Zie ook de artikelen op onze website via deze search met vitamine D in de titel

28 juni 2025: Bron: Nutrients 202517(8), 1351

Vitamine D kan ontstaan van dikke darmkanker met zeker 25 procent verminderen als tijdig het tekort van vitamine D in het bloed wordt aangevuld met vitamine D rijke voeding, extra zonlicht en vitamine D suppletieVitamine D is zoals op wikipedia staat beschreven een groep van vet-oplosbare organische verbindingen die verantwoordelijk zijn voor de opname van calcium en fosfaat uit voeding. Vitamine D speelt ook een grote rol in ons immuunsysteem en zorgt met name voor tegengaan van ontstekingen in het lichaam. Orthokennis beschrijft hoe vitamine D en Calciferol = Vitamine D3 dat het eigen lichaam produceert onder invloed van zonlicht in dit artikel

Het abstract vertaalt in het Nederlands met hulp van google translate:

Samenvatting / abstract

  • Vitamine D speelt een cruciale rol in de regulering van het immuunsysteem, met immunomodulerende effecten die essentieel zijn voor de preventie van dikke darmkanker (CRC). Onderzoek in de afgelopen decennia heeft aangetoond dat dit steroïde hormoon veel meer beïnvloedt dan alleen de botgezondheid, en de immuunreacties aanzienlijk beïnvloedt.
  • Vitamine D versterkt de functies van immuunorganen zoals de milt en lymfeklieren, en stimuleert de activiteit van T-cellen, wat essentieel is voor de verdediging van het lichaam tegen tumoren.
  • Bovendien vermindert vitamine D ontstekingsreacties die nauw verband houden met de ontwikkeling van kanker, waardoor de ontsteking die bijdraagt ​​aan dikke darmkanker wordt verminderd. Het werkt via vitamine D-receptoren (VDR's) op immuuncellen en moduleert de immuunreacties.
  • Adequate vitamine D-spiegels beïnvloeden de genexpressie die verband houdt met ontsteking en celproliferatie, waardoor tumorontwikkeling wordt geremd.
  • Vitamine D activeert ook mechanismen die de overleving, proliferatie, migratie en metastasering van kankercellen onderdrukken.
  • Lage vitamine D-spiegels zijn in verband gebracht met een verhoogd risico op dikkedarmkanker, waarbij een tekort correleert met een hogere incidentie van de ziekte.
  • Leefstijlfactoren, zoals een dieet rijk aan rood vlees en calorieën maar arm aan vezels, fruit en groenten, evenals fysieke inactiviteit, dragen aanzienlijk bij aan het risico op dikkedarmkanker.
  • Onvoldoende inname van calcium en vitamine D wordt ook in verband gebracht met het optreden van de ziekte en slechtere klinische resultaten.
  • Het handhaven van optimale vitamine D-spiegels en een adequate voedingsinname is cruciaal om dikkedarmkanker te voorkomen en de prognose van de patiënt te verbeteren.
  • Deze review onderzoekt de rol van vitamine D in immuunregulatie en vat bevindingen samen uit gerandomiseerde klinische studies die de effecten van vitamine D-suppletie op de uitkomsten van dikkedarmkanker beoordelen.
In dit artikel: Can vitamin D help prevent colorectal cancer? The science is promising – but not straightforward wordt wel kritisch gekeken naar de conclusies uit de reviewstudie omdat verschillende gerandomiseerde studies geen meerwaarde van vitamine D zouden hebben aangetoond. Al zijn de auteurs van dit artikel ook wel positief over het aanvullen van vitamine D waarden tot een voldoende bloedwaarden niveau van vitamine D. en noemen ook verschillende studies die wel bewijzen dat vitamine D een grote meerwaarde kan hebben ook bij andere vormen van voorkomen of zxelfs behandelen van kanker. 

Het volledige verslag van de reviewstudie is gratis in te zien of te downloaden, klik daarvoor op de titel van de studie:

Vitamin D and Colorectal Cancer Prevention: Immunological Mechanisms, Inflammatory Pathways, and Nutritional Implications

by   1,†,  1,2,†,  3,4,†,  2,3,  1,  5,  6,  1,  1,  1,  1 and  7,*
1
Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
2
Health Sciences Division, Doctoral College, Semmelweis University, 1085 Budapest, Hungary
3
Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
4
Department of Rheumatology and Clinical Immunology, Semmelweis University, 1023 Budapest, Hungary
5
Pulmonology Center of the Reformed Church in Hungary, 2045 Törökbálint, Hungary
6
HUN-REN Centre for Energy Research, 1121 Budapest, Hungary
7
Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Nutrients 202517(8), 1351; https://doi.org/10.3390/nu17081351
Submission received: 4 March 2025 / Revised: 10 April 2025 / Accepted: 11 April 2025 / Published: 15 April 2025

Abstract

Vitamin D plays a crucial role in the regulation of the immune system, with immunomodulatory effects that are key in the prevention of colorectal cancer (CRC). Over the past decades, research has shown that this steroid hormone impacts much more than bone health, significantly influencing immune responses. Vitamin D enhances immune organ functions such as the spleen and lymph nodes, and boosts T-cell activity, which is essential in defending the body against tumors. Additionally, vitamin D mitigates inflammatory responses closely linked to cancer development, reducing the inflammation that contributes to CRC. It acts via vitamin D receptors (VDRs) expressed on immune cells, modulating immune responses. Adequate vitamin D levels influence gene expression related to inflammation and cell proliferation, inhibiting tumor development. Vitamin D also activates mechanisms that suppress cancer cell survival, proliferation, migration, and metastasis. Low levels of vitamin D have been associated with an increased risk of CRC, with deficiency correlating with higher disease incidence. Lifestyle factors, such as a diet high in red meat and calories but low in fiber, fruits, and vegetables, as well as physical inactivity, contribute significantly to CRC risk. Insufficient calcium and vitamin D intake are also linked to disease occurrence and poorer clinical outcomes. Maintaining optimal vitamin D levels and adequate dietary intake is crucial in preventing CRC and improving patient prognosis. This review explores the role of vitamin D in immune regulation and summarizes findings from randomized clinical trials assessing the effects of vitamin D supplementation on CRC outcomes.

Table of Contents

Review

 in CRC management.

