Zie ook de literatuurlijsten niet-toxische behandelingen en middelen van arts-bioloog drs. Engelbert Valstar waarin vitamine C veel voorkomt in verschillende lijsten.

Zie ook in gerelateerde artikelen

22 april 2020: Bron: . 2020 Jan; 10(1): 79

Dat vitamine C een rol kan spelen bij kanker, al of niet in combinatie met andere behandelingen is inmiddels wel bekend. Zie anders in gerelateerde artikelen.

Vitamine C blijkt ook een 'genezende' rol te spelen bij de zogeheten kankerstamcellen die verantwoordelijk zijn voor uitzaaiingen en recidieven. Hier een artikel dat dit proces beschrijft met veel gedetailleerde uitleg. Ik heb het abstract zo goed als mogelijk vertaald.

Kanker blijft een van de meest gevreesde en gevreesde ziekten in dit tijdperk van de moderne geneeskunde, eist het leven van velen op en beïnvloedt de levenskwaliteit van verschillende anderen over de hele wereld, ondanks grote vooruitgang in de diagnose, behandeling, palliatieve zorg en de immense middelen geïnvesteerd in kankeronderzoek.

Terwijl onderzoek bij kanker zich grotendeels heeft gericht op het neoplasma / de tumor en de kankercellen waaruit de tumor bestaat, meer recentelijk is onderzoek gedaan naar het bestaan, de proliferatie, differentiatie, migratie en invasie van kankerstamcellen (CSC's) en de rol die kankerstamcellen (CSC's) spelen bij tumorvorming, ziekteprogressie, uitzaaiingen, medicijnresistentie en terugval / recidief van de ziekte en hebben wijdverspreide belangstelling gekregen in het kankeronderzoek.

Hoewel de conventionele therapeutische benaderingen zoals chirurgie, chemotherapie en bestraling effectieve kankerbehandelingen zijn, richten deze behandelingsmodaliteiten zich vaak niet op de kankerstamcellen (CSC's), die later de bron worden van het terugkeren van de ziekte. Een meerderheid van de antikankermiddelen is gericht op snel delende kankercellen en normale cellen en heeft daarom bijwerkingen die niet worden verwacht.

Het richten op kankerstamcellen (CSC's) blijft een uitdaging vanwege hun afwijkende karakter met een lage proliferatiesnelheid en een verhoogd mechanisme voor resistentie tegen geneesmiddelen.

Ascorbinezuur / Vitamine C (Vit.C), een krachtige antioxidant, is een cofactor voor verschillende biosynthetische en genregulerende enzymen en levert een vitale bijdrage aan de immuunafweer van het lichaam, en bleek deficiënt te zijn bij patiënten met vergevorderde stadia van kanker. Vitamine C heeft aan belang gewonnen bij de behandeling van kanker vanwege het vermogen om de redoxstatus van de cel te moduleren en epigenetische modificaties en significante rollen in HIF1α-signalering te beïnvloeden.

Studies hebben aangetoond dat intraveneuze toediening van Vit.C in farmacologische doses selectief tumorcellen doodt en kankerstamcellen (CSC's) zoekt bij toediening samen met chemotherapeutische geneesmiddelen. In het huidige artikel geven we een diepgaande evaluatie van hoe Vitamine C een belangrijke rol speelt bij het richten op kankerstamcellen (CSC's) en het mogelijke gebruik ervan als aanvullend, preventief aan een behandeling of als combinatiebehandeling met chemo, radiotherapie of hormoontherapie bij de behandeling van kanker in z'n algemeenheid.

Alle conventionele kankertherapieën zoals hormonale therapie, chirurgie, immunotherapie en anti-angiogenesetherapie slagen om twee redenen niet in het langetermijneffect. [] Al deze behandelingen zijn niet gericht op de kankerstamcellen (CSC's) mede vanwege het onvoorspelbare onbedoelde toxische effect op de normale cellen. []

Recente studies hebben aangetoond dat intraveneuze toediening van vitamine C (Vit.C), samen met de conventionele kankertherapie, succesvol is in het verminderen van kankerprogressie en daarmee hoopvol is voor veel kankerpatiënten over de hele wereld. []

Zie onderstaande grafiek hoe kankerstamcellen een rol spelen bij tumorvorming en uitzaaiingen:

An external file that holds a picture, illustration, etc.
Object name is biomolecules-10-00079-g001.jpg

Figure 1

Current and future involvement of cancer stem cells (CSCs) on cancer treatment: Current situation describes the effect of cancer therapy on unpredicted non-targeted effects on normal cells and metastasis/recurrence of cancer after several years due to the presence of CSCs along with tumor cells. Current research reveals that standard cancer therapy with CSC targets provides much more efficient outcomes on the tumor progression with elimination of CSCs. In the future, further studies could be focused on miRNA (microRNA), cancer organoid, resistance mechanism by CSCs and could enter the clinical phases, promising a better outcome for the cancer patients.

