Zie ook dit artikel: https://kanker-actueel.nl/immuuntherapie-met-het-vaccin-dcvax-geeft-uitstekende-resultaten-op-overall-overleving-bij-glioblastoma-multiforme-gegeven-bij-nieuwe-diagnose-na-operatie-blijkt-uit-fase-3-studie.html

En dit artikel: https://kanker-actueel.nl/vaccin-dcvaxr-brain-welke-succesvol-blijkt-tegen-hersentumoren-glioblastoma-nu-officieel-verkrijgbaar-in-zwitserland-adressen-van-ziekenhuizen-waar-trial-loopt-toegevoegd.html


Update: 22 januari 2024: (met dank aan Arie die mij hier op wees)

Afleidend uit de definitieve resultaten gaat DCVax-L binnen kort vergoed worden als eerstelijns behandeling bij nieuwe diagnose van een hersentumor type Glioblastoma en voor een recidief van het zelfde type. Het heeft 15 jaar geduurd voordat de resultaten uit deze fase III studie zijn geaccepteerd. Zie ook deze aankondiging van de producent: Northwest Biotherapeutics Announces That A Marketing Authorization Application Has Been Submitted To The UK MHRA For DCVax®-L For Glioblastoma


Hier de vertaling van de belangrijkste punten:

Kernpunten:

Vraag:

Is behandeling met autologe tumorlysaat-geladen dendritische celvaccinatie (DCVax-L) geassocieerd met een verbeterde algehele overleving (OS) voor patiënten met nieuw gediagnosticeerd glioblastoom (nGBM) en recidiverend glioblastoom (rGBM) vergeleken met de standaardbehandeling (SOC)?


Bevindingen:

  • In dit niet-gerandomiseerde, gecontroleerde fase 3-onderzoek met 331 patiënten hadden patiënten met nieuw gediagnosticeerd glioblastoom (nGBM) die DCVax-L kregen een mediane OS van 19,3 maanden vanaf randomisatie (22,4 maanden vanaf de operatie), terwijl gelijktijdige, gematchte externe controlepatiënten die met nieuw gediagnosticeerd glioblastoom (nGBM) werden behandeld een mediane OS hadden van 16,5 maanden vanaf randomisatie;
  • Voor patiënten met recidiverend glioblastoom (rGBM) was de mediane OS 13,2 maanden vanaf recidief in de DCVax-L-groep versus 7,8 maanden in het externe controlecohort.
  • Betekenisvolle stijgingen in de lange termijn statistieken van de overlevingscurven in zowel nGBM als rGBM werden ook waargenomen.


Betekenis
In deze studie werd het toevoegen van DCVax-L aan de SOC geassocieerd met een klinisch betekenisvolle en statistisch significante verbetering in de mediane OS voor patiënten met zowel nGBM als rGBM vergeleken met gematchte, gelijktijdige externe controles.

Laatste publicatie in Jama (abstract onderaan artikel teogevoegd) : 

November 17, 2022

Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent GlioblastomaA Phase 3 Prospective Externally Controlled Cohort Trial

JAMA Oncol. 2023;9(1):112-121. doi:10.1001/jamaoncol.2022.5370



18 november 2022: Bron: JAMA Oncol. Published online November 17, 2022 (met dank aan Arie die mij dit studierapport toestuurde.

Eindelijk zijn in JAMA de resultaten gepubliceerd van de fase III studie waarbij immuuntherapie met DCVax-L plus temodal - temozolomide werd vergeleken met standaard beste zorg voor patiënten met een hersentumor van het type Glioblastoma. En waar patiënten ook over mochten stappen van de controlegroep naar de behandelingsgroep tijdens de follow-up duur van de studie. Zie studieprotocol: A Phase III Clinical Trial Evaluating DCVax®-L, Autologous Dendritic Cells Pulsed With Tumor Lysate Antigen For The Treatment Of Glioblastoma Multiforme (GBM)) 


Met op 4 en 5-jaars meting:

Overleving na 48 maanden vanaf randomisatie was 15,7% versus 9,9%, en na 60 maanden was dit 13,0% versus 5,7%.

Het verschil in overall overleving wordt dus groter in de tijd wat betekent dat de remissie duurzaam is. Want in dit geval kunnen we over genezing praten naar mijn mening want wie eenmaal een recidief heeft overleeft niet heel erg lang een hersentumor van het type Glioblastoma


We hebben al veel geschreven over deze studie (zie gerelateerde artikelen) en beperk me in dit artikel tot de publicatie in JAMA d.d. 17 november 2022.

Met deze resultaten vertaald uit het abstract:

In totaal namen 331 patiënten deel aan het onderzoek, waarvan 232 gerandomiseerd naar de DCVax-L-groep en 99 naar de placebogroep.

