

PubMed Abstract | CrossRef Full Text | Google Scholar

51. Burger M, Grossman HB, Droller M, Schmidbauer J, Hermann G, Drǎgoescu O, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. (2013) 64:846–54. doi: 10.1016/j.eururo.2013.03.059

PubMed Abstract | CrossRef Full Text | Google Scholar

52. Kausch I, Sommerauer M, Montorsi F, Stenzl A, Jacqmin D, Jichlinski P, et al. Photodynamic diagnosis in non-muscle-invasive bladder cancer: a systematic review and cumulative analysis of prospective studies. Eur Urol. (2010) 57:595–606. doi: 10.1016/j.eururo.2009.11.041

PubMed Abstract | CrossRef Full Text | Google Scholar

53. Rink M, Babjuk M, Catto JWF, Jichlinski P, Shariat SF, Stenzl A, et al. Hexyl aminolevulinate–guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non–muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol. (2013) 64:624–38. doi: 10.1016/j.eururo.2013.07.007

PubMed Abstract | CrossRef Full Text | Google Scholar

54. Draga ROP, Grimbergen MCM, Kok ET, Jonges TN, van Swol CFP, Bosch JLHR. Photodynamic diagnosis (5-aminolevulinic acid) of transitional cell carcinoma after bacillus calmette-guerin immunotherapy and mitomycin C intravesical therapy. Eur Urol. (2010) 57:655–60. doi: 10.1016/j.eururo.2009.09.037

PubMed Abstract | CrossRef Full Text | Google Scholar

55. Hendricksen K, Moonen PMJ, Heijden AG, Witjes JA. False-positive lesions detected by fluorescence cystoscopy: any association with p53 and p16 expression? World J Urol. (2006) 24:597–601. doi: 10.1007/s00345-006-0109-8

PubMed Abstract | CrossRef Full Text | Google Scholar

56. Matsuyama H, Yamamoto Y, Nagao K, Ohmi C, Sakano S, Sasaki K. Cytogenetic analysis of false-positive mucosa by photodynamic diagnosis using 5-aminolevulinic acid - possible existence of premalignant genomic alterations examined by in vitro experiment. Oncology. (2009) 76:118–25. doi: 10.1159/000195537

PubMed Abstract | CrossRef Full Text | Google Scholar

57. Daniltchenko DI, Riedl CR, Sachs MD, Koenig F, Daha KL, Pflueger H, et al. Long-term benefit of 5-aminolevulinic acid fluorescence assisted transurethral resection of superficial bladder cancer: 5-Year results of a prospective randomized study. J Urol. (2005) 174:2129–33. doi: 10.1097/01.ju.0000181814.73466.14

PubMed Abstract | CrossRef Full Text | Google Scholar

58. Denzinger S, Burger M, Walter B, Knuechel R, Roessler W, Wieland WF, et al. Clinically relevant reduction in risk of recurrence of superficial bladder cancer using 5-aminolevulinic acid-induced fluorescence diagnosis: 8-year results of prospective randomized study. Urology. (2007) 69:675–9. doi: 10.1016/j.urology.2006.12.023

PubMed Abstract | CrossRef Full Text | Google Scholar

59. Gakis G, Ngamsri T, Rausch S, Mischinger J, Todenhöfer T, Schwentner C, et al. Fluorescence-guided bladder tumour resection: impact on survival after radical cystectomy. World J Urol. (2015) 33:1429–37. doi: 10.1007/s00345-015-1485-8

PubMed Abstract | CrossRef Full Text | Google Scholar

60. May M, Fritsche HM, Vetterlein MW, Bastian PJ, Gierth M, Nuhn P, et al. Impact of photodynamic diagnosis-assisted transurethral resection of bladder tumors on the prognostic outcome after radical cystectomy: results from PROMETRICS 2011. World J Urol. (2017) 35:245–50. doi: 10.1007/s00345-016-1877-4