Funding

Open access funding was provided by Semmelweis University. This work was supported by TKP2021-NKTA-47, implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, and financed under the TKP2021-NKTA funding scheme. Funding through the National Cardiovascular Laboratory Program (RRF-2.3.1–21-2022–00003) was also provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund. Additional support was provided by the European University for Well-Being (EUniWell) program (grant agreement number: 101004093/EUniWell/EAC-A02-2019/EAC-A02-2019–1). AL was supported by the EKÖP-2024-9 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund. The funding sources had no role in the study design, data collection, analysis, and interpretation, writing of the report, or the decision to submit the article for publication. The manuscript was improved using a GPT-based AI grammar check.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Krishnan, A.V.; Feldman, D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu. Rev. Pharmacol. Toxicol. 201151, 311–336. [Google Scholar] [CrossRef]
  2. Muñoz, A.; Grant, W.B. Vitamin D and cancer: An historical overview of the epidemiology and mechanisms. Nutrients 202214, 1448. [Google Scholar] [CrossRef] [PubMed]
  3. Mehta, R.G.; Mehta, R.R. Vitamin D and cancer. J. Nutr. Biochem. 200213, 252–264. [Google Scholar] [CrossRef]
  4. Kulda, V. Metabolizmus vitaminu D [Vitamin D metabolism]. Vnitrni Lekarstvi 201258, 400–404. [Google Scholar] [PubMed]
  5. Kemeny, L.V.; Fisher, D.E. Hormones and Hormone Precursors of the Skin. In Hormonal Signaling in Biology and Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 531–556. [Google Scholar]
  6. Carlberg, C.; Raczyk, M.; Zawrotna, N. Vitamin D: A master example of nutrigenomics. Redox Biol. 202362, 102695. [Google Scholar] [CrossRef] [PubMed]
  7. Dwivedi, S.; Singh, V.; Sen, A.; Yadav, D.; Agrawal, R.; Kishore, S.; Misra, S.; Sharma, P. Vitamin D in Disease Prevention and Cure-Part I: An Update on Molecular Mechanism and Significance on Human Health. Indian J. Clin. Biochem. 2024, 1–43. [Google Scholar] [CrossRef]
  8. Roseland, J.M.; Phillips, K.M.; Patterson, K.Y.; Pehrsson, P.R.; Taylor, C.L. Vitamin D in Foods: An Evolution of Knowledge. Vitamin D; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–77. [Google Scholar]
  9. Bilezikian, J.P.; Formenti, A.M.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, M.; Marcocci, C.; Napoli, N.; Rizzoli, R.; Giustina, A. Vitamin D: Dosing, levels, form, and route of administration: Does one approach fit all? Rev. Endocr. Metab. Disord. 202122, 1201–1218. [Google Scholar] [CrossRef]
  10. Dusso, A.S. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int. Suppl. 20111, 136–141. [Google Scholar] [CrossRef]
  11. Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action; MDText.com, Inc.: South Dartmouth, MA, USA, 2015. [Google Scholar]
  12. Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 201125, 543–559. [Google Scholar] [CrossRef]
  13. Żmijewski, M.A. Nongenomic Activities of Vitamin D. Nutrients 202214, 5104. [Google Scholar] [CrossRef]
  14. Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Berisha, A.T.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 202074, 1498–1513. [Google Scholar] [CrossRef]
  15. Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and chronic diseases. Aging Dis. 20178, 346. [Google Scholar] [CrossRef]
  16. Peixoto, R.D.; Oliveira, L.J.d.C.; Passarini, T.d.M.; Andrade, A.C.; Diniz, P.H.; Prolla, G.; Amorim, L.C.; Gil, M.; Lino, F.; Garicochea, B.; et al. Vitamin D and colorectal cancer–A practical review of the literature. Cancer Treat. Res. Commun. 202232, 100616. [Google Scholar] [CrossRef] [PubMed]
  17. Javed, M.; Althwanay, A.; Ahsan, F.; Oliveri, F.; Goud, H.K.; Mehkari, Z.; Mohammed, L.; Rutkofsky, I.H. Role of vitamin D in colorectal cancer: A holistic approach and review of the clinical utility. Cureus 202012, e10734. [Google Scholar] [CrossRef] [PubMed]
  18. Giammanco, M.; Di Majo, D.; La Guardia, M.; Aiello, S.; Crescimannno, M.; Flandina, C.; Tumminello, F.M.; Leto, G. Vitamin D in cancer chemoprevention. Pharm. Biol. 201553, 1399–1434. [Google Scholar] [CrossRef] [PubMed]
  19. Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 202310, 1070808. [Google Scholar] [CrossRef]
  20. Meshkin, A.; Badiee, F.; Salari, N.; Hassanabadi, M.; Khaleghi, A.A.; Mohammadi, M. The Global Prevalence of Vitamin D Deficiency in the Elderly: A Meta-analysis. Indian J. Orthop. 202458, 223–230. [Google Scholar] [CrossRef]
  21. Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm. Venereol. 201191, 115. [Google Scholar] [CrossRef]
  22. Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016103, 1033–1044. [Google Scholar] [CrossRef]
  23. Rebecca, L.S.; Kimberly, D.; Ann, G.; Stacey, A.; Lynn, F.; Joseph, C. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 202070, 145–164. [Google Scholar]
  24. Horváthné, K.Z. A Vastagbélszűrési Pilot Program Értékelése és a Vastagbéldaganatból Eredő Betegségteher Vizsgálata; University of Pécs: Pécs, Hungary, 2021. [Google Scholar]
  25. Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 201914, 89–103. [Google Scholar] [CrossRef] [PubMed]
  26. Kenessey, I.; Nagy, P.; Polgár, C. A rosszindulatú daganatok hazai epidemiológiai helyzete a XXI. század második évtizedében. Magy. Onkológia 202266, 175–184. [Google Scholar]
  27. Longobardi, S. Colorectal cancer: Local results and significance in Hungary. J. Gastrointest. Oncol. 202415, 2552. [Google Scholar] [CrossRef]
  28. Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 202372, 338–344. [Google Scholar] [CrossRef]
  29. Zhang, Y.; Murata, S.; Schmidt-Mende, K.; Ebeling, M.; Modig, K. Do people reach 100 by surviving, delaying, or avoiding diseases? A life course comparison of centenarians and non-centenarians from the same birth cohorts. GeroScience 2024. [Google Scholar] [CrossRef] [PubMed]
  30. Cruces-Salguero, S.; Larranaga, I.; Mar, J.; Matheu, A. Centenarians of the Basque Country are resilient to cancer. GeroScience 202447, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
  31. Andonian, B.J.; Hippensteel, J.A.; Abuabara, K.; Boyle, E.M.; Colbert, J.F.; Devinney, M.J.; Faye, A.S.; Kochar, B.; Lee, J.; Litke, R.; et al. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience 202447, 1–28. [Google Scholar] [CrossRef]
  32. Ungvari, Z.; Ungvari, A.; Bianchini, G.; Gyorffy, B. Prognostic significance of a signature based on senescence-related genes in colorectal cancer. GeroScience 202446, 4495–4504. [Google Scholar] [CrossRef]
  33. Cummings, S.R.; Lui, L.-Y.; Zaira, A.; Mau, T.; Fielding, R.A.; Atkinson, E.J.; Patel, S.; LeBrasseur, N. Biomarkers of cellular senescence and major health outcomes in older adults. GeroScience 2024. [Google Scholar] [CrossRef]
  34. Fekete, M.; Major, D.; Feher, A.; Fazekas-Pongor, V.; Lehoczki, A. Geroscience and pathology: A new frontier in understanding age-related diseases. Pathol. Oncol. Res. 202430, 1611623. [Google Scholar] [CrossRef]
  35. Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A.; et al. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. Geroscience 202345, 3381–3408. [Google Scholar] [CrossRef]
  36. Zhao, R.; Lu, H.; Yuan, H.; Chen, S.; Xu, K.; Zhang, T.; Liu, Z.; Jiang, Y.; Suo, C.; Chen, X. Plasma proteomics-based organ-specific aging for all-cause mortality and cause-specific mortality: A prospective cohort study. GeroScience 202447, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
  37. Zhuang, Z.; Zhao, Y.; Huang, N.; Li, Y.; Wang, W.; Song, Z.; Dong, X.; Xiao, W.; Jia, J.; Liu, Z.; et al. Associations of healthy aging index and all-cause and cause-specific mortality: A prospective cohort study of UK Biobank participants. GeroScience 202446, 1241–1257. [Google Scholar] [CrossRef]
  38. Zheng, H.T.; Li, D.L.; Lou, M.W.C.; Hodge, A.M.; Southey, M.C.; Giles, G.G.; Milne, R.L.; Lynch, B.M.; Dugué, P.-A. Physical activity and DNA methylation-based markers of ageing in 6208 middle-aged and older Australians: Cross-sectional and longitudinal analyses. GeroScience 202447, 2263–2274. [Google Scholar] [CrossRef] [PubMed]
  39. Maugeri, A.; Barchitta, M.; Magnano San Lio, R.; Li Destri, G.; Agodi, A.; Basile, G. Epigenetic Aging and Colorectal Cancer: State of the Art and Perspectives for Future Research. Int. J. Mol. Sci. 202022, 200. [Google Scholar] [CrossRef]
  40. Bardelcikova, A.; Soltys, J.; Mojzis, J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants 202312, 901. [Google Scholar] [CrossRef]
