Zie ook dit artikel: https://kanker-actueel.nl/wat-is-een-darmmicrobioomtest-en-wat-zegt-een-uitslag-over-de-status-van-je-darmen-en-gezondheid-in-het-algemeen.html

Wie advies wilt over hoe het microbioom te verbeteren zou contact op kunnen nemen met deze website: Www.microbiome-Center.nl Voor zowel artsen als individuele burgers staat een groep van artsen en wetenschappers klaar om u een persoonlijk advies te geven 

7 september 2022: Bron: Medisch Contact en Science Translational Medicine

Uit onderzoek van wetenschappers van het UMCG blijkt dat hoe meer de darmflora (darmmicrobiota) van transplantatiepatiënten van vaste organen, zoals niertransplantaties en levertransplantaties, afwijkt van de darmflora van gezonde mensen hoe groter de kans is dat deze patiënten overlijden gerelateerd aan de transplantatie. 

Het is al langer bekend dat de darmflora (darmmicrobiota) een grote rol speelt in ons immuunsysteem en ook bij stamceltransplantaties en beenmergtransplantaties een rol speelt in de kansen op succes van de transplantatie. Op basis daarvan onderzochten wetenschappers van het UMCG fecale monsters van patiënten die een niertransplantatie of levertransplantatie hadden ondergaan en vergeleken dat met fecale monsters van een controlegroep van gezonde mensen die overeen kwamen qua leeftijd en geslacht en lichaamsgewicht o.a.

Hun belangrijkste conclusie die uit het onderzoek kwam was dat de darmflora van patiënten die een niertransplantatie of levertransplantatie hadden ondergaan na een nier- of levertransplantatie veel minder divers en anders van samenstelling waren wat betreft de bacteriën in vergelijking met de controlegroep. De onderzoekers zagen een toename van ongezonde soorten bacteriën en een verhoogde prevalentie en diversiteit van antibioticaresistentiegenen en virulentiefactoren. Deze veranderde darmflora werd zelfs gezien tot 20 jaar na de transplantatie had plaatsgevonden.  Het gebruik van immuunonderdrukkende medicijnen en antibiotica speelde daarin een grote rol. 

De wetenschappers stellen in hun conclusie dat artsen zich voordat de transplantatie gaat plaatsvinden zij zich eerst zouden moeten richten op verbetering van de diversiteit en samenstelling van de darmflora (darmmicrobiota).

Het volledige studierapport is gepubliceerd in Science Translational Medicine en gratis in te zien of te downloaden. Klik op de titel voor het studierapport:

Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation

SCIENCE TRANSLATIONAL MEDICINE
31 Aug 2022
Vol 14, Issue 660


Damaging dysbiosis

Reduced gut microbial diversity after allogeneic stem cell transplantation has been associated with decreased survival, but the role of the gut microbiome after solid organ transplantation is not as well studied. Here, Swarte and colleagues studied dysbiosis of the gut microbiome in a large cohort of individuals with end-stage liver or kidney disease before and after organ transplantation. Transplant recipients suffered from gut dysbiosis, with lower diversity and increased abundance of unhealthy species, virulence factors, and antibiotic resistance genes. Furthermore, immunosuppressive drug use was associated with dysbiosis, and increased dysbiosis was associated with increased mortality after transplantation. These results suggest that microbiome-targeted interventions could potentially affect outcomes after solid organ transplantation.

