28 september 2021: Bron:  2021 Apr 12; 124(8): 1379–1387. Published online 2021 Feb 24. (Met dank aan arts-bioloog drs. Valstar die deze studie aan mij doorstuurde.) 

Een spray met nabiximols cannabinoïde = mix van THC en CBD (zie ook info over cannabis op kanker-actueel) samen met een op de patient afgestemde dosis  temozolomide bij patiënten met een eerste recidief van een hersentumor van het type glioblastoom na eerder te zijn behandeld met standaard behandeling die geldt voor glioblastomas geeft goede resultaten op de overleving. Dit blijkt uit twee kleine studies, waarvan 1 studie wel gerandomiseerd en placebo gecontroleerd, maar beide studies zijn uitgevoerd met kleine aantal patiënten. De open studie omvattte 9 patiënten die allemaal de spray gebruikten. De placebo gecontroleerde studie omvatte 21 patiënten (12 voor de spray vs 9 voor de placebo). Zie hier beide studieprotocollen: Deel 1– NCT01812603; Deel 2– NCT01812616

Uit een samengevoegde analyse van beide studies werd geconstateerd dat de overleving duidelijk verschilde tussen beide groepen. Na 1 jaar 83% voor de nabiximolgroep van patiënten en 44% voor met placebo behandelde patiënten (p = 0,042). In de placebogroep stierven 2 patiënten binnen de eerste 40 dagen na opgenomen te zijn in de placebogroep. Er waren geen extra bijwerkingen door de nabiximols cannabinoïde spray in vergelijking met de bijwerkingen die temozolomide veroorzaakt. 

De gemiddelde leeftijd was 57,8 jaar in beide behandelingsgroepen (nabiximol mediaan 59 jaar, bereik: 39-72 jaar; placebo mediaan 57 jaar, bereik: 43-71 jaar). In de behandelingsgroepen met nabiximol en placebo was respectievelijk 41,7% en 88,9% van de patiënten man.
De gemiddelde tijd tot de diagnose van het recidief vanaf de initiële diagnose in de nabiximolgroep was 23,7 maanden (mediaan 22,9 maanden, spreiding: 3,1-43,4 maanden;) en in de placdebogroep 21,7 maanden (mediaan 19,6 maanden, spreiding: 6,2-55,7 maanden;).
De gemiddelde tijd tot patiënten die deelnamen aan het onderzoek na de diagnose van recidief was in de nabiximolgroep 1,6 maanden (mediaan 0,8 maanden, bereik: 0,4-6,8 maanden;) en in de placdebogroep 0,8 maanden (mediaan 0,8 maanden, bereik: 0,1-2,0 maanden;).

In de gerandomiseerde studie waren na 1 jaar 10 van de 12 patiënten (83,3%) die nabiximol gebruikten in leven versus vier van de negen patiënten (44,4%) die een placebo gebruikten; hoewel de studie niet statistisch onderbouwd was om de OS te vergelijken, bereikte dit verschil in 1-jaarsoverleving in het voordeel van nabiximol een nominale statistische significantie (p = 0,042, log-rank-test;) Fig. 3).

An external file that holds a picture, illustration, etc.
Object name is 41416_2021_1259_Fig3_HTML.jpg
Kaplan–Meier survival curves (randomised safety analysis set).

Patients who did not die during the 1-year analysis period were censored and marked by a +. If a patient was alive at the end of treatment, then the end of treatment visit was the date at which they were censored. Otherwise if a patient withdrew, they were censored at the date of the survival status review. If a patient was lost to follow-up then they were censored at the last known visit date. The number of patients at risk at a given timepoint was the number still alive or who had not been censored.

Tweejaarsoverlevingsgegevens van electieve follow-up van alle patiënten (deel 1 en 2) gedurende maximaal 27,5 maanden buiten het protocol waren ook beschikbaar, met een overall overleving (OS) na 2 jaar van 50% voor patiënten behandeld met nabiximol en 22% voor degenen die behandeld waren met een  placebo (nominale p = 0.134, log-rank test).

Het volledige studierapport waarin beide studies tot in detail zijn beschreven en geanalyseerd is gratis in te zien. Klik op de titel van het abstract:

ABSTRACT

Background

Preclinical data suggest some cannabinoids may exert antitumour effects against glioblastoma (GBM). Safety and preliminary efficacy of nabiximols oromucosal cannabinoid spray plus dose-intense temozolomide (DIT) was evaluated in patients with first recurrence of GBM.

Methods

Part 1 was open-label and Part 2 was randomised, double-blind, and placebo-controlled. Both required individualised dose escalation. Patients received nabiximols (Part 1, n = 6; Part 2, n = 12) or placebo (Part 2 only, n = 9); maximum of 12 sprays/day with DIT for up to 12 months. Safety, efficacy, and temozolomide (TMZ) pharmacokinetics (PK) were monitored.