PubMed Abstract | CrossRef Full Text | Google Scholar

61. Yuan H, Qiu J, Liu L, Zheng S, Yang L, Liu Z, et al. Therapeutic outcome of fluorescence cystoscopy guided transurethral resection in patients with non-muscle invasive bladder cancer: a meta-analysis of randomized controlled trials. PLoS ONE. (2013) 8:e0074142. doi: 10.1371/journal.pone.0074142

PubMed Abstract | CrossRef Full Text | Google Scholar

62. Lamm D, Persad R, Brausi M, Buckley R, Witjes JA, Palou J, et al. Defining progression in nonmuscle invasive bladder cancer: it is time for a new, standard definition. J Urol. (2014) 191:20–7. doi: 10.1016/j.juro.2013.07.102

PubMed Abstract | CrossRef Full Text | Google Scholar

63. Kamat AM, Cookson M, Witjes JA, Stenzl A, Grossman HB. The impact of blue light cystoscopy with hexaminolevulinate (HAL) on progression of bladder cancer - a new analysis. Bl Cancer. (2016) 2:273–8. doi: 10.3233/BLC-160048

PubMed Abstract | CrossRef Full Text | Google Scholar

64. Dindyal S, Nitkunan T, Bunce CJ. The economic benefit of photodynamic diagnosis in non-muscle invasive bladder cancer. Photodiagnosis Photodyn Ther. (2008) 5:153–8. doi: 10.1016/j.pdpdt.2008.05.001

PubMed Abstract | CrossRef Full Text | Google Scholar

65. Burger M, Zaak D, Stief CG, Filbeck T, Wieland WF, Roessler W, et al. Photodynamic diagnostics and noninvasive bladder cancer: is it cost-effective in long-term application? A Germany-based cost analysis. Eur Urol. (2007) 52:142–7. doi: 10.1016/j.eururo.2007.01.064

PubMed Abstract | CrossRef Full Text | Google Scholar

66. Malmström PU, Hedelin H, Thomas YK, Thompson GJ, Durrant H, Furniss J. Fluorescence-guided transurethral resection of bladder cancer using hexaminolevulinate: analysis of health economic impact in Sweden. Scand J Urol Nephrol. (2009) 43:192–8. doi: 10.1080/00365590902808541

PubMed Abstract | CrossRef Full Text | Google Scholar

67. Garfield SS, Gavaghan MB, Armstrong SO, Jones JS. The cost-effectiveness of blue light cystoscopy in bladder cancer detection: United States projections based on clinical data showing 4.5 years of follow up after a single hexaminolevulinate hydrochloride instillation. Can J Urol. (2013) 20:6682–9.

PubMed Abstract | Google Scholar

68. Witjes JA, Babjuk M, Gontero P, Jacqmin D, Karl A, Kruck S, et al. Clinical and cost effectiveness of hexaminolevulinate-guided blue-light cystoscopy: evidence review and updated expert recommendations. Eur Urol. (2014) 66:863–71. doi: 10.1016/j.eururo.2014.06.037

PubMed Abstract | CrossRef Full Text | Google Scholar

69. Suarez-Ibarrola R, Hein S, Farin E, Waldbillig F, Kriegmair MC, Ritter M, et al. Current standards in the endoscopic management of bladder cancer: a survey evaluation among urologists in German-speaking countries. Urol Int. (2020) 104:410–6. doi: 10.1159/000506653

PubMed Abstract | CrossRef Full Text | Google Scholar

70. Herr HW, Donat SM. A comparison of white-light cystoscopy and narrow-band imaging cystoscopy to detect bladder tumour recurrences. BJU Int. (2008) 102:1111–4. doi: 10.1111/j.1464-410X.2008.07846.x

PubMed Abstract | CrossRef Full Text | Google Scholar

71. Bryan RT, Shah ZH, Collins SI, Wallace DMA. Narrow-band imaging flexible cystoscopy: a new user's experience. J Endourol. (2010) 24:1339–43. doi: 10.1089/end.2009.0598

PubMed Abstract | CrossRef Full Text | Google Scholar

72. Tatsugami K, Kuroiwa K, Kamoto T, Nishiyama H, Watanabe J, Ishikawa S, et al. Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer. J Endourol. (2010) 24:1807–11. doi: 10.1089/end.2010.0055