Abstract

Organ transplantation is a life-saving treatment for patients with end-stage disease, but survival rates after transplantation vary considerably. There is now increasing evidence that the gut microbiome is linked to the survival of patients undergoing hematopoietic cell transplant, yet little is known about the role of the gut microbiome in solid organ transplantation. We analyzed 1370 fecal samples from 415 liver and 672 renal transplant recipients using shotgun metagenomic sequencing to assess microbial taxonomy, metabolic pathways, antibiotic resistance genes, and virulence factors. To quantify taxonomic and metabolic dysbiosis, we also analyzed 1183 age-, sex-, and body mass index–matched controls from the same population. In addition, a subset of 78 renal transplant recipients was followed longitudinally from pretransplantation to 24 months after transplantation. Our data showed that both liver and kidney transplant recipients suffered from gut dysbiosis, including lower microbial diversity, increased abundance of unhealthy microbial species, decreased abundance of important metabolic pathways, and increased prevalence and diversity of antibiotic resistance genes and virulence factors. These changes were found to persist up to 20 years after transplantation. Last, we demonstrated that the use of immunosuppressive drugs was associated with the observed dysbiosis and that the extent of dysbiosis was associated with increased mortality after transplantation. This study represents a step toward potential microbiome-targeted interventions that might influence the outcomes of recipients of solid organ transplantation.

Acknowledgments

We wish to acknowledge the services of the Lifelines Cohort Study, the contributing research centers delivering data to Lifelines, and all the study participants. The Lifelines Biobank initiative has been made possible by subsidy from the Dutch Ministry of Health, Welfare, and Sport, the Dutch Ministry of Economic Affairs, the University Medical Center Groningen (UMCG the Netherlands), University of Groningen, and the Northern Provinces of the Netherlands. We would like to thank the Center for Information Technology of the University of Groningen (RUG) for support and for providing access to the Peregrine high-performance computing cluster and the Genomic Coordination Center (UMCG and RUG) for support and for providing access to Calculon and Boxy high-performance computing clusters. Metagenomics library preparation and sequencing was done at Novogene. We would like to thank S. A. Mayle for the graphical illustrations used in this study. We also thank K. Mc Intyre for English and content editing. Last, we would like to thank all TransplantLines investigators who were not coauthors of the current manuscript: C. Annema, F. A. J. A. Bodewes, M. T. de Boer, K. Damman, M. H. de Borst, A. Diepstra, G. Dijkstra, M. E. Erasmus, C. T. Gan, E. Hak, B. G. Hepkema, F. Klont, H. G. D. Leuvenink, W. S. Lexmond, H. G. M. Niesters, L. J. van Pelt, R. A. Pol, A. V. Ranchor, M. J. Siebelink, R. J. H. J. A. Slart, D. J. Touw, M. C. van den Heuvel, C. van Leer-Buter, M. van Londen, E. A. M. Verschuuren, and M. J. Vos.
Funding: Sequencing of the Lifelines cohort and the liver part of the TransplantLines cohort was funded by a grant from the CardioVasculair Onderzoek Nederland grant (CVON 2012-03) to M.R.H.-F., J.F., and A.Z. Sequencing of the kidney part of the TransplantLines cohort was funded by a grant from the Dutch NWO/TTW/DSM partnership program Animal Nutrition and Health (project number 14939) to S.J.L.B. R.G. was supported by the collaborative TIMID project (LSHM18057-SGF) financed by the PPP allowance made available by Top Sector Life Sciences & Health to Samenwerkende Gezondheidsfondsen (SGF) to stimulate public-private partnerships and cofinancing by health foundations that are part of the SGF. R.K.W. is supported by the Seerave Foundation. A.Z. is supported by the ERC Starting Grant 715772, Netherlands Organization for Scientific Research NWO-VIDI grant 016.178.056, the Netherlands Heart Foundation CVON grant 2018-27, and the NWO Gravitation grant ExposomeNL 024.004.017. V.E.d.M. is supported by Netherlands Organization for Scientific Research NWO-VENI grant 09150161810030. J.F. is supported by NWO Gravitation Netherlands Organ-on-Chip Initiative (024.003.001), the ERC Consolidator grant 101001678, and the Netherlands Heart Foundation CVON grant 2018-27. C.W. is further supported by a European Research Council (ERC) advanced grant (ERC-671274) and an NWO Spinoza award (NWO SPI 92-266).
Author contributions: J.C.S., Y.L., and S.H. drafted the first version of the manuscript. J.C.S., J.R.B., and R.K.W. wrote and finalized subsequent versions of the manuscript. All authors critically revised and approved the final version of the manuscript. J.C.S., S.H., J.R.B., and R.G. performed the statistical analyses. R.G. designed and implemented metagenomic data analysis pipelines. A.V.V. and A.P. assisted in other statistical analyses, interpretation of data, and drafting of the manuscript. R.M.D., M.F.E., A.W.G.-N., D.K., V.C., M.A.Y.K., A.K., A.P., T.J.K., B.H.J., S.P.B., J.S.F.S., M.R.H.-F., R.J.P., F.J.C.C., V.E.d.M., C.W., E.A.M.F., A.Z., J.F., H.J.M.H., H.B., S.J.L.B., and R.K.W. collected data, assisted in study planning, and critically reviewed the manuscript. H.J.M.H., H.B., S.J.L.B., and R.K.W. conceived, coordinated, and supported the study.
Competing interests: R.K.W. acted as consultant for Takeda Pharmaceutical. The other authors declare that they have no competing interests.
Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. The raw microbiome sequencing data and basic phenotypes used in this study are available at the European Genome-Phenome Archive under accession numbers EGAD00001008907 (https://ega-archive.org/datasets/EGAD00001008907), EGAS00001006257 (https://ega-archive.org/studies/EGAS00001006257), and EGAS00001006258 (https://ega-archive.org/studies/EGAS00001006258). Access requests to the EGA will be assessed by the UMCG TransplantLines Investigators data access committee and will be granted to all reasonable requests. Scripts used for data analysis can be found at (46) and at https://github.com/GRONINGEN-MICROBIOME-CENTRE/TransplantLines.