Results

The most common treatment-emergent adverse events (TEAEs; both parts) were vomiting, dizziness, fatigue, nausea and headache. Most patients experienced TEAEs that were grade 2 or 3 (CTCAE). In Part 2, 33% of both nabiximols- and placebo-treated patients were progression-free at 6 months. Survival at 1 year was 83% for nabiximols- and 44% for placebo-treated patients (p = 0.042), although two patients died within the first 40 days of enrolment in the placebo arm. There were no apparent effects of nabiximols on TMZ PK.

Conclusions

With personalised dosing, nabiximols had acceptable safety and tolerability with no drug–drug interaction identified. The observed survival differences support further exploration in an adequately powered randomised controlled trial.

Clinical trial registration

ClinicalTrials.gov: Part 1– NCT01812603; Part 2– NCT01812616

SUPPLEMENTARY INFORMATION

ACKNOWLEDGEMENTS

We are indebted to the patients who took part in the trial, as well as to the staff at the clinical research sites. We thank Dr Marcel Kamp for his contribution to the review of this manuscript. The research was supported by the National Institute for Health Research (NIHR) infrastructure at Leeds. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

GWCA1208 study group

Catherine McBain6, Brian Haylock7, Paul Mulholland8, Christopher Herbert9, Allan James10, Mohan Hingorani11, Joerg Berrouschot12, Rainer Fietkau13, Jens Panse14

AUTHOR CONTRIBUTIONS

Involved in analysis, interpretation of trial data, contributed to the writing and review of the manuscript: S.M., B.T., D.C. D.C. was responsible for the statistical analysis. Involved in the acquisition of trial data, interpretation of trial data and contributed to the writing and review of the manuscript: S.S., M.S., M.J., L.B. and C.T.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This trial was conducted in accordance with International Council for Harmonisation Good Clinical Practice guidelines and ethical principles that have their origin in the Declaration of Helsinki. The research protocol was approved by the relevant Institutional Review Board or Independent Ethics Committee at each site, including: The NRES Committee Yorkshire & The Humber—Leeds East. The Ethics Committee of the State Medical Association of Thuringia in consultation with: The Ethics Committee of Friedrich-Alexander at the University of Erlangen-Nuremberg. The Ethics Committee of the Faculty of Medicine at the University of Duesseldorf. The Ethics Committee of the Faculty of Medicine at the Rheinisch-Westfälischen Technical College, Aachen. All patients provided written informed consent.

DATA AVAILABILITY

The trial protocol is registered on the ClinicalTrials.gov website (Part 1: NCT01812603; Part 2: NCT01812616). Supplemental Materials contain additional information about individual site and patient stopping rules, the safety review team, pharmacokinetic analysis, statistical methods, randomisation, patients excluded from the pharmacokinetic analysis, and Magnetic Resonance Imaging scans. Demographics and baseline characteristics are summarised in Supplemental Table 1. Maximum treatment-emergent adverse event toxicities for patients who experienced a grade 2 or higher treatment-emergent adverse event are summarised in Supplemental Table 2. EORTC-predicted vs. actual overall survival for the randomised element of the trial is summarised in Supplemental Table 3. EORTC-predicted vs. actual overall survival for the open-label element of the trial is summarised in Supplemental Table 4. Pharmacokinetic parameters for temozolomide and 4-amino-5-imidazole-carboxamide from the open-label element of the trial are summarised in Supplemental Table 5. Pharmacokinetic parameters for temozolomide and 4-amino-5-imidazole-carboxamide from the randomised element of the trial are summarised in Supplemental Table 6. The trial schema is supplied in Supplemental Fig. 1.

COMPETING INTERESTS

D.C., S.M. and B.T. are employed by and hold share options in GW. C.T., M.S., M.J., L.B. and S.S. have no conflicts of interest to declare.

FUNDING INFORMATION

The trial was sponsored by GW Research Ltd (GW). Medical writing support was provided to authors by Lesley Taylor, PhD, of Alchemy Medical Writing Ltd., and funded by Greenwich Biosciences, Inc. GW provided funding to the Leeds Hospital Clinical Fellowship program, which supported M.J.’s Fellowship. The Spanish Medical Oncology Society awarded a personal grant to M.J.

FOOTNOTES

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the GWCA1208 study group are listed above Acknowledgements.

CONTRIBUTOR INFORMATION

on behalf of the GWCA1208 study group:

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1038/s41416-021-01259-3.

