Kanker Actueel maakt gebruik van cookies om ons websiteverkeer te analyseren om u een optimale bezoekerservaring te bieden. Bovendien plaatsen adverteerders tracking cookies om u gepersonaliseerde advertenties te tonen. Door op [OK] te klikken gaat u hiermee akkoord.

Ok
Meer details
a
a
a
Nieuwsbrief Startpagina
Kanker Actueel E-book Steun ons
  
 Alleen in de titels zoeken
Kankersoorten
Complementair
Regulier
Kankernieuws
Patiëntenervaringen
  • Alvleesklierkanker
  • Baarmoederkanker en baarmoederhalskanker
  • Blaaskanker
  • Borstkanker
  • Botkanker
  • Carcinoid Syndroom
  • Darmkankers
  • Eierstokkanker
  • Endometriose
  • Galwegenkanker - Cholangiocarcinoma
  • Huidkankers
  • Hersentumoren
  • Kahler - MM - Multiple Myeloma - botkanker
  • Leukemie
  • Leverkanker - HCC
  • Lymfklierkanker
  • Longkanker
  • Maagkanker
  • Melanomen
  • Multiple Myeloma - Kahler
  • Mond- en keelkanker
  • Nierkanker
  • Oogkanker - retinoblastoma
  • Pancreaskanker
  • Prostaatkanker
  • Ruggenmergtumoren - neuro endocriene tumoren
  • Sarcomen - Ewingsarcoom
  • Schildklierkanker
  • Slokdarmkanker
  • Teelbalkanker
  • Vulvakanker
  • Ziekte van Waldenström
  • Wilms tumor
  • Introductie complementair
  • Overzicht complementaire en alternatieve middelen en behandelingen
  • Bewezen middelen en medicijnen - niet toxische stoffen: alfabetisch overzicht
  • Columns van arts-bioloog drs. Engelbert Valstar
  • Diagnose: kanker. Wat te doen?
  • Literatuurlijsten niet toxische middelen en behandelingen per kankersoort en aanvullend op chemo, operatie en bestraling
  • Literatuurlijst voedingstoffen
  • Introductie regulier
  • Regulier actueel (Overzicht)
  • Personalised medicin - immuuntherapeutische behandelingen en middelen gericht op receptoren en mutaties en anti PD - Programmed Death. Algemene informatie over stand van zaken
  • Bestraling - radiotherapie en aanvullende voedingsstoffen: een overzicht
  • Bestraling - radiotherapie algemeen: een overzicht
  • Chemo algemeen: een overzicht
  • Dendritische celtherapie
  • Immuuntherapie en vaccins
  • IRE - Irreversible electroporation - Nanoknife - is een soort RFA techniek maar dan met electriciteitspulsen van 1500 Volt) lijkt veelbelovende nieuwe operatietechniek voor tumoren in lever en andere weke delen
  • Medische termen verklaard
  • Operatie technieken en hulpmiddelen daarbij, een overzicht van enkele opmerkelijke publicaties
  • SIRT - Selectieve inwendige bestraling van levertumoren vooraf aan TACE - LITT geeft significant betere resultaten op levensduur bij inoperabele levertumoren.
  • TACE - Trans Arteriele Chemo embolisatie en LITT - Laser-induced Interstitial Thermotherapy bij dr. Vogl in Frankfurt.
  • PDT - Foto Dynamische Therapie - licht en laser behandelingen: een overzicht van belangrijke studies en recente ontwikkelingen
  • Radio Frequency Ablation - RFA
  • Ultra sound - HIFU: een overzichtstudie geeft de mogelijkheden en de onmogelijkheden weer van deze aan RFA gerelateerde operatie techniek
  • Archief Kankernieuws
  • Data van symposia, congressen, lezingen enz. in relatie tot behandelen en omgaan met kanker voor zorgprofessionals: artsen, apothekers, verpleegkundigen, therapeuten, voedingsdeskundigen en patienten
  • Kankernieuws: artikelen die recent werden gepubliceerd met nieuws over preventie, behandelingen en omgaan met kanker.
  • Nieuwsbrieven van kanker-actueel
  • Nieuwsberichten over kanker in de media
  • Ervaringsverhalen van kankerpatiënten op alfabetische volgorde per kankersoort gerubriceerd
  • Ervaringsverhalen van kankerpatienten op video
  • Video Deutsch
  • Video English
  • Video Espagnol
Preventie > Algemene informatie preventie > Parkinson: Aantal patienten met ziekte van Parkinson… > Mobiele telefoons kunnen onzichtbare symptomen van… >
12 juli 2024: Bron: npj Digital Medicine volume 7, Article number: 186 (2024)

Uit een Nederlandse studie uitgevoerd door de Radboud university blijkt dat mobiele telefoons / smartwatches de symptomen van de ziekte van Parkinson vroegtijdig kunnen opsporen. De sensoren in een mobiele telefoon kunnen via het voordoen van slaapproblemen de ziekte van Parkinson ontdekken in een vroeg stadium. 

Bij de ziekte van Parkinson denken in eerste instantie veel mensen aan bewegingsklachten. Schokkend bewegen en trillende handen is wat mensen als eerste associatie hebben bij deze patiënten. 

Maar de ziekte van Parkinson vertoont veel meer klachten. Klachten die niet zichtbaar zijn en vooral in het begin van de ziekte weinig aandacht voor is. Denk daarbij aan slaapproblemen, depressieve klachten en verminderd denkvermogen.

Uit een recent gepubliceerde studie blijkt dat slimme sensoren in mobiele telefoons / smartwatches die andere klachten in kaart kunnen brengen. En mensen kunnen dat ook gewoon thuis toepassen.

Onderzoekers van de Radboud university stellen dat deze sensoren in mobiele telefoons / smartwatches de slaapkwaliteit meten en betrouwbare resultaten geven. Patiënten die bv via de huisarts klachten hadden geuit die lijken op de ziekte van Parkinson krijgen dan meestal een verwijzing naar een ziekenhuis, maar door deze ontdekking hoeven mensen met nog lichte klachten daardoor niet meer naar het ziekenhuis voor een uitgebreid slaaponderzoek. De sensoren kunnen ook in andere apparaten worden ingebouwd natuurlijk. 

In de zoektocht naar geschikte meetmethodes beperkten de onderzoekers zich niet alleen tot sensoren die mensen met de ziekte van Parkinson kunnen helpen, maar bekeken ze ook andere aandoeningen die door sensoren kunnen worden vastgelegd. Een ander voorbeeld zou kunnen zijn om sensoren in toiletten in te bouwen die problemen bij het plassen kunnen meten. 