  41. Kallai, A.; Ungvari, Z.; Fekete, M.; Maier, A.B.; Mikala, G.; Andrikovics, H.; Lehoczki, A. Genomic instability and genetic heterogeneity in aging: Insights from clonal hematopoiesis (CHIP), monoclonal gammopathy (MGUS), and monoclonal B-cell lymphocytosis (MBL). GeroScience 202447, 1–18. [Google Scholar] [CrossRef] [PubMed]
  42. Song, M.; Chan, A.T. Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 201917, 275–289. [Google Scholar] [CrossRef]
  43. Kunutsor, S.K.; Lehoczki, A.; Laukkanen, J.A. Coffee consumption, cancer, and healthy aging: Epidemiological evidence and underlying mechanisms. GeroScience 202447, 1517–1555. [Google Scholar] [CrossRef]
  44. Kunutsor, S.K.; Kaminsky, L.A.; Lehoczki, A.; Laukkanen, J.A. Unraveling the link between cardiorespiratory fitness and cancer: A state-of-the-art review. GeroScience 202446, 5559–5585. [Google Scholar] [CrossRef]
  45. Kunutsor, S.K.; Jassal, D.S.; Ravandi, A.; Lehoczki, A. Dietary flaxseed: Cardiometabolic benefits and its role in promoting healthy aging. GeroScience 2025. [Google Scholar] [CrossRef] [PubMed]
  46. Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011343, d6617. [Google Scholar] [CrossRef]
  47. Woolbright, B.L.; Xuan, H.; Ahmed, I.; Rajendran, G.; Abbott, E.; Dennis, K.; Zhong, C.; Umar, S.; Taylor, J.A. Aging induces changes in cancer formation and microbial content in a murine model of bladder cancer. GeroScience 202446, 3361–3375. [Google Scholar] [CrossRef]
  48. Tzemah-Shahar, R.; Turjeman, S.; Sharon, E.; Gamliel, G.; Hochner, H.; Koren, O.; Agmon, M. Signs of aging in midlife: Physical function and sex differences in microbiota. GeroScience 202446, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
  49. Ji, Y.; Sun, H.; Wang, Y.; Li, Y.; Piao, R.; Bu, L.; Xu, H. Characterizing the oral and gastrointestinal microbiome associated with healthy aging: Insights from long-lived populations in Northeastern China. GeroScience 202447, 2275–2292. [Google Scholar] [CrossRef]
  50. Thomas, R.M. Role of Bacteria in the Development of Colorectal Cancer. Clin. Colon. Rectal Surg. 202336, 105–111. [Google Scholar] [CrossRef] [PubMed]
  51. Mikó, E.; Sipos, A.; Tóth, E.; Lehoczki, A.; Fekete, M.; Sebő, É.; Kardos, G.; Bai, P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 202446, 4037–4057. [Google Scholar] [CrossRef]
  52. Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Fekete, J.T.; Ungvari, A.; Győrffy, B. Overweight and obesity significantly increase colorectal cancer risk: A meta-analysis of 66 studies revealing a 25-57% elevation in risk. GeroScience 2024. [Google Scholar] [CrossRef]
  53. Lega, I.C.; Lipscombe, L.L. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr. Rev. 202041, 33–52. [Google Scholar] [CrossRef]
  54. Socol, C.T.; Chira, A.; Martinez-Sanchez, M.A.; Nuñez-Sanchez, M.A.; Maerescu, C.M.; Mierlita, D.; Rusu, A.V.; Ruiz-Alcaraz, A.J.; Trif, M.; Ramos-Molina, B. Leptin Signaling in Obesity and Colorectal Cancer. Int. J. Mol. Sci. 202223, 4713. [Google Scholar] [CrossRef]
  55. Mak, J.K.L.; Kuja-Halkola, R.; Wang, Y.; Hagg, S.; Jylhava, J. Can frailty scores predict the incidence of cancer? Results from two large population-based studies. GeroScience 202345, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
  56. Melia, F.; Udomjarumanee, P.; Zinovkin, D.; Arghiani, N.; Pranjol, M.Z.I. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front. Oncol. 202212, 975644. [Google Scholar] [CrossRef] [PubMed]
  57. Takács, I.; Dank, M.; Majnik, J.; Nagy, G.; Szabó, A.; Szabó, B.; Szekanecz, Z.; Sziller, I.; Toldy, E.; Tislér, A.; et al. Hungarian consensus recommendation on the role of vitamin D in disease prevention and treatment. Orvosi Hetil. 2022163, 575–584. [Google Scholar] [CrossRef]
  58. Bhattoa, H.P. A Csontanyagcsere és a D-Vitaminháztartás Biokémiai Markerei; Analitikai kihívások, klinikai alkalmazások; DE ÁOK: Debrecen, Hungary, 2023. [Google Scholar]
  59. Li, Y.C.; Chen, Y.; Du, J. Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. J. Steroid Biochem. Mol. Biol. 2015148, 179–183. [Google Scholar] [CrossRef] [PubMed]
  60. Bikle, D.D. Vitamin D: Newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 20204, bvz038. [Google Scholar] [CrossRef]
  61. Beauchet, O.; Launay, C.P.; Fantino, B.; Annweiler, C.; Allali, G. Motor imagery of gait in non-demented older community-dwellers: Performance depends on serum 25-hydroxyvitamin D concentrations. AGE 201537, 18. [Google Scholar] [CrossRef]
  62. Wimalawansa, S.J. Physiology of vitamin D—Focusing on disease prevention. Nutrients 202416, 1666. [Google Scholar] [CrossRef]
  63. Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 201696, 365–408. [Google Scholar] [CrossRef]
  64. Galvão, L.O.; Galvão, M.F.; Reis, C.M.S.; Batista, C.d.Á.; Casulari, L.A. Considerações atuais sobre a vitamina D. Brasília Med. 201350, 324–332. [Google Scholar]
  65. Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int. J. Mol. Sci. 202223, 9784. [Google Scholar] [CrossRef]
  66. Samuel, S.; Sitrin, M.D. Vitamin D’s role in cell proliferation and differentiation. Nutr. Rev. 200866 (Suppl. 2), S116–S124. [Google Scholar] [CrossRef] [PubMed]
  67. Liu, W.; Zhang, L.; Xu, H.-J.; Li, Y.; Hu, C.-M.; Yang, J.-Y.; Sun, M.-Y. The anti-inflammatory effects of vitamin D in tumorigenesis. Int. J. Mol. Sci. 201819, 2736. [Google Scholar] [CrossRef]
  68. Dou, R.; Ng, K.; Giovannucci, E.L.; Manson, J.E.; Qian, Z.R.; Ogino, S. Vitamin D and colorectal cancer: Molecular, epidemiological and clinical evidence. Br. J. Nutr. 2016115, 1643–1660. [Google Scholar] [CrossRef] [PubMed]
  69. McGee, K.C.; Sullivan, J.; Hazeldine, J.; Schmunk, L.J.; Martin-Herranz, D.E.; Jackson, T.; Lord, J.M. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. GeroScience 202446, 4333–4347. [Google Scholar] [CrossRef] [PubMed]
  70. Huggins, B.; Farris, M. Vitamin D(3) promotes longevity in Caenorhabditis elegans. GeroScience 202345, 345–358. [Google Scholar] [CrossRef]
  71. Vetter, V.M.; Sommerer, Y.; Kalies, C.H.; Spira, D.; Bertram, L.; Demuth, I. Vitamin D supplementation is associated with slower epigenetic aging. GeroScience 202244, 1847–1859. [Google Scholar] [CrossRef]
  72. Díaz, L.; Díaz-Muñoz, M.; García-Gaytán, A.C.; Méndez, I. Mechanistic Effects of Calcitriol in Cancer Biology. Nutrients 20157, 5020–5050. [Google Scholar] [CrossRef]
  73. Bover, J.; Egido, J.; Ferández-Giráldez, E.; Fernández-Giráldez, E.; Praga, M.; Solozábal-Campos, C.; Torregrosa, J.V.; Torregrosa, J.V.; Martínez-Castelao, A. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrología 201535, 28–41. [Google Scholar]
  74. Misiorowski, W. Vitamin D, infections and immunity. Wiedza Med. 20202, 6–15. [Google Scholar] [CrossRef]
  75. Alswailmi, F.K.; Shah, S.I.A.; Nawaz, H. Immunomodulatory role of vitamin D: Clinical implications in infections and autoimmune disorders. Gomal J. Med. Sci. 202018, 132–138. [Google Scholar] [CrossRef]
  76. Bray, N.W.; Pieruccini-Faria, F.; Witt, S.T.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Almeida, Q.J.; Liu-Ambrose, T.; Middleton, L.E.; Bherer, L.; et al. Combining exercise with cognitive training and vitamin D3 to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. GeroScience 202345, 1967–1985. [Google Scholar] [CrossRef]
  77. Banerjee, A.; Khemka, V.K.; Ganguly, A.; Roy, D.; Ganguly, U.; Chakrabarti, S. Vitamin D and Alzheimer’s disease: Neurocognition to therapeutics. Int. J. Alzheimer’s Dis. 20152015, 192747. [Google Scholar] [CrossRef] [PubMed]
  78. Casseb, G.A.; Kaster, M.P.; Rodrigues, A.L.S. Potential role of vitamin D for the management of depression and anxiety. CNS Drugs 201933, 619–637. [Google Scholar] [CrossRef]
  79. Vanga, S.R.; Good, M.; Howard, P.A.; Vacek, J.L. Role of vitamin D in cardiovascular health. Am. J. Cardiol. 2010106, 798–805. [Google Scholar] [CrossRef] [PubMed]
  80. Brandi, M.L.; Marini, F.; Parri, S.; Bandinelli, S.; Iantomasi, T.; Giusti, F.; Talluri, E.; Sini, G.; Nannipieri, F.; Battaglia, S.; et al. Association of vitamin D and bisphenol A levels with cardiovascular risk in an elderly Italian population: Results from the InCHIANTI study. GeroScience 202446, 6141–6156. [Google Scholar] [CrossRef] [PubMed]
  81. Gupta, V.; Kumawat, S.; Labieb, F.; Kaur, P. Vitamin D Deficiency and Heart Health: A Narrative Review. J. Nutr. Res. 202311, 47–52. [Google Scholar]
  82. Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 201977, 890–902. [Google Scholar] [CrossRef]
  83. Bryson, K.; Nash, A.; Norval, M. Does vitamin D protect against respiratory viral infections? Epidemiol. Infect. 2014142, 1789–1801. [Google Scholar] [CrossRef]
  84. Fekete, M.; Horvath, A.; Santa, B.; Tomisa, G.; Szollosi, G.; Ungvari, Z.; Fazekas-Pongor, V.; Major, D.; Tarantini, S.; Varga, J.T. COVID-19 vaccination coverage in patients with chronic obstructive pulmonary disease—A cross-sectional study in Hungary. Vaccine 202341, 193–200. [Google Scholar] [CrossRef]