  • De mediane overall overleving (mOS) voor de 232 patiënten met nGBM (nGMB = nieuwe diagnose van Glioblastoma) die DCVax-L kregen was 19,3 (95% BI, 17,5-21,3) maanden vanaf randomisatie (22,4 maanden na operatie) versus 16,5 (95% BI, 16,0-17,5) maanden vanaf randomisatie in controlegroep (HR = 0,80; 98% BI, 0,00-0,94; P = .002).
  • Overleving na 48 maanden vanaf randomisatie was 15,7% versus 9,9%, en na 60 maanden was dit 13,0% versus 5,7%.
  • Voor 64 patiënten met rGBM (rGMB = recidief van Glioblastoma) die DCVax-L kregen, was de mOS 13,2 (95% BI, 9,7-16,8) maanden vanaf moment van recidief versus 7,8 (95% BI, 7,2-8,2) maanden bij controlegroep (HR, 0,58; 98% BI, 0,00 -0,76; P < .001).
  • Overleving na 24 en 30 maanden na recidief was respectievelijk 20,7% versus 9,6% en 11,1% versus 5,1%.
  • De overleving was verbeterd bij patiënten met nGBM met gemethyleerd MGMT die DCVax-L kregen in vergelijking met patiënten uit de externe controlegroep (HR, 0,74; 98% BI, 0,55-1,00; P = .03).
Belangrijkste conclusie:

In dit onderzoek ging het toevoegen van DCVax-L aan de standaardzorg (SOC) gepaard met een klinisch betekenisvolle en statistisch significante verbetering van de mediane overall overleving (OS) voor patiënten met zowel nGBM als rGBM in vergelijking met gematchte, gelijktijdige externe controles.

Uit een eerder artikel:

Het DC-VAX vaccin gaat op basis van compassionate use geproduceerd worden in Engeland en komt hiermee beschikbaar voor mensen met een hersentumor. De eerste patiënten zijn al geholpen. In een persbericht van Northwest Biotherapeutics staat vermeld hoe patiënten aanvraag kunnen doen.

Zij zijn de contactpersonen:

CONTACTS
Dave Innes
Tel: 804-513-4758
dinnes@nwbio.com

Les Goldman
Tel: 240-234-0059
lgoldman@nwbio.com



Het volledige studierapport is in JAMA volledig in te zien of te downloaden. Klik op de titel van het abstract voor het studierapport:

Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent GlioblastomaA Phase 3 Prospective Externally Controlled Cohort Trial

Linda M. Liau, MD, PhD1Keyoumars Ashkan, MD, FRCP, FRCS2Steven Brem, MD3et alJian L. Campian, MD, PhD4John E. Trusheim, MD5Fabio M. Iwamoto, MD6,7David D. Tran, MD, PhD8George Ansstas, MD9Charles S. Cobbs, MD10Jason A. Heth, MD11Michael E. Salacz, MD12Stacy D’Andre, MD13Robert D. Aiken, MD14Yaron A. Moshel, MD, PhD14Joo Y. Nam, MD15Clement P. Pillainayagam, MD16Stephanie A. Wagner, MD17Kevin A. Walter, MD18Rekha Chaudary, MD19Samuel A. Goldlust, MD20Ian Y. Lee, MD21Daniela A. Bota, MD, PhD22Heinrich Elinzano, MD23Jai Grewal, MD24Kevin Lillehei, MD25Tom Mikkelsen, MD, FRCPC21Tobias Walbert, MD21Steven Abram, MD26Andrew J. Brenner, MD, PhD27Matthew G. Ewend, MD28Simon Khagi, MD29Darren S. Lovick, MD30Jana Portnow, MD31Lyndon Kim, MD32William G. Loudon, MD33Nina L. Martinez, MD34Reid C. Thompson, MD35David E. Avigan, MD36Karen L. Fink, MD, PhD37Francois J. Geoffroy, MD38Pierre Giglio, MD39Oleg Gligich, MD40Dietmar Krex, MD41Scott M. Lindhorst, MD42Jose Lutzky, MD43Hans-Jörg Meisel, MD, PhD44Minou Nadji-Ohl, MD45Lhagva Sanchin, MD44Andrew Sloan, MD46Lynne P. Taylor, MD47Julian K. Wu, MD47Erin M. Dunbar, MD48Arnold B. Etame, MD, PhD49Santosh Kesari, MD, PhD50David Mathieu, MD51David E. Piccioni, MD, PhD52David S. Baskin, MD53Michel Lacroix, MD54Sven-Axel May, MD55Pamela Z. New, MD56Timothy J. Pluard, MD57Steven A. Toms, MD58Victor Tse, MD59Scott Peak, MD59John L. Villano, MD, PhD60James D. Battiste, MD, PhD61Paul J. Mulholland, MD62Michael L. Pearlman, MD63Kevin Petrecca, MD, PhD64Michael Schulder, MD65Robert M. Prins, PhD66Alton L. Boynton, PhD67Marnix L. Bosch, PhD67
JAMA Oncol. Published online November 17, 2022. doi:10.1001/jamaoncol.2022.5370
Key Points

Question  Is treatment with autologous tumor lysate-loaded dendritic cell vaccination (DCVax-L) associated with improved overall survival (OS) for patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) compared with standard of care (SOC)?