Supplementary Materials

This PDF file includes:

Materials and Methods
Figs. S1 to S10
References (4757)

Other Supplementary Material for this manuscript includes the following:

Tables S1 to S49
MDAR Reproducibility Checklist

REFERENCES AND NOTES

1
S. G. Tullius, H. Rabb, Improving the supply and quality of deceased-donor organs for transplantation. N. Engl. J. Med. 379, 693–694 (2018).
2
A. S. Chong, M.-L. Alegre, The impact of infection and tissue damage in solid-organ transplantation. Nat. Rev. Immunol. 12, 459–471 (2012).
3
D. N. Mori, D. Kreisel, J. N. Fullerton, D. W. Gilroy, D. R. Goldstein, Inflammatory triggers of acute rejection of organ allografts. Immunol. Rev. 258, 132–144 (2014).
4
F. Sommer, J. M. Anderson, R. Bharti, J. Raes, P. Rosenstiel, The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630–638 (2017).
5
C. Acharya, J. S. Bajaj, Chronic liver diseases and the microbiome: Translating our knowledge of gut microbiota to management of chronic liver disease. Gastroenterology 160, 556–572 (2021).
6
X. Wang, S. Yang, S. Li, L. Zhao, Y. Hao, J. Qin, L. Zhang, C. Zhang, W. Bian, L. Zuo, X. Gao, B. Zhu, X. G. Lei, Z. Gu, W. Cui, X. Xu, Z. Li, B. Zhu, Y. Li, S. Chen, H. Guo, H. Zhang, J. Sun, M. Zhang, Y. Hui, X. Zhang, X. Liu, B. Sun, L. Wang, Q. Qiu, Y. Zhang, X. Li, W. Liu, R. Xue, H. Wu, D. Shao, J. Li, Y. Zhou, S. Li, R. Yang, O. B. Pedersen, Z. Yu, S. D. Ehrlich, F. Ren, Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69, 2131–2142 (2020).
7
L. Lahti, J. Salojärvi, A. Salonen, M. Scheffer, W. M. de Vos, Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
8
D. Gonze, L. Lahti, J. Raes, K. Faust, Multi-stability and the origin of microbial community types. ISME J. 11, 2159–2166 (2017).
9
J. C. Swarte, R. M. Douwes, S. Hu, A. Vich Vila, M. F. Eisenga, M. van Londen, A. W. Gomes-Neto, R. K. Weersma, H. J. M. Harmsen, S. J. L. Bakker, Characteristics and dysbiosis of the gut microbiome in renal transplant recipients. J. Clin. Med. Res. 99, 386 (2020).
10
M. K. Annavajhala, A. Gomez-Simmonds, N. Macesic, S. B. Sullivan, A. Kress, S. D. Khan, M. J. Giddins, S. Stump, G. I. Kim, R. Narain, E. C. Verna, A.-C. Uhlemann, Colonizing multidrug-resistant bacteria and the longitudinal evolution of the intestinal microbiome after liver transplantation. Nat. Commun. 10, 4715 (2019).
11
M. Baghai Arassi, G. Zeller, N. Karcher, M. Zimmermann, B. Toenshoff, The gut microbiome in solid organ transplantation. Pediatr. Transplant. 24, e13866 (2020).
12
A. V. Vila, V. Collij, S. Sanna, T. Sinha, F. Imhann, A. R. Bourgonje, Z. Mujagic, D. M. A. Jonkers, A. A. M. Masclee, J. Fu, A. Kurilshikov, C. Wijmenga, A. Zhernakova, R. K. Weersma, Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).
13
R. K. Weersma, A. Zhernakova, J. Fu, Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).
14
M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, A. L. Goodman, Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).
15
L. P. Shaw, H. Bassam, C. P. Barnes, A. S. Walker, N. Klein, F. Balloux, Modelling microbiome recovery after antibiotics using a stability landscape framework. ISME J. 13, 1845–1856 (2019).
16