  85. Percze, A.R.; Nagy, A.; Polivka, L.; Barczi, E.; Czaller, I.; Kovats, Z.; Varga, J.T.; Ballai, J.H.; Muller, V.; Horvath, G. Fatigue, sleepiness and sleep quality are SARS-CoV-2 variant independent in patients with long COVID symptoms. Inflammopharmacology 202331, 2819–2825. [Google Scholar] [CrossRef]
  86. Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Dosa, N.; Lehoczki, A.; Tarantini, S.; Varga, J.T. COVID-19 infection in patients with chronic obstructive pulmonary disease: From pathophysiology to therapy. Mini-Rev. Physiol. Int. 2022109, 9–19. [Google Scholar] [CrossRef]
  87. Lương Kvq Nguyễn, L.T.H. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther. Adv. Respir. Dis. 20137, 327–350. [Google Scholar] [CrossRef]
  88. Banerjee, A.; Panettieri, R.A. Vitamin D modulates airway smooth muscle function. Vitamin D Lung Mech. Dis. Assoc. 2012, 127–150. [Google Scholar] [CrossRef]
  89. Bossé, Y.; Maghni, K.; Hudson, T.J. 1α, 25-dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol. Genom. 200729, 161–168. [Google Scholar] [CrossRef] [PubMed]
  90. Ganguly, R.; Szewczuk, M.R. Age and immunity to respiratory tract infections. AGE 198912, 25–35. [Google Scholar] [CrossRef]
  91. Szarvas, Z.; Fekete, M.; Szollosi, G.J.; Kup, K.; Horvath, R.; Schimizu, M.; Tsuchiya, F.; Choi, H.E.; Wu, H.-T.; Pongor-Fazekas, V.; et al. Optimizing Cardiopulmonary Rehabilitation Duration for Long COVID Patients: An Exercise Physiology Monitoring Approach. Eur. Respir. J. 202564 (Suppl. 68), PA704. [Google Scholar]
  92. Abidi, Y.; Kovats, Z.; Bohacs, A.; Fekete, M.; Naas, S.; Madurka, I.; Torok, K.; Bogyo, L.; Varga, J.T. Lung Transplant Rehabilitation—A Review. Life 202313, 506. [Google Scholar] [CrossRef]
  93. Akimbekov, N.S.; Digel, I.; Sherelkhan, D.K.; Lutfor, A.B.; Razzaque, M.S. Vitamin D and the host-gut microbiome: A brief overview. Acta Histochem. Cytochem. 202053, 33–42. [Google Scholar] [CrossRef]
  94. Marfil-Sánchez, A.; Seelbinder, B.; Ni, Y.; Varga, J.; Berta, J.; Hollosi, V.; Dome, B.; Megyesfalvi, Z.; Dulka, E.; Galffy, G.; et al. Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients. PLoS ONE 202116, e0259898. [Google Scholar] [CrossRef]
  95. Mouli, V.P.; Ananthakrishnan, A.N. vitamin D and inflammatory bowel diseases. Aliment. Pharmacol. Ther. 201439, 125–136. [Google Scholar] [CrossRef]
  96. Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Compr. Physiol. 20166, 561–601. [Google Scholar] [CrossRef] [PubMed]
  97. DeLuca, H.F. Vitamin D: Metabolism and Function; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
  98. Tai, K.; Need, A.G.; Horowitz, M.; Chapman, I.M. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition 200824, 279–285. [Google Scholar] [CrossRef] [PubMed]
  99. Bi, Y.; Xia, H.; Li, L.; Lee, R.J.; Xie, J.; Liu, Z.; Qiu, Z.; Teng, L. Liposomal vitamin D3 as an anti-aging agent for the skin. Pharmaceutics 201911, 311. [Google Scholar] [CrossRef]
  100. Kocyigit, B.F.; Kocyigit, E.; Ozturk, G.Y. Anti-aging nutrition therapy. Anti-Aging East. Eur. 20243, 59–65. [Google Scholar] [CrossRef]
  101. Gy, B.N.; Balikó, Z.; Kovács, G. Egészségügyi szakmai irányelv a krónikus obstruktív tüdőbetegség (COPD) diagnosztikájáról és kezeléséről, az alap, a szak és a sürgősségi ellátás területén. Med. Thor. 201467, 76112. [Google Scholar]
  102. Fekete, M.; Pákó, J.; Szőllősi, G.; Tóth, K.; Szabó, M.; Horváth, D.; Varga, J.T. [Significance of nutritional status in chronic obstructive pulmonary disease: A survey]. Orv. Hetil. 2020161, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
  103. Hernández-Alonso, P.; Boughanem, H.; Canudas, S.; Becerra-Tomás, N.; Fernández de la Puente, M.; Babio, N.; Macias-Gonzalez, M.; Salas-Salvadó, J. Circulating vitamin D levels and colorectal cancer risk: A meta-analysis and systematic review of case-control and prospective cohort studies. Crit. Rev. Food Sci. Nutr. 202363, 1–17. [Google Scholar] [CrossRef]
  104. Garland, C.; Garland, F.; Shaw, E.; Comstock, G.; Helsing, K.; Gorham, E. Serum 25-hydroxyvitamin D and colon cancer: Eight-year prospective study. Lancet 1989334, 1176–1178. [Google Scholar] [CrossRef]
  105. Deeb, K.K.; Trump, D.L.; Johnson, C.S. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat. Rev. Cancer 20077, 684–700. [Google Scholar] [CrossRef]
  106. Cross, H.S.; Bises, G.; Lechner, D.; Manhardt, T.; Kállay, E. The vitamin D endocrine system of the gut—Its possible role in colorectal cancer prevention. J. Steroid Biochem. Mol. Biol. 200597, 121–128. [Google Scholar] [CrossRef]
  107. Ma, Y.; Zhang, P.; Wang, F.; Yang, J.; Liu, Z.; Qin, H. Association between vitamin D and risk of colorectal cancer: A systematic review of prospective studies. J. Clin. Oncol. 201129, 3775–3782. [Google Scholar] [CrossRef] [PubMed]
  108. Ferrer-Mayorga, G.; Larriba, M.J.; Crespo, P.; Muñoz, A. Mechanisms of action of vitamin D in colon cancer. J. Steroid Biochem. Mol. Biol. 2019185, 1–6. [Google Scholar] [CrossRef]
  109. Zhou, X.; Chen, C.; Zhong, Y.N.; Zhao, F.; Hao, Z.; Xu, Y.; Lai, R.; Shen, G.; Yin, X. Effect and mechanism of vitamin D on the development of colorectal cancer based on intestinal flora disorder. J. Gastroenterol. Hepatol. 202035, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
  110. Bellerba, F.; Muzio, V.; Gnagnarella, P.; Facciotti, F.; Chiocca, S.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Serrano, D.; Raimondi, S.; et al. The Association between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies. Nutrients 202113, 3378. [Google Scholar] [CrossRef]
  111. Meeker, S.; Seamons, A.; Paik, J.; Treuting, P.M.; Brabb, T.; Grady, W.M.; Maggio-Prince, L. Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer. Cancer Res. 201474, 4398–4408. [Google Scholar] [CrossRef]
  112. Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Fehér, Á.; Varga, J.T. Az emberi szervezetben élő baktériumok klinikai jelentősége a gyakorlatban. Egészségfejlesztés 202162, 31–43. [Google Scholar] [CrossRef]
  113. Chen, A.; Davis, B.H.; Sitrin, M.D.; Brasitus, T.A.; Bissonnette, M. Transforming growth factor-beta 1 signaling contributes to Caco-2 cell growth inhibition induced by 1,25(OH)(2)D(3). Am. J. Physiol. Gastrointest. Liver Physiol. 2002283, G864–G874. [Google Scholar] [CrossRef] [PubMed]
  114. Kósa, J.P.; Horváth, P.; Wölfling, J.; Kovács, D.; Balla, B.; Mátyus, P.; Horváth, E.; Speer, G.; Takács, I.; Nagy, Z.; et al. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J. Gastroenterol. 201319, 2621–2628. [Google Scholar] [CrossRef]
  115. Song, M.; Garrett, W.S.; Chan, A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015148, 1244–1260.e16. [Google Scholar] [CrossRef]
  116. Na, S.-Y.; Kim, K.B.; Lim, Y.J.; Song, H.J. Vitamin D and Colorectal Cancer: Current Perspectives and Future Directions. J. Cancer Prev. 202227, 147. [Google Scholar] [CrossRef]
  117. Aranow, C. Vitamin D and the immune system. J. Investig. Med. 201159, 881–886. [Google Scholar] [CrossRef]
  118. El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 202025, 3219. [Google Scholar] [CrossRef]
  119. Di Rosa, M.; Malaguarnera, M.; Nicoletti, F.; Malaguarnera, L. Vitamin D3: A helpful immuno-modulator. Immunology 2011134, 123–139. [Google Scholar] [CrossRef] [PubMed]
  120. Muthusami, S.; Ramachandran, I.K.; Babu, K.N.; Krishnamoorthy, S.; Guruswamy, A.; Queimado, L.; Chaudhuri, G.; Ramachandran, I. Role of inflammation in the development of colorectal cancer. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 202121, 77–90. [Google Scholar]
  121. Pereira, F.; Fernández-Barral, A.; Larriba, M.J.; Barbáchano, A.; González-Sancho, J.M. From molecular basis to clinical insights: A challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J. 2024291, 2485–2518. [Google Scholar] [CrossRef]
  122. Bikle, D.D. Vitamin D and immune function: Understanding common pathways. Curr. Osteoporos. Rep. 20097, 58–63. [Google Scholar] [CrossRef] [PubMed]
  123. Lin, Z.; Li, W. The roles of vitamin D and its analogs in inflammatory diseases. Curr. Top. Med. Chem. 201616, 1242–1261. [Google Scholar] [CrossRef] [PubMed]
  124. Burgos-Molina, A.M.; Téllez Santana, T.; Redondo, M.; Bravo Romero, M.J. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int. J. Mol. Sci. 202425, 6188. [Google Scholar] [CrossRef]
  125. Piemonti, L.; Monti, P.; Sironi, M.; Fraticelli, P.; Leone, B.E.; Dal Cin, E.; Allavena, P.; Di Carlo, V. Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J. Immunol. 2000164, 4443–4451. [Google Scholar] [CrossRef]
  126. Bscheider, M.; Butcher, E.C. Vitamin D immunoregulation through dendritic cells. Immunology 2016148, 227–236. [Google Scholar] [CrossRef]