Findings  In this phase 3 nonrandomized controlled trial of 331 patients, patients with nGBM receiving DCVax-L had a median OS of 19.3 months from randomization (22.4 months from surgery), while contemporaneous, matched external control patients treated with SOC had a median OS of 16.5 months from randomization; for patients with rGBM, median OS was 13.2 months from relapse in the DCVax-L group vs 7.8 months in the external control cohort. Meaningful increases in the long-term tails of the survival curves in both nGBM and rGBM were also observed.

Meaning  In this study, adding DCVax-L to SOC was associated with a clinically meaningful and statistically significant improvement in median OS for patients with both nGBM and rGBM compared with matched, contemporaneous external controls.

Abstract

Importance  Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed.

Objective  To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma.

Design, Setting, and Participants  This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021.

Interventions  The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies.

Main Outcomes and Measures  The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials.

Results  A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03).

Conclusions and Relevance  In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone.

Trial RegistrationClinicalTrials.gov Identifier: NCT00045968

Discussion

Glioblastomas are aggressive, extremely heterogeneous, immunologically “cold,” and rapidly lethal. There is a pressing need for new treatments and for novel clinical trial designs to streamline their development.

This trial tested a novel fully personalized active immunotherapy. The trial also implemented an innovative design that could help accelerate advances in the field.

The survival benefit with DCVax-L vs ECP increased over time in the tails of the survival curves, with 13.0% vs 5.7% survival at 60 months in patients with nGBM and 11.1% vs 5.1% survival at 30 months after recurrence in patients with rGBM. Also of note, patients receiving DCVax-L have survived for years after completing their vaccine doses, which could be due to an effective memory immune response.36

Although the absolute survival was greater in patients with positive prognostic factors, the relative survival benefit of DCVax-L vs ECPs was larger in certain patients who generally fare worse with SOC, including older patients, patients with substantial residual tumor, and patients with recurrent disease. These encouraging results suggest that cancer vaccines could be relevant for a broad range of clinical settings.

The mechanism of action of DC vaccines has been previously reported.6,7 Using DCs as the active agent and antigen delivery method can mobilize a broader immune response (including diverse populations of T cells)36 than with other agents. Second, using autologous rather than standardized antigens addresses the extreme heterogeneity of glioblastoma and can ensure that the treatment is targeting antigens actually present on the patient’s tumor. Third, distinctively, targeting the full repertoire of antigens by using tumor lysate can prevent the patient’s tumor from mutating around the targeted antigens, as has been seen when only one or a few antigens are targeted.24,25

Although the primary end points of this study focused on OS, exploratory analyses of immunogenicity and biomarkers of immune activation and sensitization that may correlate with therapeutic benefit are planned. We have previously shown that CD8+ and CD4+ T cells can traffic into glioblastomas following DC vaccination, which correlates with survival,37,38 and we plan to confirm these prior findings with this larger phase 3 data set. Similarly, analyses of patient characteristics and baseline immune parameters (eg, tumor immune activation signatures, tumor infiltrating lymphocytes) will be correlated with outcomes but are beyond the scope of this initial report.

Treatment with DCVax-L can potentially be combined with a wide range of other treatment agents (including checkpoint inhibitors, cytokines, targeted therapies, chemotherapies, or oncolytic virus therapies).39 The robust survival benefit in patients with MGMT methylated tumors who received DCVax-L could reflect a cooperative effect between temozolomide40 and DCVax-L, an increase in somatic mutations associated with MGMT methylation41 or temozolomide-induced hypermutation in MGMT methylated tumors.42

The benign safety profile observed with DCVax-L can enable treatment of patients vulnerable to adverse events. Furthermore, it avoids the need (and cost) for other treatments to manage side effects.

This trial highlights the feasibility and appropriateness of using independently selected, contemporaneous, matched, and validated ECPs when a traditional RCT is not feasible.8 This approach is highly relevant for glioblastoma, where key prognostic factors are known, patient survival remains consistently dismal, and new approaches are sorely needed to streamline and accelerate clinical trials.