Het studierapport is gratis in te zien. Hier het abstract:

  • Review Article
  • Open access
  • Published: 11 July 2024

Digital biomarkers for non-motor symptoms in Parkinson’s disease: the state of the art

  • Jules M. Janssen Daalen, 
  • Robin van den Bergh, 
  • Eva M. Prins, 
  • Mahshid Sadat Chenarani Moghadam, 
  • Rudie van den Heuvel, 
  • Jeroen Veen, 
  • Soania Mathur, 
  • Hannie Meijerink, 
  • Anat Mirelman, 
  • Sirwan K. L. Darweesh, 
  • Luc J. W. Evers & 
  • Bastiaan R. Bloem 

npj Digital Medicine volume 7, Article number: 186 (2024) Cite this article

  • 1 Altmetric

  • Metricsdetails

Abstract

Digital biomarkers that remotely monitor symptoms have the potential to revolutionize outcome assessments in future disease-modifying trials in Parkinson’s disease (PD), by allowing objective and recurrent measurement of symptoms and signs collected in the participant’s own living environment. This biomarker field is developing rapidly for assessing the motor features of PD, but the non-motor domain lags behind. Here, we systematically review and assess digital biomarkers under development for measuring non-motor symptoms of PD. We also consider relevant developments outside the PD field. We focus on technological readiness level and evaluate whether the identified digital non-motor biomarkers have potential for measuring disease progression, covering the spectrum from prodromal to advanced disease stages. Furthermore, we provide perspectives for future deployment of these biomarkers in trials. We found that various wearables show high promise for measuring autonomic function, constipation and sleep characteristics, including REM sleep behavior disorder. Biomarkers for neuropsychiatric symptoms are less well-developed, but show increasing accuracy in non-PD populations. Most biomarkers have not been validated for specific use in PD, and their sensitivity to capture disease progression remains untested for prodromal PD where the need for digital progression biomarkers is greatest. External validation in real-world environments and large longitudinal cohorts remains necessary for integrating non-motor biomarkers into research, and ultimately also into daily clinical practice.

Similar content being viewed by others

Digital outcome measures from smartwatch data relate to non-motor features of Parkinson’s disease

Article Open access29 May 2024

Improved measurement of disease progression in people living with early Parkinson’s disease using digital health technologies

Article Open access15 March 2024

Analytical and clinical validity of wearable, multi-sensor technology for assessment of motor function in patients with Parkinson’s disease in Japan

Article Open access14 March 2023

References:

  1. McFarthing, K. et al. Parkinson’s Disease Drug Therapies in the Clinical Trial Pipeline: 2023 Update. J. Parkinsons Dis. 13, 427–439 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  2. Goetz, C. G. et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS‐UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).

    Article PubMed Google Scholar 

  3. Evers, L. J. W., Krijthe, J. H., Meinders, M. J., Bloem, B. R. & Heskes, T. M. Measuring Parkinson’s disease over time: The real-world within-subject reliability of the MDS-UPDRS. Mov. Disord. 34, 1480–1487 (2019).

    Article PubMed PubMed Central Google Scholar 

  4. Artusi, C. A. et al. Implementation of Mobile Health Technologies in Clinical Trials of Movement Disorders: Underutilized Potential. Neurotherapeutics 17, 1736–1746 (2020).

    Article PubMed PubMed Central Google Scholar 

  5. Warmerdam, E. et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 19, 462–470 (2020).

    Article PubMed Google Scholar 

  6. Zhan, A. et al. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. 75, 876–880, (2018).

    Article PubMed PubMed Central Google Scholar 

  7. Burq, M. et al. Virtual exam for Parkinson’s disease enables frequent and reliable remote measurements of motor function. NPJ Digit. Med. 5, 65 (2022).

    Article PubMed PubMed Central Google Scholar 

  8. Bloem, B. R., Post, E. & Hall, D. A. An Apple a Day to Keep the Parkinson’s Disease Doctor Away? Ann. Neurol. 93, 681–685 (2023).

    Article PubMed Google Scholar 

  9. Lipsmeier, F. et al. Reliability and validity of the Roche PD Mobile Application for remote monitoring of early Parkinson’s disease. Sci. Rep. 12, 12081 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  10. Mirelman, A. et al. Arm swing as a potential new prodromal marker of Parkinson’s disease. Mov. Disord. 31, 1527–1534 (2016).

    Article CAS PubMed PubMed Central Google Scholar 

  11. Schalkamp, A. K., Peall, K. J., Harrison, N. A. & Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med., https://doi.org/10.1038/s41591-023-02440-2 (2023).

  12. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article PubMed Google Scholar 

  13. Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M. M., Chaudhuri, K. R. & Group, N. V. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord. 26, 399–406 (2011).

    Article PubMed Google Scholar 

  14. Berg, D. et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 30, 1600–1611 (2015).

    Article PubMed Google Scholar 

  15. Martinez-Fernandez, R., Schmitt, E., Martinez-Martin, P. & Krack, P. The hidden sister of motor fluctuations in Parkinson’s disease: A review on nonmotor fluctuations. Mov. Disord. 31, 1080–1094 (2016).

    Article CAS PubMed Google Scholar 

  16. FDA. Patient-Focused Drug Development Guidance Series for Enhancing the Incorporation of the Patient’s Voice in Medical Product Development and Regulatory Decision Making (FDA, 2023).

  17. FDA. Framework for the Use of Digital Health Technologies in Drug and Biological Product Development (FDA, 2023).

  18. van Wamelen, D. J. et al. Digital health technology for non-motor symptoms in people with Parkinson’s disease: Futile or future? Parkinsonism Relat. Disord. 89, 186–194 (2021).

    Article PubMed Google Scholar 

  19. Merola, A. et al. Technology-based assessment of motor and nonmotor phenomena in Parkinson disease. Expert Rev. Neurother. 18, 825–845 (2018).

    Article CAS PubMed Google Scholar 

  20. Sigcha, L. et al. Deep learning and wearable sensors for the diagnosis and monitoring of Parkinson’s disease: A systematic review. Expert Syst. Appl. 229, 120541 (2023).

    Article Google Scholar 

  21. Darweesh, S. K. et al. Trajectories of prediagnostic functioning in Parkinson’s disease. Brain 140, 429–441 (2017).

    Article PubMed Google Scholar 

  22. McGregor, S. et al. The use of accelerometry as a tool to measure disturbed nocturnal sleep in Parkinson’s disease. npj Parkinsons Dis. 4, 1 (2018).

    Article PubMed PubMed Central Google Scholar 

  23. Madrid-Navarro, C. J. et al. Validation of a Device for the Ambulatory Monitoring of Sleep Patterns: A Pilot Study on Parkinson’s Disease. Front Neurol. 10, 356 (2019).