  127. Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 201010, 482–496. [Google Scholar] [CrossRef]
  128. Di Rosa, M.; Malaguarnera, G.; De Gregorio, C.; Palumbo, M.; Nunnari, G.; Malaguarnera, L. Immuno-modulatory effects of vitamin D3 in human monocyte and macrophages. Cell. Immunol. 2012280, 36–43. [Google Scholar] [CrossRef] [PubMed]
  129. Skrobot, A.; Demkow, U.; Wachowska, M. Immunomodulatory role of vitamin D: A review. In Current Trends in Immunity and Respiratory Infections; Springer: Cham, Switzerland, 2018; pp. 13–23. [Google Scholar]
  130. Meeker, S.; Seamons, A.; Maggio-Price, L.; Paik, J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J. Gastroenterol. 201622, 933. [Google Scholar] [CrossRef]
  131. Raman, M.; Milestone, A.N.; Walters, J.R.; Hart, A.L.; Ghosh, S. Vitamin D and gastrointestinal diseases: Inflammatory bowel disease and colorectal cancer. Ther. Adv. Gastroenterol. 20114, 49–62. [Google Scholar] [CrossRef] [PubMed]
  132. Chiang, K.-C.C.; Chen, T. The anti-cancer actions of vitamin D. Anti-Cancer Agents Med. Chem.-Anti-Cancer Agents 201313, 126–139. [Google Scholar] [CrossRef]
  133. Starska-Kowarska, K. Role of vitamin D in head and neck cancer—Immune function, anti-tumour effect, and its impact on patient prognosis. Nutrients 202315, 2592. [Google Scholar] [CrossRef] [PubMed]
  134. Guo, S.; Zhao, W.; Zhang, W.; Li, S.; Teng, G.; Liu, L. Vitamin D promotes ferroptosis in colorectal cancer stem cells via SLC7A11 downregulation. Oxidative Med. Cell. Longev. 20232023, 4772134. [Google Scholar] [CrossRef]
  135. Guo, S.; Zhao, W.; Zhang, T.; Li, S.; Guo, J.; Liu, L. Identification of a ferroptosis-related gene signature for prognosis prediction in colorectal cancer patients and relationship with vitamin D. J. Steroid Biochem. Mol. Biol. 2023227, 106234. [Google Scholar] [CrossRef]
  136. Nemeth, Z.; Patonai, A.; Simon-Szabó, L.; Takács, I. Interplay of vitamin D and SIRT1 in tissue-specific metabolism—Potential roles in prevention and treatment of non-communicable diseases including cancer. Int. J. Mol. Sci. 202324, 6154. [Google Scholar] [CrossRef]
  137. Kabra, N.; Li, Z.; Chen, L.; Li, B.; Zhang, X.; Wang, C.; Yeatman, T.; Coppola, D.; Chen, J. SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem. 2009284, 18210–18217. [Google Scholar] [CrossRef]
  138. Singh, P.K.; Campbell, M.J. 2 Vitamin D Receptor: Genomic and Epigenomic Effects. In Vitamin D: Oxidative Stress, Immunity, and Aging; CRC Press: Boca Raton, FL, USA, 2012; p. 37. [Google Scholar]
  139. García-Martínez, J.M.; Chocarro-Calvo, A.; Martínez-Useros, J.; Fernández-Aceñero, M.J.; Fiuza, M.C.; Cáceres-Rentero, J.; De la Vieja, A.; Barbáchano, A.; Muñoz, A.; Larriba, M.J.; et al. Vitamin D induces SIRT1 activation through K610 deacetylation in colon cancer. eLife 202312, RP86913. [Google Scholar] [CrossRef] [PubMed]
  140. Strycharz, J.; Rygielska, Z.; Swiderska, E.; Drzewoski, J.; Szemraj, J.; Szmigiero, L.; Sliwinska, A. SIRT1 as a therapeutic target in diabetic complications. Curr. Med. Chem. 201825, 1002–1035. [Google Scholar] [CrossRef] [PubMed]
  141. Firestein, R.; Blander, G.; Michan, S.; Oberdoerffer, P.; Ogino, S.; Campbell, J.; Bhimavarapu, A.; Luikenhuis, S.; de Cabo, R.; Fuchs, C.; et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 20083, e2020. [Google Scholar] [CrossRef] [PubMed]
  142. Sabir, M.S.; Khan, Z.; Hu, C.; Galligan, M.A.; Dussik, C.M.; Mallick, S.; Stone, A.D.; Batie, S.F.; Jacobs, E.T.; Whitfield, G.K.; et al. SIRT1 enzymatically potentiates 1, 25-dihydroxyvitamin D3 signaling via vitamin D receptor deacetylation. J. Steroid Biochem. Mol. Biol. 2017172, 117–129. [Google Scholar] [CrossRef]
  143. Yuan, Q.; Zhang, R.; Sun, M.; Guo, X.; Yang, J.; Bian, W.; Xie, C.; Miao, D.; Mao, L. Sirt1 Mediates Vitamin D Deficiency-Driven Gluconeogenesis in the Liver via mTorc2/Akt Signaling. J. Diabetes Res. 20222022, 1755563. [Google Scholar] [CrossRef]
  144. Borojević, A.; Jauković, A.; Kukolj, T.; Mojsilović, S.; Obradović, H.; Trivanović, D.; Živanović, M.; Zečević, Ž.; Simić, M.; Gobeljić, B.; et al. Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling. Biomolecules 202212, 323. [Google Scholar] [CrossRef]
  145. Carafa, V.; Altucci, L.; Nebbioso, A. Dual tumor suppressor and tumor promoter action of sirtuins in determining malignant phenotype. Front. Pharmacol. 201910, 38. [Google Scholar] [CrossRef]
  146. Ren, N.S.; Ji, M.; Tokar, E.J.; Busch, E.L.; Xu, X.; Lewis, D.; Li, X.; Jin, A.; Zhang, Y.; Wu, W.K.; et al. Haploinsufficiency of SIRT1 enhances glutamine metabolism and promotes cancer development. Curr. Biol. 201727, 483–494. [Google Scholar] [CrossRef]
  147. Assa, A.; Vong, L.; Pinnell, L.J.; Avitzur, N.; Johnson-Henry, K.C.; Sherman, P.M. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J. Infect. Dis. 2014210, 1296–1305. [Google Scholar] [CrossRef]
  148. Zhang, Y.-G.; Lu, R.; Wu, S.; Chatterjee, I.; Zhou, D.; Xia, Y.; Sun, J. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Cell. Mol. Gastroenterol. Hepatol. 202010, 729–746. [Google Scholar] [CrossRef]
  149. Naderpoor, N.; Mousa, A.; Fernanda Gomez Arango, L.; Barrett, H.L.; Dekker Nitert, M.; de Courten, B. Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial. Nutrients 201911, 2888. [Google Scholar] [CrossRef] [PubMed]
  150. Wyatt, M.; Choudhury, A.; Von Dohlen, G.; Heileson, J.L.; Forsse, J.S.; Rajakaruna, S.; Zec, M.; Tfaily, M.M.; Greathouse, L. Randomized control trial of moderate dose vitamin D alters microbiota stability and metabolite networks in healthy adults. Microbiol. Spectr. 202412, e00083-24. [Google Scholar] [CrossRef] [PubMed]
  151. Yang, J.; Zhang, Q.; Huang, G.; Cong, J.; Wang, T.; Zhai, X.; Zhang, J.; Qi, G.; Zhou, L.; Jin, J. Combined effects of vitamin D and neferine on the progression and metastasis of colorectal cancer. J. Cancer Res. Clin. Oncol. 2023149, 6203–6210. [Google Scholar] [CrossRef]
  152. Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.L.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HELA and SIHA cervical cancer cells via pro-oxidant anticancer mechanism. Phytother. Res. 202034, 2366–2384. [Google Scholar] [CrossRef] [PubMed]
  153. Ungvari, Z.; Fekete, M.; Varga, P.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Menyhart, O.; et al. Impact of adherence to the Mediterranean diet on stroke risk. GeroScience 2025. [Google Scholar] [CrossRef]
  154. Ungvari, Z.; Fekete, M.; Varga, P.; Lehoczki, A.; Munkácsy, G.; Fekete, J.T.; Bianchini, G.; Ocana, A.; Buda, A.; Ungvari, A.; et al. Association between red and processed meat consumption and colorectal cancer risk: A comprehensive meta-analysis of prospective studies. GeroScience 2025. [Google Scholar] [CrossRef]
  155. Zhao, W.; Chen, Q.; Zhang, Q.; Li, S.; Zhao, J.; Chen, W.; Yang, J.; Xia, M.; Liu, Y. Association of adherence to the EAT-Lancet diet with risk of dementia according to social economic status: A prospective cohort in UK Biobank. GeroScience 2024. [Google Scholar] [CrossRef]
  156. Trabado-Fernández, A.; García-Colomo, A.; Cuadrado-Soto, E.; Peral-Suárez, Á.; Salas-González, M.D.; Lorenzo-Mora, A.M.; Aparicio, A.; Delgado-Losada, M.L.; Maestú-Unturbe, F.; López-Sobaler, A.M. Association of a DASH diet and magnetoencephalography in dementia-free adults with different risk levels of Alzheimer’s disease. GeroScience 202447, 1747–1759. [Google Scholar] [CrossRef]
  157. Ungvari, Z.; Fekete, M.; Lehoczki, A.; Munkácsy, G.; Fekete, J.T.; Zábó, V.; Purebl, G.; Varga, P.; Ungvari, A.; Győrffy, B. Sleep disorders increase the risk of dementia, Alzheimer’s disease, and cognitive decline: A meta-analysis. GeroScience 2025. [Google Scholar] [CrossRef]
  158. Ungvari, Z.; Fekete, M.; Fekete, J.T.; Grosso, G.; Ungvari, A.; Győrffy, B. Adherence to the Mediterranean diet and its protective effects against colorectal cancer: A meta-analysis of 26 studies with 2,217,404 participants. GeroScience 202447, 1105–1121. [Google Scholar] [CrossRef]
  159. Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Bálint, M.; Csizmadia, Z.; Tarantini, S.; Varga, J.T. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD-A State-of-the-Art Review. Nutrients 202315, 3902. [Google Scholar] [CrossRef] [PubMed]
  160. Fekete, M.; Varga, P.; Ungvari, Z.; Fekete, J.T.; Buda, A.; Szappanos, Á.; Lehoczki, A.; Mózes, N.; Grosso, G.; Godos, J.; et al. The role of the Mediterranean diet in reducing the risk of cognitive impairement, dementia, and Alzheimer’s disease: A meta-analysis. GeroSscience 2025, 1–20. [Google Scholar] [CrossRef] [PubMed]
