Wie advies wilt over hoe het microbioom te verbeteren zou contact op kunnen nemen met deze website: Www.microbiome-Center.nl Voor zowel artsen als individuele burgers staat een groep van artsen en wetenschappers klaar om u een persoonlijk advies te geven.

In gerelateerde artikelen een aantal artikelen als preventie.  Maar zie ook deze search op onze website met microbioom in de titel als zoekopdracht: https://kanker-actueel.nl/search.html?search_text=microbioom&search_in=title&page=1

En deze search met darmflora in de titel: https://kanker-actueel.nl/search.html?search_text=darmflora&search_in=title 

2 mei 2024: Bron: The American Journal of Gastroenterology, April 22, 2024

Uit een vergelijkende studie met volwassenen met een normaal gewicht (N = 105), overgewicht (N = 67) en obesitas (N = 42)  blijkt de darmflora - microbioom van de dunne darm (duodenale) statistisch significant veranderd bij de personen met overgewicht en obesitas vergeleken met die bij mensen met een normaal gewicht. 

Bij een BMI tussen de 18,5 en de 25 is sprake van een gezond gewicht. Bij een BMI tussen de 25 en de 30 heeft men overgewicht. En een BMI van 30 of hoger betekent dat men obesitas heeft. Wanneer de BMI 40 of hoger is dan spreken we van morbide obesitas, ofwel ziekelijk overgewicht.

Deze studie onder leiding van prof. dr. Gabrielle Leita leverde een overtuigend en statistisch significant bewijs dat het microbioom - darmflora van de dunne darm sterk verschilt tussen personen met een normaal gewicht, overgewicht of obesitas.

De inhoud van het lumen - vaatholtes van de dunne darm werd verzameld via oesofagogastroduodenoscopie en 16S-rRNA en shotgun-metagenomische sequencing werden uitgevoerd. Plasma-inflammatoire markers en plasmalipiden werden gemeten om correlaties met veranderingen in het microbioom vast te stellen. Veranderingen in de samenstelling en het functionele potentieel van het microbioom in de dunne darm werden gecategoriseerd op basis van verschillen tussen normaal gewicht, overgewicht of obesitasstatus en als escalatie (geassocieerd met een verandering in relatieve overvloed van normaal gewicht naar overgewicht en obesitas) of de-escalatiekenmerken (geassocieerd met een verandering in overgewicht versus normaal gewicht, maar niet tussen normaal gewicht en obesitas).

Veranderingen in Lactobacillus gasseri en verminderde L-reuteri werden geassocieerd met obesitasL acidophilus, L hominis en Bifidobacterium dentium werden geïdentificeerd als de-escalatiekenmerken.

Specifieke Lactobacillus-soorten werden in verband gebracht met dyslipidemie.

Zie deze grafiek:

Abstract

Volgens de onderzoekers vestigen deze bevindingen de aandacht op de noodzaak om het dunnedarmmicrobioom in menselijke populaties verder te karakteriseren en, nog belangrijker, om te beginnen te begrijpen hoe dunnedarmspecifieke microben, zoals de hier geïdentificeerde, interageren met de gastheer om fysiologische en belangrijke gastheerprocessen te veranderen, zoals de opname van voedingsstoffen en de entero-endocriene productie, die plaatsvinden in de dunne darm.

Het volledige studierapport is gratis in te zien. Klik op de titel van het abstract:

Characterization of the Small Bowel Microbiome Reveals Different Profiles in Human Subjects Who Are Overweight or Have Obesity

Leite, Gabriela PhD1Barlow, Gillian M. PhD1Rashid, Mohamad MBChB1Hosseini, Ava MPH1Cohrs, Daniel MD1; Parodi, Gonzalo BS1; Morales, Walter BS1Weitsman, Stacy MS1Rezaie, Ali MD1,2Pimentel, Mark MD, FACG1,2Mathur, Ruchi MD1,3

Author Information
The American Journal of Gastroenterology ():10.14309/ajg.0000000000002790, April 22, 2024. | DOI: 10.14309/ajg.0000000000002790


Abstract

INTRODUCTION: 

Gut microbiome changes are linked to obesity, but findings are based on stool data. In this article, we analyzed the duodenal microbiome and serum biomarkers in subjects with normal weight, overweight, and obesity.