REFERENCES

1. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009–2013. Neuro Oncol. 2016;18(Suppl 5):v1–v75. doi: 10.1093/neuonc/now207. [PubMed] [CrossRef[]
2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. [PubMed] [CrossRef[]
3. Seystahl K, Wick W, Weller M. Therapeutic options in recurrent glioblastoma—an update. Crit. Rev. Oncol. Hematol. 2016;99:389–408. doi: 10.1016/j.critrevonc.2016.01.018. [PubMed] [CrossRef[]
4. Carson KA, Grossman SA, Fisher JD, Shaw EG. Prognostic factors for survival in adult patients with recurrent glioma enrolled on new approaches to brain tumour therapy ‘NABTT’ CNS consortium phase I and II clinical trials. J. Clin. Oncol. 2007;25:2601–2606. doi: 10.1200/JCO.2006.08.1661. [PMC free article] [PubMed] [CrossRef[]
5. Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J. Clin. Oncol. 2010;28:3838–3843. doi: 10.1200/JCO.2010.30.0582. [PMC free article] [PubMed] [CrossRef[]
6. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15:e395–e403. doi: 10.1016/S1470-2045(14)70011-7. [PubMed] [CrossRef[]
7. Mun, E. J., Babiker, H. M., Weinberg, U., Kirson, E. D. & Von Hoff, D.D. Tumor-treating fields: a fourth modality in cancer treatment. Clin. Cancer Res24, 266–275 (2018). [PubMed]
8. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur. J. Cancer. 2012;48:2192–2202. doi: 10.1016/j.ejca.2012.04.011. [PubMed] [CrossRef[]
9. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs. temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–2543. doi: 10.1001/jama.2015.16669. [PubMed] [CrossRef[]
10. Tanaka S, Akimoto J, Narita Y, Oka H, Tashiro T. Is the absolute value of O(6)-methylguanine-DNA methyltransferase gene messenger RNA a prognostic factor, and does it predict the results of treatment of glioblastoma with temozolomide? J. Neurosurg. 2014;121:818–826. doi: 10.3171/2014.6.JNS132535. [PubMed] [CrossRef[]
11. Hegi ME, Genbrugge E, Gorlia T, Stupp R, Gilbert MR, Chinot OL, et al. MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide. A pooled analysis of four clinical trials. Clin. Cancer Res. 2019;25:1809–1816. doi: 10.1158/1078-0432.CCR-18-3181. [PMC free article] [PubMed] [CrossRef[]
12. Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393:678–688. doi: 10.1016/S0140-6736(18)31791-4. [PubMed] [CrossRef[]
13. Maroon J, Bost J. Review of the neurological benefits of phytocannabinoids. Surg. Neurol. Int. 2018;9:91. doi: 10.4103/sni.sni_45_18. [PMC free article] [PubMed] [CrossRef[]
14. Pertwee RG. Neuropharmacology and therapeutic potential of cannabinoids. Addict. Biol. 2000;5:37–46. doi: 10.1080/13556210071252. [PubMed] [CrossRef[]
15. Pertwee, R. G. In Cannabinoids (ed. Di Marzo V.) pp 32–83 (Kluwer Academic/Plenum Publishers, New York, USA, 2004).
16. Mechoulam R, Hanus L. Cannabidiol: an overview of some chemical and pharmacological aspects. Part I Chem. Asp. Chem. Phys. Lipids. 2012;121:35–43. doi: 10.1016/S0009-3084(02)00144-5. [PubMed] [CrossRef[]
17. Grotenhermen F. Pharmacology of cannabinoids. Neuro Endocrinol. Lett. 2004;25:14–23. [PubMed[]
18. Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802. doi: 10.1111/epi.12631. [PMC free article] [PubMed] [CrossRef[]
19. Schubart C, Sommer IE, Fusar-Poli P, de Witte L, Kahn RS, Boks MP. Cannabidiol as a potential treatment for psychosis. Eur. Neuropsychopharmacol. 2014;24:51–64. doi: 10.1016/j.euroneuro.2013.11.002. [PubMed] [CrossRef[]
20. Espejo-Porras F, Fernández-Ruiz J, Pertwee RG, Mechoulam R, García C. Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology. 2013;75:155–163. doi: 10.1016/j.neuropharm.2013.07.024. [PubMed] [CrossRef[]
21. Nabissi M, Morelli MB, Santoni M, Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis. 2013;34:48–57. doi: 10.1093/carcin/bgs328. [PubMed] [CrossRef[]
22. Hassan S, Eldeeb K, Millns PJ, Bennett AJ, Alexander SP, Kendall DA. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. Br. J. Pharmacol. 2014;171:2426–2439. doi: 10.1111/bph.12615. [PMC free article] [PubMed] [CrossRef[]