Limitations

This study has limitations. Since individual patient-level data for the ECPs were not available for this trial, as is often the case, propensity score matching could not be performed, which is a potential limitation of this study. However, the MAIC analysis applied here is a powerful method to overcome the lack of such individual patient data and to enable matching of specific patient characteristics in external controls compared with patients in the investigational group. This method also has wider general applicability to provide reliable comparative evidence of benefit.18

Conclusions

This phase 3, nonrandomized, externally controlled trial found that the addition of DCVax-L to SOC was associated with a clinically meaningful and statistically significant extension of overall survival in both nGBM and rGBM. Treatment with DCVax-L also had an excellent safety profile and noteworthy tails of long-term survival curves.

Back to top
Article Information

Accepted for Publication: August 27, 2022.

Published Online: November 17, 2022. doi:10.1001/jamaoncol.2022.5370

Open Access: This is an open access article distributed under the terms of the CC-BY-NC-ND License. © 2022 Liau LM et al. JAMA Oncology.

Corresponding Author: Marnix L. Bosch, PhD, Northwest Biotherapeutics, Inc, 4800 Montgomery Ln, Bethesda, MD 20814 (marnix@nwbio.com).

Author Contributions: Dr Bosch had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Liau, Ashkan, Ansstas, Walter, Prins, Boynton, Bosch.

Acquisition, analysis, or interpretation of data: Liau, Ashkan, Brem, Campian, Trusheim, Iwamoto, Tran, Ansstas, Cobbs, Heth, Salacz, D'Andre, Aiken, Moshel, Nam, Pillainayagam, Wagner, Walter, Chaudhary, Goldlust, Lee, Bota, Elinzano, Grewal, Lillehei, Mikkelsen, Walbert, Abram, Brenner, Ewend, Khagi, Lovick, Portnow, Kim, Loudon, Martinez, Thompson, Avigan, Fink, Geoffroy, Giglio, Gligich, Krex, Lindhorst, Lutzky, Meisel, Nadji-Ohl, Sanchin, Sloan, Taylor, Wu, Dunbar, Etame, Kesari, Mathieu, Piccioni, Baskin, Lacroix, May, New, Pluard, Toms, Tse, Peak, Villano, Battiste, Mulholland, Pearlman, Petrecca, Schulder, Prins, Boynton, Bosch.

Drafting of the manuscript: Liau, Ashkan, Cobbs, Elinzano, Brenner, Kim, Nadji-Ohl, Peak, Mulholland, Pearlman, Prins, Boynton, Bosch.

Critical revision of the manuscript for important intellectual content: Liau, Ashkan, Brem, Campian, Trusheim, Iwamoto, Tran, Ansstas, Heth, Salacz, D'Andre, Aiken, Moshel, Nam, Pillainayagam, Wagner, Walter, Chaudhary, Goldlust, Lee, Bota, Grewal, Lillehei, Mikkelsen, Walbert, Abram, Ewend, Khagi, Lovick, Portnow, Loudon, Martinez, Thompson, Avigan, Fink, Geoffroy, Giglio, Gligich, Krex, Lindhorst, Lutzky, Meisel, Sanchin, Sloan, Taylor, Wu, Dunbar, Etame, Kesari, Mathieu, Piccioni, Baskin, Lacroix, May, New, Pluard, Toms, Tse, Villano, Battiste, Mulholland, Petrecca, Schulder, Prins, Boynton.

Statistical analysis: Liau, Bosch.

Administrative, technical, or material support: Liau, Ashkan, Brem, Iwamoto, Tran, Salacz, D'Andre, Aiken, Moshel, Nam, Wagner, Walter, Goldlust, Bota, Lillehei, Mikkelsen, Walbert, Abram, Brenner, Krex, Nadji-Ohl, Sloan, Wu, Dunbar, Baskin, Tse, Villano, Battiste, Pearlman, Petrecca, Boynton.

Supervision: Liau, Ashkan, Brem, Campian, Trusheim, Ansstas, Walter, Goldlust, Lovick, Loudon, Geoffroy, Kesari, Piccioni, Pluard, Toms, Peak, Prins, Bosch.