PubMed Abstract | CrossRef Full Text | Google Scholar

73. Naselli A, Puppo P. Narrow band imaging and bladder cancer: when and how. Urologia. (2015) 82:S5–8. doi: 10.5301/uro.5000156

PubMed Abstract | CrossRef Full Text | Google Scholar

74. Bryan RT, Billingham LJ, Wallace DMA. Narrow-band imaging flexible cystoscopy in the detection of recurrent urothelial cancer of the bladder. BJU Int. (2008) 101:702–6. doi: 10.1111/j.1464-410X.2007.07317.x

PubMed Abstract | CrossRef Full Text | Google Scholar

75. Herr H, Donat M, Dalbagni G, Taylor J. Narrow-band imaging cystoscopy to evaluate bladder tumours - individual surgeon variability. BJU Int. (2010) 106:53–5. doi: 10.1111/j.1464-410X.2009.09119.x

PubMed Abstract | CrossRef Full Text | Google Scholar

76. Chen G, Wang B, Li H, Ma X, Shi T, Zhang X. Applying narrow-band imaging in complement with white-light imaging cystoscopy in the detection of urothelial carcinoma of the bladder. Urol Oncol Semin Orig Investig. (2013) 31:475–9. doi: 10.1016/j.urolonc.2011.02.009

PubMed Abstract | CrossRef Full Text | Google Scholar

77. Cauberg ECC, Kloen S, Visser M, De La Rosette JJMCH, Babjuk M, Soukup V, et al. Narrow band imaging cystoscopy improves the detection of nonmuscle-invasive bladder cancer. Urology. (2010) 76:658–63. doi: 10.1016/j.urology.2009.11.075

PubMed Abstract | CrossRef Full Text | Google Scholar

78. Ye Z, Hu J, Song X, Li F, Zhao X, Chen S, et al. A comparison of NBI and WLI cystoscopy in detecting non-muscle-invasive bladder cancer: a prospective, randomized and multi-center study. Sci Rep. (2015) 5:10905. doi: 10.1038/srep10905

PubMed Abstract | CrossRef Full Text | Google Scholar

79. Giulianelli R, Gentile BC, Albanesi L, Tariciotti P, Mirabile G. Narrow band imaging (NBI) cystoscopy and assisted bipolar TURBT: a preliminary experience in a single centre. Arch Ital di Urol e Androl. (2017) 89:232–5. doi: 10.4081/aiua.2017.3.232

PubMed Abstract | CrossRef Full Text | Google Scholar

80. Geavlete B, Jecu M, Multescu R, Geavlete P. Narrow-band imaging cystoscopy in non-muscle-invasive bladder cancer: a prospective comparison to the standard approach. Ther Adv Urol. (2012) 4:211–7. doi: 10.1177/1756287212454181

PubMed Abstract | CrossRef Full Text | Google Scholar

81. Zhu YP, Shen YJ, Ye DW, Wang CF, Yao XD, Zhang SL, et al. Narrow-band imaging flexible cystoscopy in the detection of clinically unconfirmed positive urine cytology. Urol Int. (2012) 88:84–7. doi: 10.1159/000333119

PubMed Abstract | CrossRef Full Text | Google Scholar

82. Kim S Bin, Yoon SG, Tae J, Kim JY, Shim JS, Kang SG, et al. Detection and recurrence rate of transurethral resection of bladder tumors by narrow-band imaging: prospective, randomized comparison with white light cystoscopy. Investig Clin Urol. (2018) 59:98–105. doi: 10.4111/icu.2018.59.2.98

PubMed Abstract | CrossRef Full Text | Google Scholar

83. Jecu M, Geavlete B, Multescu R, Stănescu F, Moldoveanu C, Adou L, et al. NBI cystoscopy in routine urological practice - from better vision to improve therapeutic management. J Med Life. (2014) 7:282–6.