K. Kato, M. Nagao, K. Miyamoto, K. Oka, M. Takahashi, M. Yamamoto, Y. Matsumura, T. Kaido, S. Uemoto, S. Ichiyama, Longitudinal analysis of the intestinal microbiota in liver transplantation. Transplant. Direct 3, e144 (2017).
17
L.-Y. Sun, Y.-S. Yang, W. Qu, Z.-J. Zhu, L. Wei, Z.-S. Ye, J.-R. Zhang, X.-Y. Sun, Z.-G. Zeng, Gut microbiota of liver transplantation recipients. Sci. Rep. 7, 3762 (2017).
18
K. Nakamura, S. Kageyama, T. Ito, H. Hirao, K. Kadono, A. Aziz, K. J. Dery, M. J. Everly, K. Taura, S. Uemoto, D. G. Farmer, F. M. Kaldas, R. W. Busuttil, J. W. Kupiec-Weglinski, Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J. Clin. Invest. 129, 3420–3434 (2019).
19
Y. M. Lei, L. Chen, Y. Wang, A. T. Stefka, L. L. Molinero, B. Theriault, K. Aquino-Michaels, A. S. Sivan, C. R. Nagler, T. F. Gajewski, A. S. Chong, C. Bartman, M.-L. Alegre, The composition of the microbiota modulates allograft rejection. J. Clin. Invest. 126, 2736–2744 (2016).
20
C. M. McIntosh, L. Chen, A. Shaiber, A. M. Eren, M.-L. Alegre, Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).
21
A. Salosensaari, V. Laitinen, A. S. Havulinna, G. Meric, S. Cheng, M. Perola, L. Valsta, G. Alfthan, M. Inouye, J. D. Watrous, T. Long, R. A. Salido, K. Sanders, C. Brennan, G. C. Humphrey, J. G. Sanders, M. Jain, P. Jousilahti, V. Salomaa, R. Knight, L. Lahti, T. Niiranen, Taxonomic signatures of cause-specific mortality risk in human gut microbiome. Nat. Commun. 12, 2671 (2021).
22
J. U. Peled, A. L. C. Gomes, S. M. Devlin, E. R. Littmann, Y. Taur, A. D. Sung, D. Weber, D. Hashimoto, A. E. Slingerland, J. B. Slingerland, M. Maloy, A. G. Clurman, C. K. Stein-Thoeringer, K. A. Markey, M. D. Docampo, M. B. da Silva, N. Khan, A. Gessner, J. A. Messina, K. Romero, M. V. Lew, A. Bush, L. Bohannon, D. G. Brereton, E. Fontana, L. A. Amoretti, R. J. Wright, G. K. Armijo, Y. Shono, M. Sanchez-Escamilla, N. C. Flores, A. A. Tomas, R. J. Lin, L. Y. S. Segundo, G. L. Shah, C. Cho, M. Scordo, I. Politikos, K. Hayasaka, Y. Hasegawa, B. Gyurkocza, D. M. Ponce, J. N. Barker, M.-A. Perales, S. A. Giralt, R. R. Jenq, T. Teshima, N. J. Chao, E. Holler, J. B. Xavier, E. G. Pamer, M. R. M. van den Brink, Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 382, 822–834 (2020).
23
Y. Shono, M. R. M. van den Brink, Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat. Rev. Cancer 18, 283–295 (2018).
24
M. F. Eisenga, A. W. Gomes-Neto, M. van Londen, A. L. Ziengs, R. M. Douwes, S. P. Stam, M. C. J. Osté, T. J. Knobbe, N. R. Hessels, A. M. Buunk, C. Annema, M. J. Siebelink, E. Racz, J. M. Spikman, F. A. J. A. Bodewes, R. A. Pol, S. P. Berger, G. Drost, R. J. Porte, H. G. D. Leuvenink, K. Damman, E. A. M. Verschuuren, V. E. de Meijer, H. Blokzijl, S. J. L. Bakker, Rationale and design of transplantLines: A prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 8, e024502 (2018).
25
R. Gacesa, A. Kurilshikov, A. Vich Vila, T. Sinha, M. A. Y. Klaassen, L. A. Bolte, S. Andreu-Sánchez, L. Chen, V. Collij, S. Hu, J. A. M. Dekens, V. C. Lenters, J. R. Björk, J. C. Swarte, M. A. Swertz, B. H. Jansen, J. Gelderloos-Arends, S. Jankipersadsing, M. Hofker, R. C. H. Vermeulen, S. Sanna, H. J. M. Harmsen, C. Wijmenga, J. Fu, A. Zhernakova, R. K. Weersma, Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