Conflict of Interest Disclosures: Dr Liau reported serving on the board of directors of ClearPoint Neuro outside the submitted work and having a patent pending for combinations of inhibitors with dendric cell vaccines to treat cancer. Dr Ashkan reported receiving grants from Northwest Biotherapeutics during the conduct of the study. Dr Brem reported receiving travel support from Northwest Biotherapeutics outside the submitted work. Dr Campian reported receiving grants from NeoImmue Tech and support for investigator-initiated clinical trials from Incyte, Merck, and Ipsen outside the submitted work. Dr Iwamoto reported receiving grants from Northwest Biotherapeutics and serving on the steering committee of this trial during the conduct of the study and receiving personal fees from AbbVie, Alexion, Gennao Bio, Novocure, Kiyatec, Medtronic, Merck, Guidepoint, Mimivax, Massive Bio, Tocagen, Regeneron, and Xcures outside the submitted work. Dr Tran reported receiving grants from Novocure, Moteris, Lacerta, Sarepta, Merck, Novartis, Northwest Biotherapeutics, Stemline, Celldex, Orbus, TVax, and Tocagen; receiving travel support from Novartis; and serving on the advisory board of Novocure during the conduct of the study. Dr Goldlust reported receiving institutional support from Northwest Biotherapeutics during the conduct of the study; receiving consulting fees from Boston Biomedical, Sumitomo Danippon Pharma, Cornerstone Specialty Network, Cellevolve, Daiichi Sankyo, and Novocure; serving on the speakers’ bureau for Novocure and Physicians Education Resources; receiving food and drink from Novocure; and owning stock in COTA outside the submitted work. Dr Grewal reported receiving personal fees from AstraZeneca, Vivacitas Oncology, and xCures; receiving sample medication from AbbVie/Allergan; and being the founder of Genomet outside the submitted work. Dr Avigan reported serving on the advisory boards of Bristol Myer Squibb, Chugai, Merck, Kite, and Legend; receiving grants from Sanofi, and serving as a consultant for Parexel outside the submitted work. Dr Fink reported receiving funding from Northwest Biotherapeutics during the conduct of the study and receiving funding from Novocure, Denovo Biopharma, Stemline, CNS Pharmaceuticals, Servier Pharmaceuticals/Agios, and Sumitoma Pharma outside the submitted work. Dr Giglio reported receiving study support from the Medical University of South Carolina during the conduct of the study; receiving grants from Denovo Biopharma, Novocure, BioMimetix, Celgene, EORTC, the Canadian Cancer Trials Group, Institut de Recherches Internationales Servier, the Global Coalition for Adapative Research, and Prelude outside the submitted work; and having a patent pending for the epitranscriptomic analysis of glioma. Dr Lutzky reported receiving grants from Bristol Myer Squibb and serving on the advisory boards of Iovance and Castle outside the submitted work. Dr Meisel reported receiving personal fees from BG Klinikum Bergmannstrost during the conduct of the study and receiving consulting fees paid to Regenerate Life Sciences from Stayble Therapeutics and royalties from Fehling Instruments outside the submitted work. Dr Sanchin reported receiving personal fees from BG Klinikum Bergmannstrost during the conduct of the study. Dr Dunbar reported receiving speaking fees from GT Medical during the conduct of the study. Dr Pluward reported receiving grants from Northwest Biotherapeutics during the conduct of the study. Dr Mulholland reported receiving support to attend a conference from Northwest Biotherapeutics during the conduct of the study. Dr Pearlman reported receiving compensation for serving as a site principal investigator from Northwest Biotherapeutics during the conduct of the study. Dr Prins reported having patent UCLA Case No. 2015-341 pending. Drs Boynton and Bosch reported being employees of and owning shares in Northwest Biotherapeutics, Inc. Dr Boynton reported having a patent held by Northwest Biotherapeutics. Dr Bosch reporting having patent 13/492693 pending.

Funding/Support: This study was supported by Northwest Biotherapeutics, Inc.

Role of the Funder/Sponsor: Northwest Biotherapeutics contributed to the design of the study together with the principal investigators and oversaw the conduct of the study by the independent contract research organizations, which were responsible for all collection and management of the data. Northwest Biotherapeutics participated in the preparation, review, and approval of the manuscript; and in the decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Information: The data from the trial were held and statistically analyzed by Quantics, which had no additional input into the manuscript or interpretation of the results. All data pertaining to this article were reviewed in full by Dr Bosch.