PubMed Abstract | Google Scholar

84. Naselli A, Introini C, Bertolotto F, Spina B, Puppo P. Narrow band imaging for detecting residual/recurrent cancerous tissue during second transurethral resection of newly diagnosed non-muscle-invasive high-grade bladder cancer. BJU Int. (2010) 105:208–11. doi: 10.1111/j.1464-410X.2009.08701.x

PubMed Abstract | CrossRef Full Text | Google Scholar

85. Drejer D, Béji S, Munk Nielsen A, Høyer S, Wrist Lam G, Jensen JB. Clinical relevance of narrow-band imaging in flexible cystoscopy: the DaBlaCa-7 study. Scand J Urol. (2017) 51:120–3. doi: 10.1080/21681805.2017.1295101

PubMed Abstract | CrossRef Full Text | Google Scholar

86. Shen YJ, Zhu YP, Ye DW, Yao XD, Zhang SL, Dai B, et al. Narrow-band imaging flexible cystoscopy in the detection of primary non-muscle invasive bladder cancer: a “second look” matters? Int Urol Nephrol. (2012) 44:451–7. doi: 10.1007/s11255-011-0036-5

PubMed Abstract | CrossRef Full Text | Google Scholar

87. Shadpour P, Emami M, Haghdani S. A comparison of the progression and recurrence risk index in non-muscle-invasive bladder tumors detected by narrow-band imaging versus white light cystoscopy, based on the eortc scoring system. Nephrourol Mon. (2016) 8:1–5. doi: 10.5812/numonthly.33240

PubMed Abstract | CrossRef Full Text | Google Scholar

88. Li K, Lin T, Fan X, Duan Y, Huang J. Diagnosis of narrow-band imaging in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. Int J Urol. (2013) 20:602–9. doi: 10.1111/j.1442-2042.2012.03211.x

PubMed Abstract | CrossRef Full Text | Google Scholar

89. Zheng C, Lv Y, Zhong Q, Wang R, Jiang Q. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU Int. (2012) 110(11 Pt. B):E680–7. doi: 10.1111/j.1464-410X.2012.11500.x

PubMed Abstract | CrossRef Full Text | Google Scholar

90. Xiong Y, Li J, Ma S, Ge J, Zhou L, Li D, et al. A meta-analysis of narrow band imaging for the diagnosis and therapeutic outcome of non-muscle invasive bladder cancer. PLoS ONE. (2017) 12:e0170819. doi: 10.1371/journal.pone.0170819

PubMed Abstract | CrossRef Full Text | Google Scholar

91. Geavlete B, Multescu R, Georgescu D, Stanescu F, Jecu M, Geavlete P. Narrow band imaging cystoscopy and bipolar plasma vaporization for large nonmuscle-invasive bladder tumors-results of a prospective, randomized comparison to the standard approach. Urology. (2012) 79:846–52. doi: 10.1016/j.urology.2011.08.081

PubMed Abstract | CrossRef Full Text | Google Scholar

92. Herr HW, Donat SM, Reuter VE. Management of low grade papillary bladder tumors. J Urol. (2007) 178:1201–5. doi: 10.1016/j.juro.2007.05.148

PubMed Abstract | CrossRef Full Text | Google Scholar

93. Herr HW, Donat SM. Reduced bladder tumour recurrence rate associated with narrow-band imaging surveillance cystoscopy. BJU Int. (2011) 107:396–8. doi: 10.1111/j.1464-410X.2010.09547.x

PubMed Abstract | CrossRef Full Text | Google Scholar

94. Naselli A, Introini C, Bertolotto F, Spina B, Puppo P. Feasibility of transurethral resection of bladder lesion performed entirely by means of narrow-band imaging. J Endourol. (2010) 24:1131–4. doi: 10.1089/end.2010.0042

PubMed Abstract | CrossRef Full Text | Google Scholar

95. Cauberg ECC, Mamoulakis C, de la Rosette JJMCH, de Reijke TM. Narrow band imaging-assisted transurethral resection for non-muscle invasive bladder cancer significantly reduces residual tumour rate. World J Urol. (2011) 29:503–9. doi: 10.1007/s00345-011-0659-2

PubMed Abstract | CrossRef Full Text | Google Scholar

96. Naselli A, Introini C, Timossi L, Spina B, Fontana V, Pezzi R, et al. A randomized prospective trial to assess the impact of transurethral resection in narrow band imaging modality on non-muscle-invasive bladder cancer recurrence. Eur Urol. (2012) 61:908–13. doi: 10.1016/j.eururo.2012.01.018