26
V. K. Gupta, M. Kim, U. Bakshi, K. Y. Cunningham, J. M. Davis III, K. N. Lazaridis, H. Nelson, N. Chia, J. Sung, A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 11, 4635 (2020).
27
L. T. Khuat, C. T. Le, C.-C. S. Pai, R. R. Shields-Cutler, S. G. Holtan, A. Rashidi, S. L. Parker, D. Knights, J. I. Luna, C. Dunai, Z. Wang, I. R. Sturgill, K. M. Stoffel, A. A. Merleev, S. K. More, E. Maverakis, H. E. Raybould, M. Chen, R. J. Canter, A. M. Monjazeb, M. Dave, J. L. M. Ferrara, J. E. Levine, D. L. Longo, M. Abedi, B. R. Blazar, W. J. Murphy, Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Sci. Transl. Med. 12, eaay7713 (2020).
28
M. Magruder, A. N. Sholi, C. Gong, L. Zhang, E. Edusei, J. Huang, S. Albakry, M. J. Satlin, L. F. Westblade, C. Crawford, D. M. Dadhania, M. Lubetzky, Y. Taur, E. Littman, L. Ling, P. Burnham, I. De Vlaminck, E. Pamer, M. Suthanthiran, J. R. Lee, Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 10, 5521 (2019).
29
J. Tourret, B. P. Willing, S. Dion, J. MacPherson, E. Denamur, B. B. Finlay, Immunosuppressive treatment alters secretion of ileal antimicrobial peptides and gut microbiota, and favors subsequent colonization by uropathogenic escherichia coli. Transplantation 101, 74–82 (2017).
30
H. Liu, J. Wang, T. He, S. Becker, G. Zhang, D. Li, X. Ma, Butyrate: A double-edged sword for health? Adv. Nutr. 9, 21–29 (2018).
31
M. X. Byndloss, E. E. Olsan, F. Rivera-Chávez, C. R. Tiffany, S. A. Cevallos, K. L. Lokken, T. P. Torres, A. J. Byndloss, F. Faber, Y. Gao, Y. Litvak, C. A. Lopez, G. Xu, E. Napoli, C. Giulivi, R. M. Tsolis, A. Revzin, C. B. Lebrilla, A. J. Bäumler, Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).
32
J. Ellis, X. Fu, J. P. Karl, P. Radcliffe, J. Soares, L. Doherty, C. Hernandez, J. Mason, A. Oliverio, S. Booth, Investigation of vitamin K quinone metabolism by human gut Bacteria. Curr. Dev. Nutr. 4, 392–392 (2020).
33
J. Yang, L. Chen, L. Sun, J. Yu, Q. Jin, VFDB 2008 release: An enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res. 36, D539–D542 (2008).
34
L. Chen, J. Yang, J. Yu, Z. Yao, L. Sun, Y. Shen, Q. Jin, VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 33, D325–D328 (2005).
35
F. Angst, S. Drerup, S. Werle, D. B. Herren, B. R. Simmen, J. Goldhahn, Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 11, 94 (2010).
36
M. R. Taylor, K. L. Flannigan, H. Rahim, A. Mohamud, I. A. Lewis, S. A. Hirota, S. C. Greenway, Vancomycin relieves mycophenolate mofetil–induced gastrointestinal toxicity by eliminating gut bacterial β-glucuronidase activity. Sci. Adv. 5, eaax2358 (2019).
37
Y. Guo, C. M. Crnkovic, K.-J. Won, X. Yang, J. R. Lee, J. Orjala, H. Lee, H. Jeong, Commensal gut bacteria convert the immunosuppressant tacrolimus to less potent metabolites. Drug Metab. Dispos. 47, 194–202 (2019).
38
Z. Zhang, L. Liu, H. Tang, W. Jiao, S. Zeng, Y. Xu, Q. Zhang, Z. Sun, A. Mukherjee, X. Zhang, X. Hu, Immunosuppressive effect of the gut microbiome altered by high-dose tacrolimus in mice. Am. J. Transplant. 18, 1646–1656 (2018).
39
M. R. Weir, J. C. Fink, Safety of medical therapy in patients with chronic kidney disease and end-stage renal disease. Curr. Opin. Nephrol. Hypertens. 23, 306–313 (2014).
40