References
1.
Weller  M, Cloughesy  T, Perry  JR, Wick  W.  Standards of care for treatment of recurrent glioblastoma—are we there yet?   Neuro Oncol. 2013;15(1):4-27. doi:10.1093/neuonc/nos273PubMedGoogle ScholarCrossref
2.
Poon  MTC, Sudlow  CLM, Figueroa  JD, Brennan  PM.  Longer-term (≥ 2 years) survival in patients with glioblastoma in population-based studies pre- and post-2005: a systematic review and meta-analysis.   Sci Rep. 2020;10(1):11622. doi:10.1038/s41598-020-68011-4PubMedGoogle ScholarCrossref
3.
Alexander  BM, Cloughesy  TF.  Adult glioblastoma.   J Clin Oncol. 2017;35(21):2402-2409. doi:10.1200/JCO.2017.73.0119PubMedGoogle ScholarCrossref
4.
Vanderbeek  AM, Rahman  R, Fell  G,  et al.  The clinical trials landscape for glioblastoma: is it adequate to develop new treatments?   Neuro Oncol. 2018;20(8):1034-1043. doi:10.1093/neuonc/noy027PubMedGoogle ScholarCrossref
5.
Stupp  R, Taillibert  S, Kanner  A,  et al.  Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial.   JAMA. 2017;318(23):2306-2316. doi:10.1001/jama.2017.18718
ArticlePubMedGoogle ScholarCrossref
6.
Steinman  RM, Cohn  ZA.  Identification of a novel cell type in peripheral lymphoid organs of mice: I. morphology, quantitation, tissue distribution.   J Exp Med. 1973;137(5):1142-1162. doi:10.1084/jem.137.5.1142PubMedGoogle ScholarCrossref
7.
Palucka  K, Banchereau  J.  Cancer immunotherapy via dendritic cells.   Nat Rev Cancer. 2012;12(4):265-277. doi:10.1038/nrc3258PubMedGoogle ScholarCrossref
8.
Mishra-Kalyani  PS, Amiri Kordestani  L, Rivera  DR,  et al.  External control arms in oncology: current use and future directions.   Ann Oncol. 2022;33(4):376-383. doi:10.1016/j.annonc.2021.12.015PubMedGoogle ScholarCrossref
9.
Alexander  BM, Ba  S, Berger  MS,  et al; GBM AGILE Network.  Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE.   Clin Cancer Res. 2018;24(4):737-743. doi:10.1158/1078-0432.CCR-17-0764PubMedGoogle ScholarCrossref
10.
Alexander  BM, Trippa  L, Gaffey  S,  et al.  Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): a bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma.   JCO Precis Oncol. Published online March 27, 2019. doi:10.1200/PO.18.00071Google ScholarCrossref
11.
Stupp  R, Mason  WP, van den Bent  MJ,  et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.   N Engl J Med. 2005;352(10):987-996. doi:10.1056/NEJMoa043330PubMedGoogle ScholarCrossref
12.
Liau  LM, Ashkan  K, Tran  DD,  et al.  First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma.   J Transl Med. 2018;16(1):142. doi:10.1186/s12967-018-1507-6PubMedGoogle ScholarCrossref
13.
Ellingson  BM, Chung  C, Pope  WB, Boxerman  JL, Kaufmann  TJ.  Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape.   J Neurooncol. 2017;134(3):495-504. doi:10.1007/s11060-017-2375-2PubMedGoogle ScholarCrossref
14.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053.
ArticleGoogle ScholarCrossref
15.
Macdonald  DR, Cascino  TL, Schold  SC  Jr, Cairncross  JG.  Response criteria for phase II studies of supratentorial malignant glioma.   J Clin Oncol. 1990;8(7):1277-1280. doi:10.1200/JCO.1990.8.7.1277PubMedGoogle ScholarCrossref
16.
Guyot  P, Ades  AE, Ouwens  MJ, Welton  NJ.  Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves.   BMC Med Res Methodol. 2012;12:9. doi:10.1186/1471-2288-12-9PubMedGoogle ScholarCrossref
17.
Common Terminology Criteria for Adverse events v3.0 (CTCAE). August 9, 2009. Accessed October 10, 2022. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcaev3.pdf
18.
Signorovitch  JE, Sikirica  V, Erder  MH,  et al.  Matching-adjusted indirect comparisons: a new tool for timely comparative effectiveness research.   Value Health. 2012;15(6):940-947. doi:10.1016/j.jval.2012.05.004PubMedGoogle ScholarCrossref
19.
O’Brien  PC, Fleming  TR.  A multiple testing procedure for clinical trials.   Biometrics. 1979;35(3):549-556. doi:10.2307/2530245PubMedGoogle ScholarCrossref
20.
Lan  KKG, DeMets  DL.  Discrete sequential boundaries for clinical trials.   Biometrika. 1983;70(3):659-663. doi:10.2307/2336502Google ScholarCrossref
21.
Hall  WJ, Wellner  JA.  Confidence bands for a survival curve from censored data.   Biometrika. 1980;67(1):133-143. doi:10.1093/biomet/67.1.133Google ScholarCrossref
22.
Gilbert  MR, Dignam  JJ, Armstrong  TS,  et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma.   N Engl J Med. 2014;370(8):699-708. doi:10.1056/NEJMoa1308573PubMedGoogle ScholarCrossref