METHODS: 

Duodenal aspirates and serum samples were obtained from subjects undergoing standard-of-care esophagogastroduodenoscopy without colon preparation. Aspirate DNAs were analyzed by 16S rRNA and shotgun sequencing. Predicted microbial metabolic functions and serum levels of metabolic and inflammatory biomarkers were also assessed.

RESULTS: 

Subjects with normal weight (N = 105), overweight (N = 67), and obesity (N = 42) were identified. Overweight-specific duodenal microbial features include lower relative abundance (RA) of Bifidobacterium species and Escherichia coli strain K-12 and higher Lactobacillus intestinalisL. johnsonii, and Prevotella loescheii RA. Obesity-specific features include higher Lactobacillus gasseri RA and lower L. reuteri (subspecies rodentium), Alloprevotella rava, and Leptotrichia spp RA. Escalation features (progressive changes from normal weight through obesity) include decreasing Bacteroides pyogenesStaphylococcus hominis, and unknown Faecalibacterium species RA, increasing RA of unknown Lactobacillus and Mycobacterium species, and decreasing microbial potential for biogenic amines metabolism. De-escalation features (direction of change altered in normal to overweight and overweight to obesity) include Lactobacillus acidophilusL. hominisL. iners, and Bifidobacterium dentium. An unknown Lactobacillus species is associated with type IIa dyslipidemia and overweight, whereas Alloprevotella rava is associated with type IIb and IV dyslipidemias.

DISCUSSION: 

Direct analysis of the duodenal microbiome has identified key genera associated with overweight and obesity, including some previously identified in stool, e.g., Bifidobacterium and Lactobacillus. Specific species and strains exhibit differing associations with overweight and obesity, including escalation and de-escalation features that may represent targets for future study and therapeutics.

CONFLICTS OF INTEREST

Guarantor of the article: Ruchi Mathur, MD.

Specific author contributions: R.M. and M.P.: conceptualization. A.H. and M.R.: resources. G.L., G.B., G.P., S.W., and W.M.: investigation. G.L., A.R., and M.P.: formal analysis. G.B., M.P., and R.M.: project administration. G.L., G.B., D.C., and R.M.: writing—original draft. G.L., G.B., A.R., M.P., and R.M.: writing—review and editing.

Financial support: This study was supported in part by funds from The Monica Lester Charitable Trust, and The Elias, Genevieve, and Georgianna Charitable Trust.

Potential competing interests: None to report.

Study Highlights

WHAT IS KNOWN

  • ✓ Stool studies indicate that gut microbial populations are altered in overweight and obesity.
  • ✓ Stool studies have linked alterations in AkkermansiaBifidobacteria, and Lactobacillus species to obesity.
  • ✓ The composition of the small bowel microbiome is significantly different from that of stool.
  • ✓ The roles of small bowel microbes in overweight and obesity are poorly understood.

WHAT IS NEW HERE

  • ✓ The small bowel (duodenal) microbiome is significantly altered in subjects with overweight and obesity vs normal weight.
  • ✓ Specific microbial alterations are overweight-specific or obesity-specific; others are escalation or de-escalation features.
  • ✓ Bifidobacterium dentium is a de-escalation feature, consistent with known anti-obesity effects.
  • ✓ Changes in Lactobacillus gasseri and decreased L. reuteri are obesity-specific, but L. acidophilus and L. hominis are de-escalation features.
  • ✓ Specific Lactobacillus species are linked to type IIa dyslipidemia, and Alloprevotella rava is linked to type IIb and IV dyslipidemias.

ACKNOWLEDGEMENTS

The authors thank the REIMAGINE Study Group for their assistance in obtaining samples. The REIMAGINE Study Group includes Christopher Almario MD, FACG, Benjamin Basseri MD, Yin Chan MD, Bianca Chang MD, Derek Cheng MD, Pedram Enayati MD, Srinivas Gaddam MD, Laith Jamil MD, FACG, Quin Liu MD, Simon Lo MD, Marc Makhani MD, Deena Midani MD, Mazen Noureddin MD, FACG, Kenneth Park MD, Shirley Paski MD, Nipaporn Pichetshote MD, Shervin Rabizadeh MD, Soraya Ross MD, Omid Shaye MD, Rabindra Watson MD, Ali Rezaie MD, and Mark Pimentel MD, FACG. The authors also thank Maria Jesus Villanueva-Milan, PhD, and Maritza Sanchez for assisting with sample processing and analysis. Finally, we thank Frank Lee, the Monica Lester Charitable Trust, and the Elias, Genevieve, and Georgianna Charitable Trust for their generous support of the MAST program.