    Article PubMed PubMed Central Google Scholar 

  24. Mirelman, A. et al. Tossing and Turning in Bed: Nocturnal Movements in Parkinson’s Disease. Mov. Disord. 35, 959–968 (2020).

    Article PubMed Google Scholar 

  25. O’Dowd, S. T. et al. Longitudinal assessment of sleep in an incident Parkinson’s disease cohort. Mov. Disord. 31, S117 (2016).

    Google Scholar 

  26. Breen, D. P. et al. Sleep and circadian rhythm regulation in early parkinson disease. JAMA Neurol. 71, 589–595 (2014).

    Article PubMed PubMed Central Google Scholar 

  27. Carlson, C. et al. Bed-based instrumentation for unobtrusive sleep quality assessment in severely disabled autistic children. Annu Int Conf. IEEE Eng. Med Biol. Soc. 2016, 4909–4912 (2016).

    PubMed Google Scholar 

  28. Li, S. & Chiu, C. A Smart Pillow for Health Sensing System Based on Temperature and Humidity Sensors. Sensors 18, https://doi.org/10.3390/s18113664 (2018).

  29. Filardi, M. et al. Objective rest-activity cycle analysis by actigraphy identifies isolated rapid eye movement sleep behavior disorder. Eur. J. Neurol. 27, 1848–1855 (2020).

    Article CAS PubMed Google Scholar 

  30. Kemlink, D., Perinova, P., Dusek, P., Ruzicka, E. & Sonka, K. Actigraphic screening for the rapid eye movement sleep behavior disorder in Czech population. Sleep. Med. 40, e155 (2017).

    Article Google Scholar 

  31. Louter, M., Arends, J. B., Bloem, B. R. & Overeem, S. Actigraphy as a diagnostic aid for REM sleep behavior disorder in Parkinson’s disease. BMC Neurol. 14, 76 (2014).

    Article PubMed PubMed Central Google Scholar 

  32. Moerman, C. et al. Towards a handy screening tool for REM sleep behaviour disorder: RDBAct algorithm from wrist actigraphy data. J. Sleep Res. 29, https://doi.org/10.1111/jsr.13181 (2020).

  33. Raschella, F., Scafa, S., Puiatti, A., Martin Moraud, E. & Ratti, P. L. Actigraphy Enables Home Screening of Rapid Eye Movement Behavior Disorder in Parkinson’s Disease. Ann. Neurol., https://doi.org/10.1002/ana.26517 (2022).

  34. Stefani, A. et al. Screening for idiopathic REM sleep behavior disorder: Usefulness of actigraphy. Sleep 41, https://doi.org/10.1093/sleep/zsy053 (2018).

  35. Naismith, S. L., Rogers, N. L., Mackenzie, J., Hickie, I. B. & Lewis, S. J. The relationship between actigraphically defined sleep disturbance and REM sleep behaviour disorder in Parkinson’s Disease. Clin. Neurol. Neurosurg. 112, 420–423 (2010).

    Article PubMed Google Scholar 

  36. Kemlink, D., Perinova, P., Dusek, P., Ruzicka, E. & Sonka, K. Actigraphic differences in the rapid eye movement sleep behavior disorder patients. J. Sleep. Res. 27, 51 (2018).

    Google Scholar 

  37. Bolitho, S. J. et al. Objective measurement of daytime napping, cognitive dysfunction and subjective sleepiness in Parkinson’s disease. PLoS One 8, e81233 (2013).

    Article PubMed PubMed Central Google Scholar 

  38. Kotschet, K. et al. Daytime sleep in Parkinson’s disease measured by episodes of immobility. Parkinsonism Relat. Disord. 20, 578–583 (2014).

    Article CAS PubMed Google Scholar 

  39. Kundinger, T., Sofra, N. & Riener, A. Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection. Sensors 20, https://doi.org/10.3390/s20041029 (2020).

  40. Leng, Y. et al. Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson’s disease in older men. Int J. Epidemiol. 47, 1679–1686 (2018).

    Article PubMed PubMed Central Google Scholar 

  41. Memon, A. et al. Relationship between subjective and objective measures of sleepiness in Parkinson’s disease. In Movement Disorders. Conference: 1st Pan American Parkinson’s Disease and Movement Disorders Congress. Miami, FL United States 32, https://doi.org/10.1002/mds.26972 (2017).

  42. Huang, S., Li, J., Zhang, P. & Zhang, W. Detection of mental fatigue state with wearable ECG devices. Int. J. Med. Inform. 119, 39–46 (2018).

    Article PubMed Google Scholar 

  43. Zeng, Z. et al. Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sens. 5, 1305–1313 (2020).

    Article CAS PubMed Google Scholar 

  44. Jeklin, A. T. et al. The association between heart rate variability, reaction time, and indicators of workplace fatigue in wildland firefighters. Int. Arch. Occup. Environ. health 94, 823–831 (2021).

    Article PubMed Google Scholar 

  45. Tseng, V. W. S., Valliappan, N., Ramachandran, V., Choudhury, T. & Navalpakkam, V. Digital biomarker of mental fatigue. npj Digital Med. 4, https://doi.org/10.1038/s41746-021-00415-6 (2021).

  46. Aqajari, S. A. H. et al. Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study. JMIR mHealth uHealth 9, e25258 (2021).

    Article PubMed PubMed Central Google Scholar 

  47. Atee, M., Hoti, K., Parsons, R. & Hughes, J. D. Pain Assessment in Dementia: Evaluation of a Point-of-Care Technological Solution. J. Alzheimers Dis. 60, 137–150 (2017).

    Article PubMed PubMed Central Google Scholar 

  48. Jacobson, N. C. & O’Cleirigh, C. Objective digital phenotypes of worry severity, pain severity and pain chronicity in persons living with HIV. Br. J. Psychiatry 218, 165–167 (2021).

    Article PubMed Google Scholar 

  49. Wallen, M. B., Hasson, D., Theorell, T., Canlon, B. & Osika, W. Possibilities and limitations of the Polar RS800 in measuring heart rate variability at rest. Eur. J. Appl Physiol. 112, 1153–1165 (2012).

    Article PubMed Google Scholar 

  50. Gamelin, F. X., Berthoin, S. & Bosquet, L. Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci. Sports Exerc 38, 887–893 (2006).

    Article PubMed Google Scholar 

  51. Nunan, D. et al. Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system. Eur. J. Appl Physiol. 103, 529–537 (2008).

    Article PubMed Google Scholar 

  52. Stone, J. D. et al. Assessing the Accuracy of Popular Commercial Technologies That Measure Resting Heart Rate and Heart Rate Variability. Front. Sports Act. Living 3, 585870 (2021).