PubMed Abstract | CrossRef Full Text | Google Scholar

97. Naito S, Algaba F, Babjuk M, Bryan RT, Sun YH, Valiquette L, et al. The clinical research office of the endourological society (CROES) multicentre randomised trial of narrow band imaging–assisted transurethral resection of bladder tumour (TURBT) versus conventional white light imaging–assisted TURBT in primary non–muscle. Eur Urol. (2016) 70:506–15. doi: 10.1016/j.eururo.2016.03.053

PubMed Abstract | CrossRef Full Text | Google Scholar

98. Giulianelli R, Gentile BC, Mirabile G, Albanesi L, Mavilla L, Tariciotti P, et al. Narrow band imaging reduces persistence of cancer in patients with pT1 high grade bladder cancer. Eur J Surg Oncol. (2019) 45:466–70. doi: 10.1016/j.ejso.2018.06.004

PubMed Abstract | CrossRef Full Text | Google Scholar

99. Kobatake K, Mita K, Ohara S, Kato M. Advantage of transurethral resection with narrow band imaging for non-muscle invasive bladder cancer. Oncol Lett. (2015) 10:1097–102. doi: 10.3892/ol.2015.3280

PubMed Abstract | CrossRef Full Text | Google Scholar

100. Altobelli E, Zlatev D V., Liao JC. Role of narrow band imaging in management of urothelial carcinoma. Curr Urol Rep. (2015) 16:58. doi: 10.1007/s11934-015-0527-5

PubMed Abstract | CrossRef Full Text | Google Scholar

101. Kang W, Cui Z, Chen Q, Zhang D, Zhang H, Jin X. Narrow band imaging-assisted transurethral resection reduces the recurrence risk of non-muscle invasive bladder cancer: a systematic review and meta-analysis. Oncotarget. (2017) 8:23880–90. doi: 10.18632/oncotarget.13054

PubMed Abstract | CrossRef Full Text | Google Scholar

102. Herr HW. Narrow-band imaging cystoscopy to evaluate the response to bacille calmette-guérin therapy: preliminary results: preliminary. BJU Int. (2010) 105:314–6. doi: 10.1111/j.1464-410X.2009.08788.x

PubMed Abstract | CrossRef Full Text | Google Scholar

103. Song PH, Cho S, Ko YH. Decision based on narrow band imaging cystoscopy without a referential normal standard rather increases unnecessary biopsy in detection of recurrent bladder urothelial carcinoma early after intravesical instillation. Cancer Res Treat. (2016) 48:273–80. doi: 10.4143/crt.2014.190

PubMed Abstract | CrossRef Full Text | Google Scholar

104. Herr HW. Narrow-band imaging evaluation of bladder tumors. Curr Urol Rep. (2014) 15:395. doi: 10.1007/s11934-014-0395-4

PubMed Abstract | CrossRef Full Text | Google Scholar

105. Hsueh TY, Chiu AW. Narrow band imaging for bladder cancer. Asian J Urol. (2016) 3:126–9. doi: 10.1016/j.ajur.2016.05.001

PubMed Abstract | CrossRef Full Text | Google Scholar

106. Kutwin P, Konecki T, Cichocki M, Falkowski P, Jabłonowski Z. Photodynamic diagnosis and narrow-band imaging in the management of bladder cancer: a review. Photomed Laser Surg. (2017) 35:459–64. doi: 10.1089/pho.2016.4217

PubMed Abstract | CrossRef Full Text | Google Scholar

107. Motlagh RS, Mori K, Laukhtina E, Aydh A, Katayama S, Grossmann NC, et al. Impact of enhanced optical techniques at time of transurethral resection of bladder tumour, with or without single immediate intravesical chemotherapy, on recurrence rate of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis of randomized trials. BJU Int. (2021) 128:280. doi: 10.1111/bju.15383