23.
Gilbert  MR, Wang  M, Aldape  KD,  et al.  Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial.   J Clin Oncol. 2013;31(32):4085-4091. doi:10.1200/JCO.2013.49.6968PubMedGoogle ScholarCrossref
24.
Weller  M, Butowski  N, Tran  DD,  et al; ACT IV trial investigators.  Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial.   Lancet Oncol. 2017;18(10):1373-1385. doi:10.1016/S1470-2045(17)30517-XPubMedGoogle ScholarCrossref
25.
Wen  PY, Reardon  DA, Armstrong  TS,  et al.  A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma.   Clin Cancer Res. 2019;25(19):5799-5807. doi:10.1158/1078-0432.CCR-19-0261PubMedGoogle ScholarCrossref
26.
Brandes  AA, Carpentier  AF, Kesari  S,  et al.  A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma.   Neuro Oncol. 2016;18(8):1146-1156. doi:10.1093/neuonc/now009PubMedGoogle ScholarCrossref
27.
Brandes  AA, Gil-Gil  M, Saran  F,  et al.  A randomized phase II trial (TAMIGA) evaluating the efficacy and safety of continuous bevacizumab through multiple lines of treatment for recurrent glioblastoma.   Oncologist. 2019;24(4):521-528. doi:10.1634/theoncologist.2018-0290PubMedGoogle ScholarCrossref
28.
Cloughesy  T, Finocchiaro  G, Belda-Iniesta  C,  et al.  Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and o6-methylguanine-DNA methyltransferase biomarker analyses.   J Clin Oncol. 2017;35(3):343-351. doi:10.1200/JCO.2015.64.7685PubMedGoogle ScholarCrossref
29.
Galanis  E, Anderson  SK, Twohy  EL,  et al.  A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872.   Cancer. 2019;125(21):3790-3800. doi:10.1002/cncr.32340PubMedGoogle ScholarCrossref
30.
Lee  EQ, Zhang  P, Wen  PY,  et al.  NRG/RTOG 1122: a phase 2, double-blinded, placebo-controlled study of bevacizumab with and without trebananib in patients with recurrent glioblastoma or gliosarcoma.   Cancer. 2020;126(12):2821-2828. doi:10.1002/cncr.32811PubMedGoogle ScholarCrossref
31.
Lombardi  G, De Salvo  GL, Brandes  AA,  et al.  Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial.   Lancet Oncol. 2019;20(1):110-119. doi:10.1016/S1470-2045(18)30675-2PubMedGoogle ScholarCrossref
32.
Narita  Y, Arakawa  Y, Yamasaki  F,  et al.  A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma.   Neuro Oncol. 2019;21(3):348-359. doi:10.1093/neuonc/noy200PubMedGoogle ScholarCrossref
33.
Taal  W, Oosterkamp  HM, Walenkamp  AM,  et al.  Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial.   Lancet Oncol. 2014;15(9):943-953. doi:10.1016/S1470-2045(14)70314-6PubMedGoogle ScholarCrossref
34.
Wick  W, Gorlia  T, Bendszus  M,  et al.  Lomustine and bevacizumab in progressive glioblastoma.   N Engl J Med. 2017;377(20):1954-1963. doi:10.1056/NEJMoa1707358PubMedGoogle ScholarCrossref
35.
Wick  W, Puduvalli  VK, Chamberlain  MC,  et al.  Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma.   J Clin Oncol. 2010;28(7):1168-1174. doi:10.1200/JCO.2009.23.2595PubMedGoogle ScholarCrossref
36.
Whiteside  TL.  Immune responses to malignancies.   J Allergy Clin Immunol. 2010;125(2)(suppl 2):S272-S283. doi:10.1016/j.jaci.2009.09.045PubMedGoogle ScholarCrossref
37.
Liau  LM, Prins  RM, Kiertscher  SM,  et al.  Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment.   Clin Cancer Res. 2005;11(15):5515-5525. doi:10.1158/1078-0432.CCR-05-0464PubMedGoogle ScholarCrossref
38.
Prins  RM, Soto  H, Konkankit  V,  et al.  Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy.   Clin Cancer Res. 2011;17(6):1603-1615. doi:10.1158/1078-0432.CCR-10-2563PubMedGoogle ScholarCrossref
39.
Antonios  JP, Soto  H, Everson  RG,  et al.  PD-1 blockade enhances the vaccination-induced immune response in glioma.   JCI Insight. 2016;1(10):e87059. doi:10.1172/jci.insight.87059PubMedGoogle ScholarCrossref
40.
Hegi  ME, Diserens  AC, Gorlia  T,  et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma.   N Engl J Med. 2005;352(10):997-1003. doi:10.1056/NEJMoa043331PubMedGoogle ScholarCrossref
41.
McDonald  KL, Tabone  T, Nowak  AK, Erber  WN.  Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation.   Oncol Lett. 2015;9(5):2063-2067. doi:10.3892/ol.2015.2980PubMedGoogle ScholarCrossref
42.
van Thuijl  HF, Mazor  T, Johnson  BE,  et al.  Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment.   Acta Neuropathol. 2015;129(4):597-607. doi:10.1007/s00401-015-1403-6PubMedGoogle ScholarCrossref