  161. Dai, Z.; Lee, S.Y.; Sharma, S.; Ullah, S.; Tan, E.C.; Brodaty, H.; Schutte, A.E.; Sachdev, P.S. A systematic review of diet and medication use among centenarians and near-centenarians worldwide. GeroScience 202446, 6625–6639. [Google Scholar] [CrossRef]
  162. Fekete, M.; Liotta, E.M.; Molnar, T.; Fülöp, G.A.; Lehoczki, A. The role of atrial fibrillation in vascular cognitive impairment and dementia: Epidemiology, pathophysiology, and preventive strategies. GeroScience 202547, 287–300. [Google Scholar] [CrossRef]
  163. Dobreva, I.; Marston, L.; Mukadam, N. Which components of the Mediterranean diet are associated with dementia? A UK Biobank cohort study. Geroscience 202244, 2541–2554. [Google Scholar] [CrossRef]
  164. Madarász, B.; Fazekas-Pongor, V.; Szarvas, Z.; Fekete, M.; Varga, J.T.; Tarantini, S.; Csiszar, A.; Lionetti, V.; Tabák, A.G.; Ungvari, Z.; et al. Survival and longevity of European rulers: Geographical influences and exploring potential factors, including the Mediterranean diet—A historical analysis from 1354 to the twentieth century. GeroScience 202446, 3801–3818. [Google Scholar] [CrossRef]
  165. Bizzozero-Peroni, B.; Díaz-Goñi, V.; Beneit, N.; Oliveira, A.; Jiménez-López, E.; Martínez-Vizcaíno, V.; Mesas, A.E. Nut consumption is associated with a lower risk of all-cause dementia in adults: A community-based cohort study from the UK Biobank. Geroscience 202447, 1721–1733. [Google Scholar] [CrossRef] [PubMed]
  166. Godos, J.; Micek, A.; Currenti, W.; Franchi, C.; Poli, A.; Battino, M.; Dolci, A.; Ricci, C.; Ungvari, Z.; Grosso, G. Fish consumption, cognitive impairment and dementia: An updated dose-response meta-analysis of observational studies. Aging Clin. Exp. Res. 202436, 171. [Google Scholar] [CrossRef]
  167. Gensous, N.; Garagnani, P.; Santoro, A.; Giuliani, C.; Ostan, R.; Fabbri, C.; Milazzo, M.; Gentilini, D.; di Blasio, A.M.; Pietruszka, B.; et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country-and sex-specific effects: A pilot study from the NU-AGE project. Geroscience 202042, 687–701. [Google Scholar] [CrossRef]
  168. Selb, J.; Cvetko, F.; Deutsch, L.; Bedrac, L.; Kuscer, E.; Maier, A.B. Personalization matters: The effect of sex in multivitamin-multimineral-based cancer prevention. Geroscience 202446, 1351–1356. [Google Scholar] [CrossRef]
  169. Shang, X.; Liu, J.; Zhu, Z.; Zhang, X.; Huang, Y.; Liu, S.; Wang, W.; Zhang, X.; Tang, S.; Hu, Y.; et al. Healthy dietary patterns and the risk of individual chronic diseases in community-dwelling adults. Nat. Commun. 202314, 6704. [Google Scholar] [CrossRef] [PubMed]
  170. Romanos-Nanclares, A.; Guasch-Ferré, M.; Willett, W.C.; Chen, W.Y.; Holmes, M.D.; Rosner, B.A.; Martinez-Gonzalez, M.A.; Eliassen, A.H. Consumption of olive oil and risk of breast cancer in U.S. women: Results from the Nurses’ Health Studies. Br. J. Cancer 2023129, 416–425. [Google Scholar] [CrossRef] [PubMed]
  171. Fekete, M.; Szőllősi, G.; Németh, A.N.; Varga, J.T. Az ómega-3 zsírsavak pótlásának klinikai értéke krónikus obstruktív tüdőbetegségben. Orvosi Hetil. 2021162, 23–30. [Google Scholar] [CrossRef]
  172. GGu, Y.; Honig, L.S.; Schupf, N.; Lee, J.H.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age 201537, 24. [Google Scholar] [CrossRef]
  173. Marin, C.; Delgado-Lista, J.; Ramirez, R.; Carracedo, J.; Caballero, J.; Perez-Martinez, P.; Gutierrez-Mariscal, F.M.; Garcia-Rios, A.; Delgado-Casado, N.; Cruz-Teno, C.; et al. Mediterranean diet reduces senescence-associated stress in endothelial cells. Age 201234, 1309–1316. [Google Scholar] [CrossRef]
  174. Tognon, G.; Rothenberg, E.; Eiben, G.; Sundh, V.; Winkvist, A.; Lissner, L. Does the Mediterranean diet predict longevity in the elderly? A Swedish perspective. Age 201133, 439–450. [Google Scholar] [CrossRef]
  175. Papadopoulou, S.K.; Detopoulou, P.; Voulgaridou, G.; Tsoumana, D.; Spanoudaki, M.; Sadikou, F.; Papadopoulou, V.G.; Zidrou, C.; Chatziprodromidou, I.P.; Giaginis, C.; et al. Mediterranean Diet and Sarcopenia Features in Apparently Healthy Adults over 65 Years: A Systematic Review. Nutrients 202315, 1104. [Google Scholar] [CrossRef] [PubMed]
  176. Maggi, S.; Ticinesi, A.; Limongi, F.; Noale, M.; Ecarnot, F. The role of nutrition and the Mediterranean diet on the trajectories of cognitive decline. Exp. Gerontol. 2023173, 112110. [Google Scholar] [CrossRef]
  177. Hoffmann, A.; Meir, A.Y.; Hagemann, T.; Czechowski, P.; Müller, L.; Engelmann, B.; Haange, S.-B.; Rolle-Kampczyk, U.; Tsaban, G.; Zelicha, H.; et al. A polyphenol-rich green Mediterranean diet enhances epigenetic regulatory potential: The DIRECT PLUS randomized controlled trial. Metabolism 2023145, 155594. [Google Scholar] [CrossRef]
  178. Zábó, V.; Lehoczki, A.; Fekete, M.; Szappanos, Á.; Varga, P.; Moizs, M.; Giovannetti, G.; Loscalzo, Y.; Giannini, M.; Polidori, M.C.; et al. The role of purpose in life in healthy aging: Implications for the Semmelweis Study and the Semmelweis-EUniWell Workplace Health Promotion Model Program. GeroScience, 2025; Advance online publication. [Google Scholar] [CrossRef]
  179. Godos, J.; Grosso, G.; Ferri, R.; Caraci, F.; Lanza, G.; Al-Qahtani, W.H.; Caruso, G.; Castellano, S. Mediterranean diet, mental health, cognitive status, quality of life, and successful aging in southern Italian older adults. Exp. Gerontol. 2023175, 112143. [Google Scholar] [CrossRef]
  180. Chen, H.; Dhana, K.; Huang, Y.; Huang, L.; Tao, Y.; Liu, X.; van Lent, D.M.; Zheng, Y.; Ascherio, A.; Willett, W.; et al. Association of the Mediterranean Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet with the Risk of Dementia. JAMA Psychiatry 202380, 630–638. [Google Scholar] [CrossRef] [PubMed]
  181. Clark, J.S.; Simpson, B.S.; Murphy, K.J. The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br. J. Nutr. 2022128, 1299–1314. [Google Scholar] [CrossRef]
  182. Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean diet and the hallmarks of ageing. Eur. J. Clin. Nutr. 202175, 1176–1192. [Google Scholar] [CrossRef] [PubMed]
  183. Cao, X.; Peng, H.; Hu, Z.; Xu, C.; Ning, M.; Zhou, M.; Mi, Y.; Yu, P.; Fazekas-Pongor, V.; Major, D.; et al. Exploring the global impact of obesity and diet on dementia burden: The role of national policies and sex differences. GeroScience 202547, 1345–1360. [Google Scholar] [CrossRef]
  184. Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition strategies promoting healthy aging: From improvement of cardiovascular and brain health to prevention of age-associated diseases. Nutrients 202215, 47. [Google Scholar] [CrossRef] [PubMed]
  185. Fekete, M.; Lehoczki, A.; Tarantini, S.; Fazekas-Pongor, V.; Csípő, T.; Csizmadia, Z.; Varga, J.T. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 202315, 5116. [Google Scholar] [CrossRef]
  186. Saketkoo, L.A.; Escorpizo, R.; Varga, J.; Keen, K.J.; Fligelstone, K.; Birring, S.S.; Alexanderson, H.; Pettersson, H.; Chaudhry, H.A.; Poole, J.L.; et al. World Health Organization (WHO) international classification of functioning, disability and health (ICF) core set development for interstitial lung disease. Front. Pharmacol. 202213, 979788. [Google Scholar] [CrossRef]
  187. Patai, R.; Patel, K.; Csik, B.; Gulej, R.; Nagaraja, R.Y.; Nagy, D.; Chandragiri, S.S.; Shanmugarama, S.; Kordestan, K.V.; Nagykaldi, M.; et al. Aging, mitochondrial dysfunction, and cerebral microhemorrhages: A preclinical evaluation of SS-31 (elamipretide) and development of a high-throughput machine learning-driven imaging pipeline for cerebromicrovascular protection therapeutic screening. GeroScience 2025. [Google Scholar] [CrossRef]
  188. Talavera-Rodríguez, I.; Banegas, J.R.; de la Cruz, J.J.; Martínez-Gómez, D.; Ruiz-Canela, M.; Ortolá, R.; Hershey, M.S.; Artalejo, F.R.; Sotos-Prieto, M. Mediterranean lifestyle index and 24-h systolic blood pressure and heart rate in community-dwelling older adults. GeroScience 202446, 1357–1369. [Google Scholar] [CrossRef]
  189. Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD-A Review. Nutrients 202315, 2741. [Google Scholar] [CrossRef]
  190. Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. GeroScience 202345, 2229–2243. [Google Scholar] [CrossRef] [PubMed]
  191. Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortolá, R.; Carballo-Casla, A.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Plant-based diets and risk of frailty in community-dwelling older adults: The Seniors-ENRICA-1 cohort. GeroScience 202345, 221–232. [Google Scholar] [CrossRef] [PubMed]
  192. Yang, L.; Chen, H.; Zhao, M.; Peng, P. Prognostic value of circulating vitamin D binding protein, total, free and bioavailable 25-hydroxy vitamin D in patients with colorectal cancer. Oncotarget 20178, 40214–40221. [Google Scholar] [CrossRef]