    Article PubMed PubMed Central Google Scholar 

  53. Kunkels, Y. K., van Roon, A. M., Wichers, M. & Riese, H. Cross-instrument feasibility, validity, and reproducibility of wireless heart rate monitors: Novel opportunities for extended daily life monitoring. Psychophysiology 58, e13898 (2021).

    Article PubMed PubMed Central Google Scholar 

  54. Sagl, G. et al. Wearables and the Quantified Self: Systematic Benchmarking of Physiological Sensors. Sensors 19, https://doi.org/10.3390/s19204448 (2019).

  55. Schuurmans, A. A. T. et al. Validity of the Empatica E4 Wristband to Measure Heart Rate Variability (HRV) Parameters: a Comparison to Electrocardiography (ECG). J. Med. Syst. 44, https://doi.org/10.1007/s10916-020-01648-w (2020).

  56. Niwa, F., Kuriyama, N., Nakagawa, M. & Imanishi, J. Circadian rhythm of rest activity and autonomic nervous system activity at different stages in Parkinson’s disease. Auton. Neurosci. 165, 195–200 (2011).

    Article PubMed Google Scholar 

  57. Barbosa, M. P., da Silva, N. T., de Azevedo, F. M., Pastre, C. M. & Vanderlei, L. C. Comparison of Polar(R) RS800G3 heart rate monitor with Polar(R) S810i and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 36, 112–117 (2016).

    Article PubMed Google Scholar 

  58. Santarelli, L. et al. Development of a Novel Wearable Ring-Shaped Biosensor. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 3750–3753 (2018).

    CAS PubMed Google Scholar 

  59. Nardelli, M., Vanello, N., Galperti, G., Greco, A. & Scilingo, E. P. Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method. Sensors 20, https://doi.org/10.3390/s20113156 (2020).

  60. Pandian, P. S. et al. Smart Vest: wearable multi-parameter remote physiological monitoring system. Med Eng. Phys. 30, 466–477 (2008).

    Article CAS PubMed Google Scholar 

  61. Sarhaddi, F. et al. A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability. PLoS One 17, e0268361 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  62. Kinnunen, H., Rantanen, A., Kentta, T. & Koskimaki, H. Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiological Meas. 41, 04NT01 (2020).

    Article Google Scholar 

  63. Reali, P., Tacchino, G., Rocco, G., Cerutti, S. & Bianchi, A. M. Heart Rate Variability from Wearables: A Comparative Analysis Among Standard ECG, a Smart Shirt and a Wristband. Stud. Health Technol. Inform. 261, 128–133 (2019).

    PubMed Google Scholar 

  64. Bloem, B. R. et al. The Personalized Parkinson Project: examining disease progression through broad biomarkers in early Parkinson’s disease. BMC Neurol. 19, 160 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  65. Darweesh, S. K. L. ClinicalTrials.gov. Slow-SPEED-NL: Slowing Parkinson’s Early Through Exercise Dosage-Netherlands (Slow-SPEED-NL), 2024.

  66. Park, S. M. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article PubMed PubMed Central Google Scholar 

  67. Molavi, B., Shadgan, B., Macnab, A. J. & Dumont, G. A. Noninvasive Optical Monitoring of Bladder Filling to Capacity Using a Wireless Near Infrared Spectroscopy Device. IEEE Trans. Biomed. Circuits Syst. 8, 325–333 (2014).

    Article PubMed Google Scholar 

  68. El Helou, E. et al. Mobile sonouroflowmetry using voiding sound and volume. Sci. Rep. 11, 11250 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  69. Schultz, R. E. Smartphone App for In-home Uroflowmetry. Urol. Pr. 9, 524–530 (2022).

    Google Scholar 

  70. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abe3929 (2020).

  71. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  72. Gil, B., Anastasova, S. & Yang, G. Z. A Smart Wireless Ear-Worn Device for Cardiovascular and Sweat Parameter Monitoring During Physical Exercise: Design and Performance Results. Sensors 19, https://doi.org/10.3390/s19071616 (2019).

  73. Sim, J. K., Yoon, S. & Cho, Y. H. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring. Sci. Rep. 8, 1181 (2018).

    Article PubMed PubMed Central Google Scholar 

  74. Ummel, J. D. et al. Kick Ring LL: A Multi-Sensor Ring Capturing Respiration, Electrocardiogram, Oxygen Saturation, and Skin Temperature(1). Annu Int Conf. IEEE Eng. Med Biol. Soc. 2020, 4394–4397 (2020).

    PubMed Google Scholar 

  75. Madrid-Navarro, C. J. et al. Multidimensional Circadian Monitoring by Wearable Biosensors in Parkinson’s Disease. Front Neurol. 9, 157 (2018).

    Article PubMed PubMed Central Google Scholar 

  76. Kim, H. et al. Smart Patch for Skin Temperature: Preliminary Study to Evaluate Psychometrics and Feasibility. Sensors 21, https://doi.org/10.3390/s21051855 (2021).

  77. van Marken Lichtenbelt, W. D. et al. Evaluation of wireless determination of skin temperature using iButtons. Physiol. Behav. 88, 489–497 (2006).

    Article PubMed Google Scholar 

  78. Ibrahim, B. & Jafari, R. Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. IEEE Trans. Biomed. Circuits Syst. 13, 1723–1735 (2019).

    Article PubMed PubMed Central Google Scholar 

  79. Narasimhan, R., Parlikar, T., Verghesel, G. & McConnell, M. V. Finger-Wearable Blood Pressure Monitor. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 3792–3795 (2018).

    PubMed Google Scholar 

  80. Nachman, D. et al. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device. Sci. Rep. 10, 16116 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  81. Sola, J. et al. Validation of the optical Aktiia bracelet in different body positions for the persistent monitoring of blood pressure. Sci. Rep. 11, 20644 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  82. Gaurav, A., Maheedhar, M., Tiwari, V. N. & Narayanan, R. Cuff-less PPG based continuous blood pressure monitoring: a smartphone based approach. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 607–610 (2016).

    PubMed Google Scholar 

  83. Rachim, V. P. & Chung, W. Y. Multimodal Wrist Biosensor for Wearable Cuff-less Blood Pressure Monitoring System. Sci. Rep. 9, 7947 (2019).

    Article PubMed PubMed Central Google Scholar 

  84. Mark, E. B. et al. Ambulatory assessment of colonic motility using the electromagnetic capsule tracking system. Neurogastroenterol. Motil. 31, e13451 (2019).

    Article PubMed Google Scholar 

  85. Axelrod, L., Axelrod, S., Navalgund, A. & Triadafilopoulos, G. Pilot Validation of a New Wireless Patch System as an Ambulatory, Noninvasive Tool That Measures Gut Myoelectrical Signals: Physiologic and Disease Correlations. Digestive Dis. Sci. 66, 3505–3515 (2021).