 

In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone.

Original Investigation
November 17, 2022

Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent GlioblastomaA Phase 3 Prospective Externally Controlled Cohort Trial

Linda M. Liau, MD, PhD1Keyoumars Ashkan, MD, FRCP, FRCS2Steven Brem, MD3et alJian L. Campian, MD, PhD4John E. Trusheim, MD5Fabio M. Iwamoto, MD6,7David D. Tran, MD, PhD8George Ansstas, MD9Charles S. Cobbs, MD10Jason A. Heth, MD11Michael E. Salacz, MD12Stacy D’Andre, MD13Robert D. Aiken, MD14Yaron A. Moshel, MD, PhD14Joo Y. Nam, MD15Clement P. Pillainayagam, MD16Stephanie A. Wagner, MD17Kevin A. Walter, MD18Rekha Chaudhary, MD19Samuel A. Goldlust, MD20Ian Y. Lee, MD21Daniela A. Bota, MD, PhD22Heinrich Elinzano, MD23Jai Grewal, MD24Kevin Lillehei, MD25Tom Mikkelsen, MD, FRCPC21Tobias Walbert, MD21Steven Abram, MD26Andrew J. Brenner, MD, PhD27Matthew G. Ewend, MD28Simon Khagi, MD29Darren S. Lovick, MD30Jana Portnow, MD31Lyndon Kim, MD32William G. Loudon, MD33Nina L. Martinez, MD34Reid C. Thompson, MD35David E. Avigan, MD36Karen L. Fink, MD, PhD37Francois J. Geoffroy, MD38Pierre Giglio, MD39Oleg Gligich, MD40Dietmar Krex, MD41Scott M. Lindhorst, MD42Jose Lutzky, MD43Hans-Jörg Meisel, MD, PhD44Minou Nadji-Ohl, MD45Lhagva Sanchin, MD44Andrew Sloan, MD46Lynne P. Taylor, MD47Julian K. Wu, MD47Erin M. Dunbar, MD48Arnold B. Etame, MD, PhD49Santosh Kesari, MD, PhD50David Mathieu, MD51David E. Piccioni, MD, PhD52David S. Baskin, MD53Michel Lacroix, MD54Sven-Axel May, MD55Pamela Z. New, MD56Timothy J. Pluard, MD57Steven A. Toms, MD58Victor Tse, MD59Scott Peak, MD59John L. Villano, MD, PhD60James D. Battiste, MD, PhD61Paul J. Mulholland, MD62Michael L. Pearlman, MD63Kevin Petrecca, MD, PhD64Michael Schulder, MD65Robert M. Prins, PhD66Alton L. Boynton, PhD67Marnix L. Bosch, PhD67
JAMA Oncol. 2023;9(1):112-121. doi:10.1001/jamaoncol.2022.5370
related articles icon 
Related
Articles
Key Points

Question  Is treatment with autologous tumor lysate-loaded dendritic cell vaccination (DCVax-L) associated with improved overall survival (OS) for patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) compared with standard of care (SOC)?

Findings  In this phase 3 nonrandomized controlled trial of 331 patients, patients with nGBM receiving DCVax-L had a median OS of 19.3 months from randomization (22.4 months from surgery), while contemporaneous, matched external control patients treated with SOC had a median OS of 16.5 months from randomization; for patients with rGBM, median OS was 13.2 months from relapse in the DCVax-L group vs 7.8 months in the external control cohort. Meaningful increases in the long-term tails of the survival curves in both nGBM and rGBM were also observed.

Meaning  In this study, adding DCVax-L to SOC was associated with a clinically meaningful and statistically significant improvement in median OS for patients with both nGBM and rGBM compared with matched, contemporaneous external controls.

Abstract

Importance  Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed.

Objective  To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma.

Design, Setting, and Participants  This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021.

Interventions  The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies.

Main Outcomes and Measures  The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials.

Results  A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03).

Conclusions and Relevance  In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone.

Trial Registration  ClinicalTrials.gov Identifier: NCT00045968  


Plaats een reactie ...

Reageer op "DCVax-L verbetert overall overleving en vermindert kans op recidief bij patiënten met nieuw gediagnosticeerd glioblastoom en recidiverend glioblastoom in vergelijking met beste standaardzorg"


Gerelateerde artikelen
 

Gerelateerde artikelen

Immuuntherapie met het vaccin >> Vaccin DCVax(R)-Brain welke >> Immuuntherapie bij hersentumoren >>