REFERENCES

1. Fact Sheet—Obesity and Overweight. World Health Organization: Geneva, Switzerland, 2020.
2. Centers for Disease Control and Prevention. Adult Obesity Facts. 2020. (https://www.cdc.gov/obesity/data/adult.html). Accessed July 12, 2023.
3. Centers for Disease Control and Prevention. Overweight & Obesity. 2022. (https://www.cdc.gov/obesity/index.html). Accessed July 12, 2023.
4. Centers for Disease Control and Prevention. Adult Obesity Causes & Consequences. 2021. (https://www.cdc.gov/obesity/adult/causes.html). Accessed July 12, 2023.
5. National Cancer Institute. Obesity and Cancer. 2017. (https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet). Accessed July 12, 2023.
6. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377(1):13–27.
7. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 2017;376(3):254–66.
8. Bhaskaran K, Dos-Santos-Silva I, Leon DA, et al. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol 2018;6(12):944–53.
9. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486(7402):207–14.
10. Belizario JE, Faintuch J, Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: New frontiers for treatment of metabolic diseases. Mediators Inflamm 2018;2018:2037838.
11. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: Where we are and where to go? J Nutr Biochem 2019;63:101–8.
12. Hur KY, Lee MS. Gut microbiota and metabolic disorders. Diabetes Metab J 2015;39(3):198–203.
13. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5:e9085.
14. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444(7122):1027–31.
15. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity. Nature 2006;444(7122):1022–3.
16. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010;18(1):190–5.
17. Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010;4(2):232–41.
18. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008;32(11):1720–4.
19. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500(7464):541–6.
20. El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 2015;32:14–20.
21. Leser TD, Mølbak L. Better living through microbial action: The benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol 2009;11(9):2194–206.
22. Leite GGS, Morales W, Weitsman S, et al. Optimizing microbiome sequencing for small intestinal aspirates: Validation of novel techniques through the REIMAGINE study. BMC Microbiol 2019;19(1):239.
23. Barlow JT, Leite G, Romano AE, et al. Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small-intestine microbiome. Microbiome 2021;9(1):214.
24. Leite GGS, Weitsman S, Parodi G, et al. Mapping the segmental microbiomes in the human small bowel in comparison with stool: A REIMAGINE study. Dig Dis Sci 2020;65(9):2595–604.
25. Leite G, Pimentel M, Barlow GM, et al. Age and the aging process significantly alter the small bowel microbiome. Cell Rep 2021;36(13):109765.
26. Leite G, Barlow GM, Parodi G, et al. Duodenal microbiome changes in postmenopausal women: Effects of hormone therapy and implications for cardiovascular risk. Menopause 2022;29(3):264–75.
27. Leite G, Rezaie A, Mathur R, et al. Defining small intestinal bacterial overgrowth by culture and high throughput sequencing. Clin Gastroenterol Hepatol 2024;22(2):259–70.
28. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021;44(Suppl 1):S15–33.
29. LaRosa JC. At what levels of total low- or high-density lipoprotein cholesterol should diet/drug therapy be initiated? United States guidelines. Am J Cardiol 1990;65(12):7f–10f.
30. Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41(1):e1.
31. McMurdie PJ, Holmes S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput Biol 2014;10(4):e1003531.
32. Weiss S, Xu ZZ, Peddada S, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017;5(1):27.
33. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 2009;1(6):6ra14.
34. Fromentin S, Forslund SK, Chechi K, et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 2022;28(2):303–14.
35. Wu Y, Zhang Q, Ren Y, et al. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One 2017;12(6):e0178868.