    Article Google Scholar 

  86. Su, A., Gandhy, R., Barlow, C. & Triadafilopoulos, G. Utility of high-resolution anorectal manometry and wireless motility capsule in the evaluation of patients with Parkinson’s disease and chronic constipation. BMJ Open Gastroenterol. 3, e000118 (2016).

    Article PubMed PubMed Central Google Scholar 

  87. Maqbool, S., Parkman, H. P. & Friedenberg, F. K. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci. 54, 2167–2174 (2009).

    Article PubMed Google Scholar 

  88. Pehlivan, M. et al. An electronic device measuring the frequency of spontaneous swallowing: digital phagometer. Dysphagia 11, 259–264 (1996).

    Article CAS PubMed Google Scholar 

  89. Hadley, A. J., Krival, K. R., Ridgel, A. L., Hahn, E. C. & Tyler, D. J. Neural network pattern recognition of lingual-palatal pressure for automated detection of swallow. Dysphagia 30, 176–187 (2015).

    Article PubMed Google Scholar 

  90. O’Brien, M. K. et al. Advanced Machine Learning Tools to Monitor Biomarkers of Dysphagia: A Wearable Sensor Proof-of-Concept Study. Digital Biomark. 5, 167–175 (2021).

    Article Google Scholar 

  91. Jayatilake, D. et al. Smartphone-Based Real-time Assessment of Swallowing Ability from the Swallowing Sound. IEEE J. Transl. Eng. Health Med. 3, https://doi.org/10.1109/JTEHM.2015.2500562 (2015).

  92. Kantarcigil, C. et al. Validation of a Novel Wearable Electromyography Patch for Monitoring Submental Muscle Activity During Swallowing: A Randomized Crossover Trial. J. Speech Lang. Hearing Res. 63, 3293–3310 (2020).

    Article Google Scholar 

  93. Li, P. et al. Circadian disturbances in Alzheimer’s disease progression: a prospective observational cohort study of community-based older adults. Lancet Healthy Longev. 1, e96–e105 (2020).

    Article PubMed PubMed Central Google Scholar 

  94. Targa, A. D. S. et al. The circadian rest-activity pattern predicts cognitive decline among mild-moderate Alzheimer’s disease patients. Alzheimer’s Res. Therapy 13, https://doi.org/10.1186/s13195-021-00903-7 (2021).

  95. Tranah, G. J. et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70, 722–732 (2011).

    Article PubMed PubMed Central Google Scholar 

  96. Rogers-Soeder, T. S. et al. Rest-Activity Rhythms and Cognitive Decline in Older Men: The Osteoporotic Fractures in Men Sleep Study. J. Am. Geriatrics Soc. 66, 2136–2143 (2018).

    Article Google Scholar 

  97. Dodge, H. H., Mattek, N. C., Austin, D., Hayes, T. L. & Kaye, J. A. In-home walking speeds and variability trajectories associated with mild cognitive impairment. Neurology 78, 1946–1952 (2012).

    Article CAS PubMed PubMed Central Google Scholar 

  98. Leng, Y., Redline, S., Stone, K. L., Ancoli-Israel, S. & Yaffe, K. Objective napping, cognitive decline, and risk of cognitive impairment in older men. Alzheimers Dement. 15, 1039–1047 (2019).

    Article PubMed Google Scholar 

  99. Khan, T. & Jacobs, P. G. Prediction of Mild Cognitive Impairment Using Movement Complexity. IEEE J. Biomed. Health Inform. 25, 227–236 (2021).

    Article PubMed PubMed Central Google Scholar 

  100. Gunn, D. G., Naismith, S. L., Bolitho, S. J. & Lewis, S. J. Actigraphically-defined sleep disturbance in Parkinson’s disease is associated with differential aspects of cognitive functioning. J. Clin. Neurosci. 21, 1112–1115 (2014).

    Article PubMed Google Scholar 

  101. Akl, A. et al. Clustering Home Activity Distributions for Automatic Detection of Mild Cognitive Impairment in Older Adults. J. Ambient Intell. Smart Environ. 8, 437–451 (2016).

    Article PubMed PubMed Central Google Scholar 

  102. Dawadi, P. N., Cook, D. J. & Schmitter-Edgecombe, M. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. IEEE J. Biomed. Health Inf. 20, 1188–1194 (2016).

    Article Google Scholar 

  103. Alberdi, A. et al. Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer’s Disease. IEEE J. Biomed. Health Inf. 22, 1720–1731 (2018).

    Article Google Scholar 

  104. Akl, A., Taati, B. & Mihailidis, A. Autonomous unobtrusive detection of mild cognitive impairment in older adults. IEEE Trans. Biomed. Eng. 62, 1383–1394 (2015).

    Article PubMed PubMed Central Google Scholar 

  105. Sacco, G. et al. Detection of activities of daily living impairment in Alzheimer’s disease and mild cognitive impairment using information and communication technology. Clin. Interventions Aging 7, 539–549, (2012).

    Article Google Scholar 

  106. Lussier, M. et al. Smart Home Technology: A New Approach for Performance Measurements of Activities of Daily Living and Prediction of Mild Cognitive Impairment in Older Adults. J. Alzheimers Dis. 68, 85–96 (2019).

    Article PubMed Google Scholar 

  107. Jeon, S. Y. et al. Circadian rest-activity rhythm and longitudinal brain changes underlying late-life cognitive decline. Psychiatry Clin. Neurosci. 77, 205–212 (2023).

    Article PubMed PubMed Central Google Scholar 

  108. Antonsdottir, I. M. et al. 24 h Rest/Activity Rhythms in Older Adults with Memory Impairment: Associations with Cognitive Performance and Depressive Symptomatology. Adv. Biol., e2300138, https://doi.org/10.1002/adbi.202300138 (2023).

  109. Hooghiemstra, A. M., Eggermont, L. H., Scheltens, P., van der Flier, W. M. & Scherder, E. J. The rest-activity rhythm and physical activity in early-onset dementia. Alzheimer Dis. Assoc. Disord. 29, 45–49 (2015).

    Article PubMed Google Scholar 

  110. Sevil, M. et al. Discrimination of simultaneous psychological and physical stressors using wristband biosignals. Comput. Methods Programs Biomed. 199, https://doi.org/10.1016/j.cmpb.2020.105898 (2021).

  111. Jacobson, N. C., Lekkas, D., Huang, R. & Thomas, N. Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17–18 years. J. Affect. Disord. 282, 104–111 (2021).

    Article PubMed Google Scholar 

  112. Di Matteo, D. et al. Smartphone-Detected Ambient Speech and Self-Reported Measures of Anxiety and Depression: Exploratory Observational Study. JMIR Form. Res 5, e22723 (2021).