I. W. Liou, Management of end-stage liver disease. Med. Clin. North Am. 98, 119–152 (2014).
41
B. S. Samuel, E. E. Hansen, J. K. Manchester, P. M. Coutinho, B. Henrissat, R. Fulton, P. Latreille, K. Kim, R. K. Wilson, J. I. Gordon, Genomic and metabolic adaptations of methanobrevibacter smithii to the human gut. Proc. Natl. Acad. Sci. U.S.A. 104, 10643–10648 (2007).
42
P. D. Cani, Metabolism in 2013: The gut microbiota manages host metabolism. Nat. Rev. Endocrinol. 10, 74–76 (2014).
43
A. Enache-Angoulvant, C. Hennequin, Invasive saccharomyces infection: A comprehensive review. Clin. Infect. Dis. 41, 1559–1568 (2005).
44
J. Li, E. A. Rettedal, E. van der Helm, M. Ellabaan, G. Panagiotou, M. O. A. Sommer, Antibiotic treatment drives the diversification of the human gut resistome. Genomics Proteomics Bioinformatics 17, 39–51 (2019).
45
C. Martino, J. T. Morton, C. A. Marotz, L. R. Thompson, A. Tripathi, R. Knight, K. Zengler, A novel sparse compositional technique reveals microbial perturbations. mSystems 4, e00016-19 (2019).
46
J. C. Swarte, Y. Li, S. Hu, J. R. Bjork, R. Gacesa, A. Vich Vila, R. M. Douwes, V. Collij, A. Kurilshikov, A. Post, M. A. Y. Klaasen, M. F. Eisenga, A. W. Gomes-Neto, D. Kremer, B. H. Jansen, T. J. Knobbe, P. S. Berger, J. S. Sanders, M. R. Heiner-Fokkema, R. J. Porte, F. J. C. Cuperus, V. E. Meijer, C. Wijmenga, E. A. M. Fesen, A. Zhernakova, J. Fu, H. J. M. Harmsen, H. Blokzijl, S. Bakker, R. K. Weersma, Gut Microbiome Dysbiosis is Associated with Increased Mortality following Solid Organ Transplantation (Zenodo, 2022); http://dx.doi.org/10.5281/ZENODO.6952898.
47
L. J. McIver, G. Abu-Ali, E. A. Franzosa, R. Schwager, X. C. Morgan, L. Waldron, N. Segata, C. Huttenhower, bioBakery: A meta’omic analysis environment. Bioinformatics 34, 1235–1237 (2018).
48
B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
49
D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli, A. Tett, C. Huttenhower, N. Segata, MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
50
E. A. Franzosa, L. J. McIver, G. Rahnavard, L. R. Thompson, M. Schirmer, G. Weingart, K. S. Lipson, R. Knight, J. G. Caporaso, N. Segata, C. Huttenhower, Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
51
J. Kaminski, M. K. Gibson, E. A. Franzosa, N. Segata, G. Dantas, C. Huttenhower, High-specificity targeted functional profiling in microbial communities with ShortBRED. PLOS Comput. Biol. 11, e1004557 (2015).
52
G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).
53
J. T. Morton, C. Marotz, A. Washburne, J. Silverman, L. S. Zaramela, A. Edlund, K. Zengler, R. Knight, Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).
54
V. Pawlowsky-Glahn, J. J. Egozcue, Compositional data and their analysis: An introduction. Geol. Soc. Lond. Special Publ. 264, 1–10 (2006).
55
V. Pawlowsky-Glahn, J. J. Egozcue, Geometric approach to statistical analysis on the simplex. Stoch. Environ. Res. Risk Assess 15, 384–398 (2001).
56
J. Aitchison, CODA: A Microcomputer Package for the Statistical Analysis of Compositional Data (Chapman and Hall, 1986).
57
J. Aitchison, On criteria for measures of compositional difference. Math. Geol. 24, 365–379 (1992).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