36. Barlow GM, Lin EA, Mathur R. An overview of the roles of the gut microbiome in obesity and diabetes. In: Bagchi D, Nair S (eds.). Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome. 2nd edn. Academic Press, 2018, p 65–91.
37. Kastl AJ, Terry NA, Wu GD, et al. The structure and function of the human small intestinal microbiota: Current understanding and future directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33–45.
38. Rouxinol-Dias AL, Pinto AR, Janeiro C, et al. Probiotics for the control of obesity: Its effect on weight change. Porto Biomed J 2016;1:12–24.
39. Drissi F, Merhej V, Angelakis E, et al. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr Diabetes 2014;4(2):e109.
40. Jung SP, Lee KM, Kang JH, et al. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: A randomized, double-blind clinical trial. Korean J Fam Med 2013;34(2):80–9.
41. Crovesy L, Ostrowski M, Ferreira DMTP, et al. Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. Int J Obes 2017;41(11):1607–14.
42. Guzior DV, Quinn RA. Review: Microbial transformations of human bile acids. Microbiome 2021;9(1):140.
43. Wei M, Huang F, Zhao L, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 2020;55:102766.
44. Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023;15(1):2172671.
45. Million M, Angelakis E, Paul M, et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog 2012;53(2):100–8.
46. Kim G, Yoon Y, Park JH, et al. Bifidobacterial carbohydrate/nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect against diet-induced obesity. Microbiome 2022;10(1):188.
47. Ma L, Zheng A, Ni L, et al. Bifidobacterium animalis subsp. lactis lkm512 attenuates obesity-associated inflammation and insulin resistance through the modification of gut microbiota in high-fat diet-induced obese mice. Mol Nutr Food Res 2022;66(3):e2100639.
48. Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Different 2023;30(2):279–92.
49. Ramos-Molina B, Queipo-Ortuno MI, Lambertos A, et al. Dietary and gut microbiota polyamines in obesity- and age-related diseases. Front Nutr 2019;6:24.
50. Steinbach E, Masi D, Ribeiro A, et al. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024;150:155712.
51. Darra A, Singh V, Jena A, et al. Hyperglycemia is associated with duodenal dysbiosis and altered duodenal microenvironment. Sci Rep 2023;13(1):11038.
52. Gutierrez-Repiso C, Moreno-Indias I, Martin-Nunez GM, et al. Mucosa-associated microbiota in the jejunum of patients with morbid obesity: Alterations in states of insulin resistance and metformin treatment. Surg Obes Relat Dis 2020;16(10):1575–85.
53. Villmones HC, Svanevik M, Ulvestad E, et al. Investigating the human jejunal microbiota. Sci Rep 2022;12(1):1682.
54. Sroka-Oleksiak A, Mlodzinska A, Bulanda M, et al. Metagenomic analysis of duodenal microbiota reveals a potential biomarker of dysbiosis in the course of obesity and type 2 diabetes: A pilot study. J Clin Med 2020;9:369.
55. Granata I, Nardelli C, D'Argenio V, et al. Duodenal metatranscriptomics to define human and microbial functional alterations associated with severe obesity: A pilot study. Microorganisms 2020;8(11):1811.
56. Angelakis E, Armougom F, Carriere F, et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS One 2015;10(9):e0137784.
57. Shanahan ER, Kang S, Staudacher H, et al. Alterations to the duodenal microbiota are linked to gastric emptying and symptoms in functional dyspepsia. Gut 2023;72(5):929–38.
Keywords:

small intestinal microbiome; obesity; overweight; BifidobacteriumLactobacillus; biogenic amines metabolism; dyslipidemias

Supplemental Digital Content

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology


Plaats een reactie ...

Reageer op "Microbioom - darmflora van de dunne darm (duodenale) blijkt significant veranderd bij personen met overgewicht en obesitas vergeleken met die bij mensen met een normaal gewicht."


Gerelateerde artikelen
 

Gerelateerde artikelen

Specifieke darmbacteriën >> De samenstelling van je poep >> Microbioom - darmflora van >> Darmbacterien beinvloeden >> Poeptransplantatie onderdrukt >> Specifieke bacterien in het >> Darmkanker: Oorspronkelijk >> Darmflora en hersenas: Verstoring >> Microbioom - Darmflora, een >>