    Article PubMed PubMed Central Google Scholar 

  113. Opoku Asare, K. et al. Predicting Depression From Smartphone Behavioral Markers Using Machine Learning Methods, Hyperparameter Optimization, and Feature Importance Analysis: Exploratory Study. JMIR mHealth uHealth 9, e26540 (2021).

    Article PubMed PubMed Central Google Scholar 

  114. Rykov, Y., Thach, T. Q., Bojic, I., Christopoulos, G. & Car, J. Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling. JMIR Mhealth Uhealth 9, e24872 (2021).

    Article PubMed PubMed Central Google Scholar 

  115. Narziev, N. et al. STDD: Short-Term Depression Detection with Passive Sensing. Sensors 20, https://doi.org/10.3390/s20051396 (2020).

  116. Saeb, S., Lattie, E. G., Kording, K. P. & Mohr, D. C. Mobile Phone Detection of Semantic Location and Its Relationship to Depression and Anxiety. JMIR Mhealth Uhealth 5, e112 (2017).

    Article PubMed PubMed Central Google Scholar 

  117. Choi, J., Lee, S., Kim, S., Kim, D. & Kim, H. Depressed Mood Prediction of Elderly People with a Wearable Band. Sensors 22, https://doi.org/10.3390/s22114174 (2022).

  118. Saeb, S., Lattie, E. G., Schueller, S. M., Kording, K. P. & Mohr, D. C. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 4, e2537 (2016).

  119. Schutz, N. et al. A Sensor-Driven Visit Detection System in Older Adults Homes: Towards Digital Late-Life Depression Marker Extraction. IEEE J. Biomed. Health Informatics., https://doi.org/10.1109/JBHI.2021.3114595 (2021).

  120. Huang, M. et al. Association of Depressive Symptoms with Sleep Disturbance: A Co-twin Control Study. Ann. Behav. Med. 15, https://doi.org/10.1093/abm/kaab040 (2021).

  121. Zhang, Y. et al. Relationship Between Major Depression Symptom Severity and Sleep Collected Using a Wristband Wearable Device: Multicenter Longitudinal Observational Study. JMIR mHealth uHealth 9, e24604 (2021).

    Article PubMed PubMed Central Google Scholar 

  122. Mulryan, P., Affonso, S. & Sullivan, A. Sleep and depression in Parkinson’s disease: Investigating the relationship between sleep and depression using a combination of subjective and objective sleep assessment methods. Ann. Neurol. 88, S196 (2020).

    Google Scholar 

  123. Coutts, L. V., Plans, D., Brown, A. W. & Collomosse, J. Deep learning with wearable based heart rate variability for prediction of mental and general health. J. Biomed Inf 112, https://doi.org/10.1016/j.jbi.2020.103610 (2020).

  124. Dogrucu, A. et al. Moodable: On feasibility of instantaneous depression assessment using machine learning on voice samples with retrospectively harvested smartphone and social media data. Smart Health 17, https://doi.org/10.1016/j.smhl.2020.100118 (2020).

  125. Palmius, N. et al. Detecting bipolar depression from geographic location data. IEEE Trans. Biomed. Eng. 64, 1761–1771 (2017).

    Article CAS PubMed Google Scholar 

  126. Braund, T. A. et al. Smartphone Sensor Data for Identifying and Monitoring Symptoms of Mood Disorders: A Longitudinal Observational Study. JMIR Ment. Health 9, e35549 (2022).

    Article PubMed PubMed Central Google Scholar 

  127. Lee, D. et al. Changes in the Circadian Rhythm of High-Frequency Heart Rate Variability Associated With Depression. J. Korean Med Sci. 38, e142 (2023).

    Article PubMed PubMed Central Google Scholar 

  128. Siddi, S. et al. The usability of daytime and night-time heart rate dynamics as digital biomarkers of depression severity. Psychol. Med 53, 3249–3260 (2023).

    Article CAS PubMed Google Scholar 

  129. Hayashi, M., Takeshima, M., Hosoya, T. & Kume, Y. 24-Hour Rest-Activity Rhythm in Middle-Aged and Older Persons with Depression. Int. J. Environ. Res. Public Health 20, https://doi.org/10.3390/ijerph20075275 (2023).

  130. de Feijter, M., Kocevska, D., Ikram, M. A. & Luik, A. I. The bidirectional association of 24-h activity rhythms and sleep with depressive symptoms in middle-aged and elderly persons. Psychol. Med. 53, 1418–1425 (2023).

    Article PubMed Google Scholar 

  131. Whitehead, D. L., Davies, A. D., Playfer, J. R. & Turnbull, C. J. Circadian rest-activity rhythm is altered in Parkinson’s disease patients with hallucinations. Mov. Disord. 23, 1137–1145 (2008).

    Article PubMed Google Scholar 

  132. Godkin, F. E. et al. Feasibility of a continuous, multi-sensor remote health monitoring approach in persons living with neurodegenerative disease. J. Neurol., 1–14, https://doi.org/10.1007/s00415-021-10831-z (2021).

  133. Keogh, A., Dorn, J. F., Walsh, L., Calvo, F. & Caulfield, B. Comparing the Usability and Acceptability of Wearable Sensors Among Older Irish Adults in a Real-World Context: Observational Study. JMIR mHealth uHealth 8, e15704 (2020).

    Article PubMed PubMed Central Google Scholar 

  134. Areia, C. et al. Wearability Testing of Ambulatory Vital Sign Monitoring Devices: Prospective Observational Cohort Study. JMIR mHealth uHealth 8, e20214 (2020).

    Article PubMed PubMed Central Google Scholar 

  135. Saif, N. et al. Feasibility of Using a Wearable Biosensor Device in Patients at Risk for Alzheimer’s Disease Dementia. J. Prev. Alzheimers Dis. 7, 104–111 (2020).

    CAS PubMed PubMed Central Google Scholar 

  136. Silva de Lima, A. L. et al. Feasibility of large-scale deployment of multiple wearable sensors in Parkinson’s disease. PLoS One 12, e0189161 (2017).

    Article PubMed PubMed Central Google Scholar 

  137. Meinders, M. J., Donnelly, A. C., Sheehan, M. & Bloem, B. R. Including People with Parkinson’s Disease in Clinical Study Design and Execution: A Call to Action. J. Parkinsons Dis. 12, 1359–1363 (2022).

    Article PubMed PubMed Central Google Scholar 

  138. Schneider, R. et al. Feasibility of using a smartphone application for the objective evaluation of Parkinson’s disease. Mov. Disord. 32, 973 (2017).

    Google Scholar 

  139. Seelye, A. et al. Feasibility of In-Home Sensor Monitoring to Detect Mild Cognitive Impairment in Aging Military Veterans: Prospective Observational Study. JMIR Form. Res. 4, e16371 (2020).