23. Brown KJ, Laun AS, Song ZH. Cannabidiol, a novel inverse agonist for GPR12. Biochem. Biophys. Res. Commun. 2017;493:451–454. doi: 10.1016/j.bbrc.2017.09.001. [PMC free article] [PubMed] [CrossRef[]
24. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc. Natl Acad. Sci. USA. 2017;114:11229–11234. doi: 10.1073/pnas.1711351114. [PMC free article] [PubMed] [CrossRef[]
25. Laun AS, Song ZH. GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem. Biophys. Res. Commun. 2017;490:17–21. doi: 10.1016/j.bbrc.2017.05.165. [PubMed] [CrossRef[]
26. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008;153:199–215. doi: 10.1038/sj.bjp.0707442. [PMC free article] [PubMed] [CrossRef[]
27. Lu HC, Mackie K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry. 2016;79:516–525. doi: 10.1016/j.biopsych.2015.07.028. [PMC free article] [PubMed] [CrossRef[]
28. Ellert-Miklaszewska A, Ciechomska I, Kaminsk B. Cannabinoid signaling in glioma cells. Adv. Exp. Med. Biol. 2013;986:209–220. doi: 10.1007/978-94-007-4719-7_11. [PubMed] [CrossRef[]
29. Rocha FC, Dos Santos Júnior JG, Stefano SC, da Silveira DX. Systematic review of the literature on clinical and experimental trials on the antitumor effects of cannabinoids in gliomas. J. Neurooncol. 2014;116:11–24. doi: 10.1007/s11060-013-1277-1. [PubMed] [CrossRef[]
30. Dimitru CA, Sandalcioglu IE, Karsak M. Cannabinoids in glioblastoma therapy: new applications for old drugs. Front. Mol. Neurosci. 2018;11:159. doi: 10.3389/fnmol.2018.00159. [PMC free article] [PubMed] [CrossRef[]
31. Torres S, Lorente M, Rodríguez-Fornés F, Hernández-Tiedra S, Salazar M, García-Taboada E, et al. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther. 2011;10:90–103. doi: 10.1158/1535-7163.MCT-10-0688. [PubMed] [CrossRef[]
32. Guzmán M, Duarte MJ, Blázquez C, Ravina J, Rosa MC, Galve-Roperh I, et al. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer. 2006;95:197–203. doi: 10.1038/sj.bjc.6603236. [PMC free article] [PubMed] [CrossRef[]
33. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. doi: 10.1007/s00401-007-0243-4. [PMC free article] [PubMed] [CrossRef[]
34. Lichtman AH, Lux EA, McQuade R, Rossetti S, Sanchez R, Sun W, et al. Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. J. Pain Symptom Manag. 2018;55:179–188. doi: 10.1016/j.jpainsymman.2017.09.001. [PubMed] [CrossRef[]
35. Fallon MT, Lux AE, McQuade R, McQuade R, Rossetti S, Sanchez R, et al. Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies. Br. J. Pain. 2017;11:119–133. doi: 10.1177/2049463717710042. [PMC free article] [PubMed] [CrossRef[]
36. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, LaPlant BR, et al. The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol. 2007;9:29–38. doi: 10.1215/15228517-2006-025. [PMC free article] [PubMed] [CrossRef[]
37. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, ESMO Guidelines Working Group. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014;25(Suppl 3):iii93–iii101. doi: 10.1093/annonc/mdu050. [PubMed] [CrossRef[]
38. Prognostic calculator for survival for patient with recurrent GBM. http://www.eortc.be/tools/recgbmcalculator/calculator.aspx (2020).
39. Norden AD, Lesser GL, Drappatz J, Ligon KL, Hammond SN, Lee EQ, et al. Phase 2 study of dose-intense temozolomide in recurrent glioblastoma. Neuro Oncol. 2013;15:930–935. doi: 10.1093/neuonc/not040. [PMC free article] [PubMed] [CrossRef[]
40. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–2316. doi: 10.1001/jama.2017.18718. [PMC free article] [PubMed] [CrossRef[]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK


Plaats een reactie ...

Reageer op "Nabiximols cannabinoïde spray = mix van THC en CBD geeft samen met temozolomide bij patiënten met recidief van een hersentumor type glioblastoom bijzonder goede resultaten"


Gerelateerde artikelen
 

Gerelateerde artikelen

Studiepublicaties van niet-toxische >> Nabiximols cannabinoïde spray >> Een Ketogeen dieet naast chemo >> Surviving terminal cancer: >> Antineoplastonmethode van >> Hyperthermie bij hersentumoren: >> Monoterpene perillyl alcohol >> Immuuntherapie bij hersentumoren >> Voeding en voedingsuppletie >> Complementaire - niet toxische >>