  193. Facciorusso, A.; Del Prete, V.; Muscatiello, N.; Crucinio, N.; Barone, M. Prognostic role of 25-hydroxyvitamin D in patients with liver metastases from colorectal cancer treated with radiofrequency ablation. J. Gastroenterol. Hepatol. 201631, 1483–1488. [Google Scholar] [CrossRef]
  194. Maalmi, H.; Walter, V.; Jansen, L.; Chang-Claude, J.; Owen, R.W.; Ulrich, A.; Schöttker, B.; Hoffmeister, M.; Brenner, H. Relationship of very low serum 25-hydroxyvitamin D 3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany. Eur. J. Epidemiol. 201732, 961–971. [Google Scholar] [CrossRef]
  195. Tretli, S.; Schwartz, G.G.; Torjesen, P.A.; Robsahm, T.E. Serum levels of 25-hydroxyvitamin D and survival in Norwegian patients with cancer of breast, colon, lung, and lymphoma: A population-based study. Cancer Causes Control 201223, 363–370. [Google Scholar] [CrossRef]
  196. Zgaga, L.; Theodoratou, E.; Farrington, S.M.; Din, F.V.N.; Ooi, L.Y.; Glodzik, D.; Johnston, S.; Tenesa, A.; Campbell, H.; Dunlop, M.G. Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. J. Clin. Oncol. 201432, 2430–2439. [Google Scholar] [CrossRef] [PubMed]
  197. Ng, K.; Sargent, D.J.; Goldberg, R.M.; Meyerhardt, J.A.; Green, E.M.; Pitot, H.C.; Hollis, B.W.; Pollak, M.N.; Fuchs, C.S. Vitamin D status in patients with stage IV colorectal cancer: Findings from Intergroup trial N9741. J. Clin. Oncol. 201129, 1599–1606. [Google Scholar] [CrossRef]
  198. Mezawa, H.; Sugiura, T.; Watanabe, M.; Norizoe, C.; Takahashi, D.; Shimojima, A.; Tamez, S.; Tsutsumi, Y.; Yanaga, K.; Urashima, M. Serum vitamin D levels and survival of patients with colorectal cancer: Post-hoc analysis of a prospective cohort study. BMC Cancer 201010, 347. [Google Scholar] [CrossRef]
  199. Fedirko, V.; Riboli, E.; Tjønneland, A.; Ferrari, P.; Olsen, A.; Bueno-De-Mesquita, H.B.; van Duijnhoven, F.J.; Norat, T.; Jansen, E.H.; Dahm, C.C.; et al. Prediagnostic 25-hydroxyvitamin D, VDR and CASR polymorphisms, and survival in patients with colorectal cancer in western European populations. Cancer Epidemiol. Biomark. Prev. 201221, 582–593. [Google Scholar] [CrossRef]
  200. Yuan, C.; Sato, K.; Hollis, B.W.; Zhang, S.; Niedzwiecki, D.; Ou, F.-S.; Chang, I.-W.; O’Neil, B.H.; Innocenti, F.; Lenz, H.-J.; et al. Plasma 25-hydroxyvitamin D levels and survival in patients with advanced or metastatic colorectal cancer: Findings from CALGB/SWOG 80405 (Alliance). Clin. Cancer Res. 201925, 7497–7505. [Google Scholar] [CrossRef] [PubMed]
  201. Fuchs, M.A.; Yuan, C.; Sato, K.; Niedzwiecki, D.; Ye, X.; Saltz, L.B.; Mayer, R.J.; Mowat, R.B.; Whittom, R.; Hantel, A.; et al. Predicted vitamin D status and colon cancer recurrence and mortality in CALGB 89803 (Alliance). Ann. Oncol. 201728, 1359–1367. [Google Scholar] [CrossRef]
  202. Zhu, K.; Knuiman, M.; Divitini, M.; Hung, J.; Lim, E.M.; Cooke, B.R.; Walsh, J.P. Lower serum 25-hydroxyvitamin D is associated with colorectal and breast cancer, but not overall cancer risk: A 20-year cohort study. Nutr. Res. 201967, 100–107. [Google Scholar] [CrossRef] [PubMed]
  203. Heath, A.K.; Hodge, A.M.; Ebeling, P.R.; Kvaskoff, D.; Eyles, D.W.; Giles, G.G.; English, D.R.; Williamson, E.J. Circulating 25-hydroxyvitamin D concentration and cause-specific mortality in the Melbourne Collaborative Cohort Study. J. Steroid Biochem. Mol. Biol. 2020198, 105612. [Google Scholar] [CrossRef] [PubMed]
  204. Vojdeman, F.J.; Madsen, C.M.; Frederiksen, K.; Durup, D.; Olsen, A.; Hansen, L.; Heegaard, A.; Lind, B.; Tjønneland, A.; Jørgensen, H.L.; et al. Vitamin D levels and cancer incidence in 217,244 individuals from primary health care in Denmark. Int. J. Cancer 2019145, 338–346. [Google Scholar] [CrossRef]
  205. Ordóñez-Mena, J.M.; Schöttker, B.; Fedirko, V.; Jenab, M.; Olsen, A.; Halkjær, J.; Kampman, E.; de Groot, L.; Jansen, E.; Bueno-De-Mesquita, H.B.; et al. Pre-diagnostic vitamin D concentrations and cancer risks in older individuals: An analysis of cohorts participating in the CHANCES consortium. Eur. J. Epidemiol. 201631, 311–323. [Google Scholar] [CrossRef]
  206. Ordóñez-Mena, J.M.; Schöttker, B.; Haug, U.; Müller, H.; Köhrle, J.; Schomburg, L.; Holleczek, B.; Brenner, H. Serum 25-hydroxyvitamin d and cancer risk in older adults: Results from a large German prospective cohort study. Cancer Epidemiol. Biomark. Prev. 201322, 905–916. [Google Scholar] [CrossRef]
  207. Skaaby, T.; Husemoen, L.L.N.; Thuesen, B.H.; Pisinger, C.; Jørgensen, T.; Roswall, N.; Larsen, S.C.; Linneberg, A. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol. Biomark. Prev. 201423, 1220–1229. [Google Scholar] [CrossRef]
  208. Wong, Y.Y.E.; Hyde, Z.; McCaul, K.A.; Yeap, B.B.; Golledge, J.; Hankey, G.J.; Flicker, L. In older men, lower plasma 25-hydroxyvitamin D is associated with reduced incidence of prostate, but not colorectal or lung cancer. PLoS ONE 20149, e99954. [Google Scholar] [CrossRef]
  209. Cooney, R.V.; Chai, W.; Franke, A.A.; Wilkens, L.R.; Kolonel, L.N.; Le Marchand, L. C-reactive protein, lipid-soluble micronutrients, and survival in colorectal cancer patients. Cancer Epidemiol. Biomark. Prev. 201322, 1278–1288. [Google Scholar] [CrossRef]
  210. Ng, K.; Meyerhardt, J.A.; Wu, K.; Feskanich, D.; Hollis, B.W.; Giovannucci, E.L.; Fuchs, C.S. Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer. J. Clin. Oncol. 200826, 2984–2991. [Google Scholar] [CrossRef]
  211. Ananthakrishnan, A.N.; Cheng, S.; Cai, T.; Cagan, A.; Gainer, V.S.; Szolovits, P.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; et al. Association between reduced plasma 25-hydroxy vitamin D and increased risk of cancer in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 201412, 821–827. [Google Scholar] [CrossRef] [PubMed]
  212. Cheney, C.P.; Thorand, B.; Huth, C.; Berger, K.; Peters, A.; Seifert-Klauss, V.; Kiechle, M.; Strauch, K.; Quante, A.S. The Association between Serum 25-Hydroxyvitamin D and Cancer Risk: Results from the Prospective KORA F4 Study. Oncol. Res. Treat. 201841, 117–121. [Google Scholar] [CrossRef]
  213. Boughanem, H.; Canudas, S.; Hernandez-Alonso, P.; Becerra-Tomás, N.; Babio, N.; Salas-Salvadó, J.; Macias-Gonzalez, M. Vitamin D intake and the risk of colorectal cancer: An updated meta-analysis and systematic review of case-control and prospective cohort studies. Cancers 202113, 2814. [Google Scholar] [CrossRef] [PubMed]
  214. McCullough, M.L.; Robertson, A.S.; Rodriguez, C.; Jacobs, E.J.; Chao, A.; Jonas, C.; Calle, E.E.; Willett, W.C.; Thun, M.J. Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States). Cancer Causes Control 200314, 1–12. [Google Scholar] [CrossRef] [PubMed]
  215. MMartínez, M.E.; Giovannucci, E.L.; Colditz, G.A.; Stampfer, M.J.; Hunter, D.J.; Speizer, F.E.; Wing, A.; Willett, W.C. Calcium, vitamin D, and the occurrence of colorectal cancer among women. J. Natl. Cancer Inst. 199688, 1375–1382. [Google Scholar] [CrossRef]
  216. Bostick, R.M.; Potter, J.D.; Sellers, T.A.; McKenzie, D.R.; Kushi, L.H.; Folsom, A.R. Relation of calcium, vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa Women’s Health Study. Am. J. Epidemiol. 1993137, 1302–1317. [Google Scholar] [CrossRef]
  217. Keamey, J.; Giovannucci, E.; Rimm, E.B.; Ascherio, A.; Stampfer, M.J.; Colditz, G.A.; Wing, A.; Kampman, E.; Willett, W.C. Calcium, vitamin D, and dairy foods and the occurrence of colon cancer in men. Am. J. Epidemiol. 1996143, 907–917. [Google Scholar] [CrossRef]
  218. Zheng, W.; Anderson, K.E.; Kushi, L.H.; Sellers, T.A.; Greenstein, J.; Hong, C.P.; Cerhan, J.R.; Bostick, R.M.; Folsom, A.R. A prospective cohort study of intake of calcium, vitamin D, and other micronutrients in relation to incidence of rectal cancer among postmenopausal women. Cancer Epidemiol. Biomark. Prev. 19987, 221–225. [Google Scholar]
  219. Hernández-Alonso, P.; Canudas, S.; Boughanem, H.; Toledo, E.; Sorlí, J.V.; Estruch, R.; Castañer, O.; Lapetra, J.; Alonso-Gómez, A.M.; Gutiérrez-Bedmar, M.; et al. Dietary vitamin D intake and colorectal cancer risk: A longitudinal approach within the PREDIMED study. Eur. J. Nutr. 202160, 4367–4378. [Google Scholar] [CrossRef]
  220. Kopp, T.I.; Vogel, U.; Andersen, V. Associations between common polymorphisms in CYP2R1 and GC, Vitamin D intake and risk of colorectal cancer in a prospective case-cohort study in Danes. PLoS ONE 202015, e0228635. [Google Scholar] [CrossRef] [PubMed]
  221. Kesse, E.; Boutron-Ruault, M.C.; Norat, T.; Riboli, E.; Clavel-Chapelon, F. Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-EPIC prospective study. Int. J. Cancer 2005117, 137–144. [Google Scholar] [CrossRef]
  222. Nakano, S.; Yamaji, T.; Hidaka, A.; Shimazu, T.; Shiraishi, K.; Kuchiba, A.; Saito, M.; Kunishima, F.; Nakaza, R.; Kohno, T.; et al. Dietary vitamin D intake and risk of colorectal cancer according to vitamin D receptor expression in tumors and their surrounding stroma. J. Gastroenterol. 202459, 825–835. [Google Scholar] [CrossRef] [PubMed]