    Article PubMed PubMed Central Google Scholar 

  140. Betthauser, L. M. et al. Mobile app for mental health monitoring and clinical outreach in veterans: Mixed methods feasibility and acceptability study. J. Med. Internet Res. 22, https://doi.org/10.2196/15506 (2020).

  141. Heinzel, S. et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 34, 1464–1470 (2019).

    Article PubMed Google Scholar 

  142. Otaiku, A. I. Association of sleep abnormalities in older adults with risk of developing Parkinson’s disease. Sleep 45, https://doi.org/10.1093/sleep/zsac206 (2022).

  143. Bugalho, P. et al. Polysomnographic predictors of sleep, motor and cognitive dysfunction progression in Parkinson’s disease: a longitudinal study. Sleep. Med. 77, 205–208 (2021).

    Article PubMed Google Scholar 

  144. Dijkstra, F., de Volder, I., Viaene, M., Cras, P. & Crosiers, D. Polysomnographic Predictors of Sleep, Motor, and Cognitive Dysfunction Progression in Parkinson’s Disease. Curr. Neurol. Neurosci. Rep. 22, 657–674 (2022).

    Article PubMed Google Scholar 

  145. Bugalho, P. et al. Heart rate variability in Parkinson disease and idiopathic REM sleep behavior disorder. Clin. Auton. Res 28, 557–564 (2018).

    Article PubMed Google Scholar 

  146. Yang, J. H. et al. Association of heart rate variability with REM sleep without atonia in idiopathic REM sleep behavior disorder. J. Clin. Sleep. Med. 17, 461–469 (2021).

    Article PubMed PubMed Central Google Scholar 

  147. Suzuki, M. et al. Wearable sensor device-based detection of decreased heart rate variability in Parkinson’s disease. J. Neural Transm. 129, 1299–1306 (2022).

    Article PubMed Google Scholar 

  148. Haapaniemi, T. H. et al. Ambulatory ECG and analysis of heart rate variability in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 70, 305–310 (2001).

    Article CAS PubMed PubMed Central Google Scholar 

  149. Speelberg, D. H. B. et al. Prodromal Cognitive Deficits and the Risk of Subsequent Parkinson’s Disease. Brain Sci. 12, https://doi.org/10.3390/brainsci12020199 (2022).

  150. Roheger, M., Kalbe, E. & Liepelt-Scarfone, I. Progression of Cognitive Decline in Parkinson’s Disease. J. Parkinsons Dis. 8, 183–193 (2018).

    Article PubMed PubMed Central Google Scholar 

  151. Frazzitta, G., Ferrazzoli, D., Folini, A., Palamara, G. & Maestri, R. Severe Constipation in Parkinson’s Disease and in Parkinsonisms: Prevalence and Affecting Factors. Front Neurol. 10, 621 (2019).

    Article PubMed PubMed Central Google Scholar 

  152. Yoo, S. W. et al. Delayed orthostatic hypotension in Parkinson’s disease. NPJ Parkinsons Dis. 7, 37 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  153. Fedor, S. et al. Wearable Technology in Clinical Practice for Depressive Disorder. N. Engl. J. Med. 389, 2457–2466 (2023).

    Article PubMed Google Scholar 

  154. Cheng, P. G. et al. Psychologist in a Pocket: Lexicon Development and Content Validation of a Mobile-Based App for Depression Screening. JMIR Mhealth Uhealth 4, e88 (2016).

    Article PubMed PubMed Central Google Scholar 

  155. Ozkanca, Y. et al. Depression Screening from Voice Samples of Patients Affected by Parkinson’s Disease. Digital Biomark. 3, 72–82 (2019).

    Article Google Scholar 

  156. Robin, J., Xu, M., Kaufman, L. D. & Simpson, W. Using Digital Speech Assessments to Detect Early Signs of Cognitive Impairment. Front. Digit Health 3, 749758 (2021).

    Article PubMed PubMed Central Google Scholar 

  157. Konig, A. et al. Objective measurement of gait parameters in healthy and cognitively impaired elderly using the dual-task paradigm. Aging Clin. Exp. Res. 29, 1181–1189 (2017).

    Article PubMed PubMed Central Google Scholar 

  158. Pagano, G. et al. Trial of Prasinezumab in Early-Stage Parkinson’s Disease. N. Engl. J. Med. 387, 421–432 (2022).

    Article CAS PubMed Google Scholar 

  159. Torrado, J. C. et al. Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic ActiveAgeing study. PLoS One 17, e0275747 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  160. Dorsey, E. R. et al. Deep Phenotyping of Parkinson’s Disease. J. Parkinsons Dis. 10, 855–873 (2020).

    Article PubMed PubMed Central Google Scholar 

  161. Sung, H. Y. et al. The prevalence and patterns of pharyngoesophageal dysmotility in patients with early stage Parkinson’s disease. Mov. Disord. 25, 2361–2368 (2010).

    Article PubMed Google Scholar 

  162. Barnes, J. & David, A. S. Visual hallucinations in Parkinson’s disease: a review and phenomenological survey. J. Neurol. Neurosurg. Psychiatry 70, 727–733 (2001).

    Article CAS PubMed PubMed Central Google Scholar 

  163. Winge, K., Skau, A. M., Stimpel, H., Nielsen, K. K. & Werdelin, L. Prevalence of bladder dysfunction in Parkinsons disease. Neurourol. Urodyn. 25, 116–122 (2006).

    Article PubMed Google Scholar 

  164. Mueller, C. A. et al. A self-administered odor identification test procedure using the “Sniffin’ Sticks. Chem. Senses 31, 595–598 (2006).

    Article PubMed Google Scholar 

  165. Elhanbly, S. M., Abdel-Gawad, M. M., Elkholy, A. A. & State, A. F. Nocturnal penile erections: A retrospective study of the role of RigiScan in predicting the response to sildenafil in erectile dysfunction patients. J. Adv. Res. 14, 93–96 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  166. Taore, A., Lobo, G., Turnbull, P. R. & Dakin, S. C. Diagnosis of colour vision deficits using eye movements. Sci. Rep. 12, 7734 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  167. Ozgur, O. K., Emborgo, T. S., Vieyra, M. B., Huselid, R. F. & Banik, R. Validity and Acceptance of Color Vision Testing on Smartphones. J. Neuroophthalmol. 38, 13–16 (2018).

    Article PubMed Google Scholar 

  168. He, R. et al. Olfactory Dysfunction Predicts Disease Progression in Parkinson’s Disease: A Longitudinal Study. Front Neurosci. 14, 569777 (2020).