PubMed Abstract | CrossRef Full Text | Google Scholar

108. Naya Y, Oishi M, Yamada Y, Ueda T, Fujihara A, Nakanishi H, et al. Initial experience of combined use of photodynamic diagnosis and narrow band imaging for detection of flat urothelial lesion. Int J Clin Oncol. (2015) 20:593–7. doi: 10.1007/s10147-014-0748-5

PubMed Abstract | CrossRef Full Text | Google Scholar

109. Drejer D, Béji S, Oezeke R, Nielsen AM, Høyer S, Bjerklund Johansen TE, et al. Comparison of white light, photodynamic diagnosis, and narrow-band imaging in detection of carcinoma in situ or flat dysplasia at transurethral resection of the bladder: the DaBlaCa-8 study. Urology. (2017) 102:138–42. doi: 10.1016/j.urology.2016.11.032

PubMed Abstract | CrossRef Full Text | Google Scholar

110. Kwon JK, Lee JY, Cho KS, Oh CK, Ham WS, Choi YD, et al. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer. (2015) 15:1–10. doi: 10.1186/s12885-015-1571-8

PubMed Abstract | CrossRef Full Text | Google Scholar

111. Chen C, Huang H, Zhao Y, Liu H, Sylvester R, Lin T, et al. Diagnostic performance of image technique based transurethral resection for non-muscle invasive bladder cancer: systematic review and diagnostic meta-analysis. BMJ Open. (2019) 9:e028173. doi: 10.1136/bmjopen-2018-028173

PubMed Abstract | CrossRef Full Text | Google Scholar

112. Naselli A, Hurle R, Puppo P. The role of narrow-band imaging in the management of non-muscle-invasive bladder cancer. Expert Rev Anticancer Ther. (2012) 12:1523–8. doi: 10.1586/era.12.137

PubMed Abstract | CrossRef Full Text | Google Scholar

113. Kamphuis GM, de Bruin DM, Fallert J, Gultekin MH, De Reijke TM. Storz professional image enhancement system: a new technique to improve endoscopic bladder imaging. J Cancer Sci Ther. (2016) 08:71–7. doi: 10.4172/1948-5956.1000394

CrossRef Full Text | Google Scholar

114. Karl Storz Image1 Storz Professional Image Enhancement System Named Innovation of the Year by Society of Laparoendoscopic Surgeons. (2014). Available online at: https://www.karlstorz.com/in/en/karl-storz-image-1-s-named-innovation-of-the-year-by-society-of-laparoendoscopic-surgeons.htm (accessed July 31, 2021).

Google Scholar

115. Kamphuis GM, de Bruin DM, Brandt MJ, Knoll T, Conort P, Lapini A, et al. Comparing image perception of bladder tumors in four different storz professional image enhancement system modalities using the íSPIES app. J Endourol. (2016) 30:602–8. doi: 10.1089/end.2015.0687

PubMed Abstract | CrossRef Full Text | Google Scholar

116. Soria F, Rorato LM, Pisano F, Allasia M, Pecoraro A, Filippini C, et al. Optimal diagnostic performance of photodynamic diagnosis (PDD) and storz professional image enhancement system (SPIES) is independent from surgeon experience. Eur Urol Suppl. (2017) 16:e1152–3. doi: 10.1016/S1569-9056(17)30718-2

CrossRef Full Text | Google Scholar

117. Chondros K, Kazoulis S, Chrysanthakopoulos G, Tamiolakis D, Kalogeraki A, Tzardi M, et al. 212 White light imaging vs storz professional image enhancement system (SPIES) cystoscopy during follow up of patients submitted to WLI-transurethral resection of non-muscle-invasive bladder cancer: preliminary results of a bicenter randomized diagnostic. Eur Urol Suppl. (2016) 15:e212. doi: 10.1016/S1569-9056(16)60214-2

CrossRef Full Text | Google Scholar

118. Mulawkar P, Sharma G, Garge P. Evaluation of spectra a and b modes in diagnosis of suspicious bladder lesions. J Endourol. (2021) 35:1184–9. doi: 10.1089/end.2020.0291