  223. Garland, C.; Barrett-Connor, E.; Rossof, A.; Shekelle, R.; Criqui, M.; Paul, O. Dietary vitamin D and calcium and risk of colorectal cancer: A 19-year prospective study in men. Lancet 1985325, 307–309. [Google Scholar] [CrossRef] [PubMed]
  224. Ishihara, J.; Inoue, M.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Dietary calcium, vitamin D, and the risk of colorectal cancer. Am. J. Clin. Nutr. 200888, 1576–1583. [Google Scholar] [CrossRef]
  225. Järvinen, R.; Knekt, P.; Hakulinen, T.; Aromaa, A. Prospective study on milk products, calcium and cancers of the colon and rectum. Eur. J. Clin. Nutr. 200155, 1000–1007. [Google Scholar] [CrossRef]
  226. Terry, P.; Baron, J.A.; Bergkvist, L.; Holmberg, L.; Wolk, A. Dietary calcium and vitamin D intake and risk of colorectal cancer: A prospective cohort study in women. Nutr. Cancer 200243, 39–46. [Google Scholar] [CrossRef]
  227. Benedik, E. Sources of vitamin D for humans. Int. J. Vitam. Nutr. Res. 202292, 118–125. [Google Scholar] [CrossRef]
  228. Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 202315, 2749. [Google Scholar] [CrossRef]
  229. Erem, S.; Razzaque, M.S. Benefits of safe sunlight exposure: Vitamin D and beyond. J. Steroid Biochem. Mol. Biol. 202127, 105957. [Google Scholar]
  230. Vallis, J.; Wang, P.P. The Role of Diet and Lifestyle in Colorectal Cancer Incidence and Survival. In Gastrointestinal Cancers; Morgado-Diaz, J.A., Ed.; Exon Publications: Brisbane, Australia, 2022. [Google Scholar]
  231. Cowbrough, K. Identifying vitamin D deficiency and recommendations for at-risk groups. J. Health Visit. 20142, 304–310. [Google Scholar] [CrossRef]
  232. Misra, M.; Pacaud, D.; Petryk, A.; Collett-Solberg, P.F.; Kappy, M.; Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and its management: Review of current knowledge and recommendations. Pediatrics 2008122, 398–417. [Google Scholar] [CrossRef]
  233. Lopez-Caleya, J.F.; Ortega-Valín, L.; Fernández-Villa, T.; Delgado-Rodríguez, M.; Martín-Sánchez, V.; Molina, A.J. The role of calcium and vitamin D dietary intake on risk of colorectal cancer: Systematic review and meta-analysis of case-control studies. Cancer Causes Control 202233, 167–182. [Google Scholar] [CrossRef] [PubMed]
  234. Xu, Y.; Qian, M.; Hong, J.; Ng, D.M.; Yang, T.; Xu, L.; Ye, X. The effect of vitamin D on the occurrence and development of colorectal cancer: A systematic review and meta-analysis. Int. J. Color. Dis. 202136, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
  235. Ng, K.; Nimeiri, H.S.; McCleary, N.J.; Abrams, T.A.; Yurgelun, M.B.; Cleary, J.M.; Rubinson, D.A.; Schrag, D.; Miksad, R.; Bullock, A.J.; et al. Effect of high-dose vs standard-dose vitamin D3 supplementation on progression-free survival among patients with advanced or metastatic colorectal cancer: The SUNSHINE randomized clinical trial. Jama 2019321, 1370–1379. [Google Scholar] [CrossRef]
  236. Um, C.Y.; Prizment, A.; Hong, C.P.; Lazovich, D.; Bostick, R.M. Associations of Calcium, Vitamin D, and Dairy Product Intakes with Colorectal Cancer Risk among Older Women: The Iowa Women’s Health Study. Nutr. Cancer 201971, 739–748. [Google Scholar] [CrossRef]
  237. Park, S.Y.; Murphy, S.P.; Wilkens, L.R.; Nomura, A.M.; Henderson, B.E.; Kolonel, L.N. Calcium and vitamin D intake and risk of colorectal cancer: The Multiethnic Cohort Study. Am. J. Epidemiol. 2007165, 784–793. [Google Scholar] [CrossRef] [PubMed]
  238. Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019380, 33–44. [Google Scholar] [CrossRef]
  239. Wactawski-Wende, J.; Kotchen, J.M.; Anderson, G.L.; Assaf, A.R.; Brunner, R.L.; O’Sullivan, M.J.; Margolis, K.L.; Ockene, J.K.; Phillips, L.; Pottern, L.; et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 2006354, 684–696. [Google Scholar] [CrossRef]
  240. Urashima, M.; Ohdaira, H.; Akutsu, T.; Okada, S.; Yoshida, M.; Kitajima, M.; Suzuki, Y. Effect of vitamin D supplementation on relapse-free survival among patients with digestive tract cancers: The AMATERASU randomized clinical trial. JAMA 2019321, 1361–1369. [Google Scholar] [CrossRef]
  241. Antunac Golubić, Z.; Baršić, I.; Librenjak, N.; Pleština, S. Vitamin D supplementation and survival in metastatic colorectal cancer. Nutr. Cancer 201870, 413–417. [Google Scholar] [CrossRef] [PubMed]
  242. Lin, J.; Zhang, S.M.; Cook, N.R.; Manson, J.E.; Lee, I.M.; Buring, J.E. Intakes of calcium and vitamin D and risk of colorectal cancer in women. Am. J. Epidemiol. 2005161, 755–764. [Google Scholar] [CrossRef]
  243. Serrano, D.; Bellerba, F.; Johansson, H.; Macis, D.; Aristarco, V.; Accornero, C.A.; Guerrieri-Gonzaga, A.; Trovato, C.M.; Zampino, M.G.; Salè, E.O.; et al. Vitamin D Supplementation and Adherence to World Cancer Research Fund (WCRF) Diet Recommendations for Colorectal Cancer Prevention: A Nested Prospective Cohort Study of a Phase II Randomized Trial. Biomedicines 202311, 1766. [Google Scholar] [CrossRef] [PubMed]
  244. Paulsen, E.M.; Rylander, C.; Brustad, M.; Jensen, T.E. Pre-diagnostic intake of vitamin D and incidence of colorectal cancer by anatomical subsites: The Norwegian Women and Cancer Cohort Study (NOWAC). Br. J. Nutr. 2023130, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
  245. Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Kováts, Z.; Müller, V.; Varga, J.T. Ambuláns rehabilitációs programok COVID–19-betegek számára. Orvosi Hetil. 2021162, 1671–1677. [Google Scholar] [CrossRef]
  246. Pludowski, P.; Grant, W.B.; Karras, S.N.; Zittermann, A.; Pilz, S. Vitamin D supplementation: A review of the evidence arguing for a daily dose of 2000 international units (50 µg) of vitamin D for adults in the general population. Nutrients 202416, 391. [Google Scholar] [CrossRef]
  247. Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 200377, 204–210. [Google Scholar] [CrossRef]
  248. Wimalawansa, S.J. Rapidly Increasing Serum 25 (OH) D Boosts the Immune System, against Infections—Sepsis and COVID-19. Nutrients 202214, 2997. [Google Scholar] [CrossRef]
  249. He, X.; Wu, K.; Ogino, S.; Giovannucci, E.L.; Chan, A.T.; Song, M. Association between risk factors for colorectal cancer and risk of serrated polyps and conventional adenomas. Gastroenterology 2018155, 355–373.e18. [Google Scholar] [CrossRef]
  250. Sutherland, R.L.; Ormsbee, J.; Pader, J.; Forbes, N.; Town, S.; Hilsden, R.J.; Brenner, D.R. Vitamin D supplementation reduces the occurrence of colorectal polyps in high-latitude locations. Prev. Med. 2020135, 106072. [Google Scholar] [CrossRef]
  251. Ahearn, T.U.; Shaukat, A.; Flanders, W.D.; Rutherford, R.E.; Bostick, R.M. A randomized clinical trial of the effects of supplemental calcium and vitamin D3 on the APC/β-catenin pathway in the normal mucosa of colorectal adenoma patients. Cancer Prev. Res. 20125, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
  252. Kwan, A.K.; Um, C.Y.; Rutherford, R.E.; Seabrook, M.E.; Barry, E.L.; Fedirko, V.; Baron, J.A.; Bostick, R.M. Effects of vitamin D and calcium on expression of MSH2 and transforming growth factors in normal-appearing colorectal mucosa of sporadic colorectal adenoma patients: A randomized clinical trial. Mol. Carcinog. 201958, 511–523. [Google Scholar] [CrossRef] [PubMed]
  253. Crockett, S.D.; Barry, E.L.; Mott, L.A.; Ahnen, D.J.; Robertson, D.J.; Anderson, J.C.; Wallace, K.; Burke, C.A.; Bresalier, R.S.; Figueiredo, J.C.; et al. Calcium and vitamin D supplementation and increased risk of serrated polyps: Results from a randomised clinical trial. Gut 201968, 475–486. [Google Scholar] [CrossRef] [PubMed]
  254. Baron, J.A.; Barry, E.L.; Mott, L.A.; Rees, J.R.; Snover, D.C.; Bostick, R.M.; Ivanova, A.; Cole, B.F.; Ahnen, D.J.; Beck, G.J.; et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N. Engl. J. Med. 2015373, 1519–1530. [Google Scholar] [CrossRef]
  255. Song, M.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Dushkes, R.; Gordon, D.; Walter, J.; Wu, K.; Chan, A.T.; Ogino, S.; et al. No association between vitamin D supplementation and risk of colorectal adenomas or serrated polyps in a randomized trial. Clin. Gastroenterol. Hepatol. 202119, 128–135.e6. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
 



Plaats een reactie ...

Reageer op "Vitamine D kan ontstaan van darmkanker voor zeker 25 procent voorkomen als te lage vitamine D waarden tijdig worden aangevuld"


Gerelateerde artikelen
 

Gerelateerde artikelen

Vitamine D-suppletie met of >> Vitamine D, omega-3-vetzuren >> Vitamine D en de kans op het >> vitamin D3 (cholecalciferol, >> Vitamine D suppletie plus >> Diëten - voeding als preventie >>