    Article PubMed PubMed Central Google Scholar 

  169. Iravani, B., Arshamian, A., Schaefer, M., Svenningsson, P. & Lundstrom, J. N. A non-invasive olfactory bulb measure dissociates Parkinson’s patients from healthy controls and discloses disease duration. NPJ Parkinsons Dis. 7, 75 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  170. Taylor, K. I., Staunton, H., Lipsmeier, F., Nobbs, D. & Lindemann, M. Outcome measures based on digital health technology sensor data: data- and patient-centric approaches. NPJ Digit Med. 3, 97 (2020).

    Article PubMed PubMed Central Google Scholar 

  171. Manta, C., Patrick-Lake, B. & Goldsack, J. C. Digital Measures That Matter to Patients: A Framework to Guide the Selection and Development of Digital Measures of Health. Digit Biomark. 4, 69–77 (2020).

    Article PubMed PubMed Central Google Scholar 

  172. Espay, A. J. et al. A roadmap for implementation of patient-centered digital outcome measures in Parkinson’s disease obtained using mobile health technologies. Mov. Disord. 34, 657–663 (2019).

    Article PubMed PubMed Central Google Scholar 

  173. Stephenson, D., Badawy, R., Mathur, S., Tome, M. & Rochester, L. Digital Progression Biomarkers as Novel Endpoints in Clinical Trials: A Multistakeholder Perspective. J. Parkinsons Dis. 11, S103–S109 (2021).

    Article PubMed PubMed Central Google Scholar 

  174. Evers, L. J. W., Peeters, J. M., Bloem, B. R. & Meinders, M. J. Need for personalized monitoring of Parkinson’s disease: the perspectives of patients and specialized healthcare providers. Front. Neurol. 14, 1150634 (2023).

    Article PubMed PubMed Central Google Scholar 

  175. Martinez-Martin, N., Insel, T. R., Dagum, P., Greely, H. T. & Cho, M. K. Data mining for health: staking out the ethical territory of digital phenotyping. NPJ Digit Med. 1, https://doi.org/10.1038/s41746-018-0075-8 (2018).

  176. Berger, A. M. et al. Methodological Challenges When Using Actigraphy in Research. J. Pain. Symptom Manag. 36, 191–199 (2008).

    Article Google Scholar 

  177. Maetzler, W., Klucken, J. & Horne, M. A clinical view on the development of technology-based tools in managing Parkinson’s disease. Mov. Disord. 31, 1263–1271 (2016).

    Article PubMed Google Scholar 

  178. Roussos, G. et al. Identifying and characterising sources of variability in digital outcome measures in Parkinson’s disease. NPJ Digit Med. 5, 93 (2022).

    Article PubMed PubMed Central Google Scholar 

  179. Djeldjli, D., Reguig, F. B. & Maaoui, C. A robust photoplethysmographic imaging for contactless heart and respiratory rates measurement using a simple webcam. Int. J. Med. Eng. Inform. 13, 224–236 (2021).

    Google Scholar 

  180. Grossman, P., Spoerle, M. & Wilhelm, F. H. Reliability of respiratory tidal volume estimation by means of ambulatory inductive plethysmography. Biomed. Sci. Instrum. 42, 193–198 (2006).

    PubMed Google Scholar 

  181. Sano, E. et al. Developing a novel mobile wearable tool of measuring real-time respiratory pattern and thoracic motion non-invasively. Respirology 24, 104 (2019).

    Article Google Scholar 

  182. Sneddon, G. et al. Cardiorespiratory physiology remotely monitored via wearable wristband photoplethysmography: Feasibility and initial benchmarking. Thorax 73, A197 (2018).

    Google Scholar 

  183. Yilmaz, G. et al. A Wearable Stethoscope for Long-Term Ambulatory Respiratory Health Monitoring. Sensors 20, https://doi.org/10.3390/s20185124 (2020).

  184. Sheikh, M., Qassem, M. & Kyriacou, P. A. Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Front. Digit Health 3, 662811 (2021).

    Article PubMed PubMed Central Google Scholar 

  185. Gonzalez-Robles, C. et al. Outcome Measures for Disease-Modifying Trials in Parkinson’s Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. J. Parkinsons Dis. 13, 1011–1033 (2023).

    Article PubMed PubMed Central Google Scholar 

  186. Chaudhuri, K. R. et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: Results from an international pilot study. Mov. Disord. 22, 1901–1911 (2007).

    Article PubMed Google Scholar 

  187. EU. Horizon 2020 Work Programme 2014-2015 (EU, 2014)

  188. Elhanbly, S. & Elkholy, A. Nocturnal penile erections: the role of RigiScan in the diagnosis of vascular erectile dysfunction. J. Sex. Med. 9, 3219–3226 (2012).

    Article PubMed Google Scholar 

  189. Ortiz-Tudela, E., Martinez-Nicolas, A., Campos, M., Rol, M. A. & Madrid, J. A. A new integrated variable based on thermometry, actimetry and body position (TAP) to evaluate circadian system status in humans. PLoS Comput. Biol. 6, e1000996 (2010).

    Article PubMed PubMed Central Google Scholar 

  190. Mankins, J. C. Technology readiness levels. White Pap. 6, 1995 (1995).

    Google Scholar 

npj Digital Medicine (npj Digit. Med.) ISSN 2398-6352 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  •  
  • Use of cookies
  •  
  •  
  • Legal notice
  •  
  • Accessibility statement
  •  
  • Terms & Conditions
  •  
  • Your US state privacy rights
Springer Nature

© 2024 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

 

ziekte van Parkinson, pesticiden, landbouwgif, fijnstof, the Lancet, neuroloog Bas Bloem, Smartwatches, mobiele telefoon, symptomen, slaapproblemen


Plaats een reactie ...

Reageer op "Mobiele telefoons kunnen onzichtbare symptomen van de ziekte van Parkinson in kaart brengen via slaapproblemen, blijkt uit Nederlandse studie"


Gerelateerde artikelen

  • Mobiele telefoons kunnen onzichtbare symptomen van de ziekte van Parkinson in kaart brengen via slaapproblemen, blijkt uit Nederlandse studie

  • Parkinson: Aantal patienten met ziekte van Parkinson is schrikbarend gegroeit, vooral door milieuvervuiling als fijnstof en landbouwgif die worden gebruikt in de landbouw en tuinbouw
 
nivolumab coronavirus ziekte van Parkinson overall overleving Covid-19 pesticiden neuroloog Bas Bloem symptomen immuuntherapie mobiele telefoon the Lancet slaapproblemen fijnstof landbouwgif Smartwatches

Gerelateerde artikelen

Mobiele telefoons kunnen onzichtbare >> Parkinson: Aantal patienten >>

Navigatie

  • References >>
Disclaimer Sitemap Donaties Boeken Coaching Vragen Adressen Recepten Contact