PubMed Abstract | CrossRef Full Text | Google Scholar

119. Gravas S, Stenzl A. The storz professional image enhancement system (spies) nonmuscle-invasive bladder cancer study: a multicenter international randomized controlled study. J Endourol. (2014) 28:1254–5. doi: 10.1089/end.2014.1651

PubMed Abstract | CrossRef Full Text | Google Scholar

120. Lapini A, Minervini A, Masala A, Schips L, Pycha A, Cindolo L, et al. A comparison of hexaminolevulinate (Hexvix{®}) fluorescence cystoscopy and white-light cystoscopy for detection of bladder cancer: results of the HeRo observational study. Surg Endosc. (2012) 26:3634–41. doi: 10.1007/s00464-012-2387-0

PubMed Abstract | CrossRef Full Text | Google Scholar

121. Jocham D, Stepp H, Waidelich R. Photodynamic diagnosis in urology: state-of-the-art. Eur Urol. (2008) 53:1138–50. doi: 10.1016/j.eururo.2007.11.048

PubMed Abstract | CrossRef Full Text | Google Scholar

122. Fukuhara H, Kureishi M, Khoda T, Inoue K, Tanaka T, Iketani K, et al. The utility of a flexible fluorescence-cystoscope with a twin mode monitor for the 5-aminolevulinic acid-mediated photodynamic diagnosis of bladder cancer. PLoS ONE. (2015) 10:e0136416. doi: 10.1371/journal.pone.0136416

PubMed Abstract | CrossRef Full Text | Google Scholar

123. Schäfauer C, Ettori D, Rouprêt M, Phé V, Tualle JM, Tinet E, et al. Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study. J Urol. (2013) 190:271–7. doi: 10.1016/j.juro.2013.01.100

PubMed Abstract | CrossRef Full Text | Google Scholar

124. Kriegmair MC, Honeck P, Theuring M, Bolenz C, Ritter M. Wide-field autofluorescence-guided TUR-B for the detection of bladder cancer: a pilot study. World J Urol. (2018) 36:745–51. doi: 10.1007/s00345-017-2147-9

PubMed Abstract | CrossRef Full Text | Google Scholar

125. Zlatev D V., Altobelli E, Liao JC. Advances in imaging technologies in the evaluation of high-grade bladder cancer. Urol Clin North Am. (2015) 42:147–57. doi: 10.1016/j.ucl.2015.01.001

PubMed Abstract | CrossRef Full Text | Google Scholar

126. Soper TD, Porter MP, Seibel EJ. Surface mosaics of the bladder reconstructed from endoscopic video for automated surveillance. IEEE Trans Biomed Eng. (2012) 59:1670–80. doi: 10.1109/TBME.2012.2191783

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: bladder cancer, image enhancement, fluorescence cystoscopy, narrow band imaging, image 1 S

Citation: Mulawkar PM, Sharma G, Tamhankar A, Shah U and Raheem R (2022) Role of Macroscopic Image Enhancement in Diagnosis of Non-Muscle-Invasive Bladder Cancer: An Analytical Review. Front. Surg. 9:762027. doi: 10.3389/fsurg.2022.762027

Received: 20 August 2021; Accepted: 17 January 2022;
Published: 21 February 2022.

Edited by:

Jeremy Teoh, The Chinese University of Hong Kong, China

Reviewed by:

Daniele Castellani, Polytechnic University of Le Marche, Italy
Reza Sari Motlagh, Medical University of Vienna, Austria

Copyright © 2022 Mulawkar, Sharma, Tamhankar, Shah and Raheem. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Prashant Motiram Mulawkar, pmulawkar@hotmail.com

†ORCID: Prashant Motiram Mulawkar orcid.org/0000-0002-6761-4985
Gyanendra Sharma orcid.org/0000-0002-0843-8109
Ashwin Tamhankar orcid.org/0000-0003-4043-1975
Utsav Shah orcid.org/0000-0002-9851-6296

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.




Plaats een reactie ...

Reageer op "Diagnose: macroscopische beeldverbetering bij de diagnose van niet-spierinvasieve blaaskanker en daaruit voortvloeiende operatie technieken en behandelingen verbeteren steeds meer"


Gerelateerde artikelen