LOG IN TO SUBMIT A RESPONSE

No eLetters have been published for this article yet.

Recommended articles from TrendMD

  1. Flora-ishing guts assist cancer immunotherapies
    Laurie S. Davis, Sci Immunol, 2018
  2. To debug or not to debug, a question worth asking
    Lauren E. Higdon et al., Sci Immunol, 2019
  3. Microbial metabolite protects against infection
    Annalisa M. VanHook, Sci Signal, 2020
  4. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice
    Peter J. Turnbaugh et al., Sci Transl Med, 2009
  5. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability
    Moran Yassour et al., Sci Transl Med, 2016
  1. Intestinal Dysbiosis in Carriers of Carbapenem-Resistant Enterobacteriaceae | mSphere
    mSphere, 2020
  2. Crosstalk between gut microbiota and sepsis
    Mengwei Niu et al., Burns & Trauma, 2021
  3. Gut Microbiome and Serum Metabolome Alterations Associated with Isolated Dystonia | mSphere
    mSphere, 2021
  4. Gut microbiota and metabolic syndrome
    Wang, Peng-Xu et al., Selections from Chinese Medical Journal, 2020
  5. Gut microbiome in non-alcoholic fatty liver disease
    Grzegorz Boryczka et al., Polish Journal of Public Health, 2022

Plaats een reactie ...

Reageer op "Afwijkende darmflora - darmmicrobioom in vergelijking met darmflora van gezonde mensen blijkt oorzaak van groter overlijdensrisico na transplantaties van vaste organen"


Gerelateerde artikelen
 

Gerelateerde artikelen

Afwijkende darmflora - darmmicrobioom >> Vitamine D (calcitrol 3x >> Beenmergtransplantaties: EPA >> Hematopoietische stamceltransplantatie >> Stamceltransplantaties: De >> Stamcellen zouden primaire >> Stamceltransplantatie (allogeen) >> Stamcellen: recente ontwikkelingen >> Beenmergtransplantaties en >>