Het volledige studierapport: Combination Therapy with Vitamin C Could Eradicate Cancer Stem Cells geeft een gedetailleerde omschrijving hoe en wat extra vitamine C kan betekenen in een behandeling van kankerstamcellen en hoe daarmee een recidief te voorkomen is.

Hier het abstract van het arftikel en de referentielijst behorend bij dit artikel:

. 2020 Jan; 10(1): 79.
Published online 2020 Jan 3. doi: 10.3390/biom10010079
PMCID: PMC7022456
PMID: 31947879

Combination Therapy with Vitamin C Could Eradicate Cancer Stem Cells

Abstract

References

1. Ghosh D., Venkataramani P., Nandi S., Bhattacharjee S. CRISPR-Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int. 2019;19:12. doi: 10.1186/s12935-019-0726-0. [PMC free article] [PubMed] [CrossRef[]
2. Hu Y., Fu L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res. 2012;2:340–356. [PMC free article] [PubMed[]
3. Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167. [PubMed] [CrossRef[]
4. Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer. 2005;5:275–284. doi: 10.1038/nrc1590. [PubMed] [CrossRef[]
5. Ahmad G., Amiji M.M. Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opin. Drug Deliv. 2017;14:997–1008. doi: 10.1080/17425247.2017.1263615. [PubMed] [CrossRef[]
6. Chae Y.C., Kim J.H. Cancer stem cell metabolism: Target for cancer therapy. BMB Rep. 2018;51:319–326. doi: 10.5483/BMBRep.2018.51.7.112. [PMC free article] [PubMed] [CrossRef[]
7. Peiris-Pages M., Martinez-Outschoorn U.E., Pestell R.G., Sotgia F., Lisanti M.P. Cancer stem cell metabolism. Breast Cancer Res. 2016;18:55. doi: 10.1186/s13058-016-0712-6. [PMC free article] [PubMed] [CrossRef[]
8. Jones R.J., Matsui W.H., Smith B.D. Cancer stem cells: Are we missing the target? J. Natl. Cancer Inst. 2004;96:583–585. doi: 10.1093/jnci/djh095. [PubMed] [CrossRef[]
9. Carr A.C., Cook J. Intravenous Vitamin C for Cancer Therapy—Identifying the Current Gaps in Our Knowledge. Front. Physiol. 2018;9:1182. doi: 10.3389/fphys.2018.01182. [PMC free article] [PubMed] [CrossRef[]
10. Liskova A., Kubatka P., Samec M., Zubor P., Mlyncek M., Bielik T., Samuel S.M., Zulli A., Kwon T.K., Busselberg D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules. 2019;24:899. doi: 10.3390/molecules24050899. [PMC free article] [PubMed] [CrossRef[]
11. Rafalski V.A., Mancini E., Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J. Cell Sci. 2012;125:5597–5608. doi: 10.1242/jcs.114827. [PMC free article] [PubMed] [CrossRef[]
12. Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92. doi: 10.2147/HP.S93413. [PMC free article] [PubMed] [CrossRef[]
13. Khan A.Q., Ahmed E.I., Elareer N.R., Junejo K., Steinhoff M., Uddin S. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells. 2019;8:840. doi: 10.3390/cells8080840. [PMC free article] [PubMed] [CrossRef[]
14. Takahashi R.U., Miyazaki H., Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front. Genet. 2014;4:295. doi: 10.3389/fgene.2013.00295. [PMC free article] [PubMed] [CrossRef[]
15. Nechuta S., Lu W., Chen Z., Zheng Y., Gu K., Cai H., Zheng W., Shu X.O. Vitamin supplement use during breast cancer treatment and survival: A prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2011;20:262–271. doi: 10.1158/1055-9965.EPI-10-1072. [PMC free article] [PubMed] [CrossRef[]
16. Hao J., Zhao S., Zhang Y., Zhao Z., Ye R., Wen J., Li J. Emerging role of microRNAs in cancer and cancer stem cells. J. Cell. Biochem. 2014;115:605–610. doi: 10.1002/jcb.24702. [PubMed] [CrossRef[]
17. Croker A.K., Goodale D., Chu J., Postenka C., Hedley B.D., Hess D.A., Allan A.L. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J. Cell. Mol. Med. 2009;13:2236–2252. doi: 10.1111/j.1582-4934.2008.00455.x. [PMC free article] [PubMed] [CrossRef[]
18. Garg M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J. Stem Cells. 2015;7:1078–1089. doi: 10.4252/wjsc.v7.i8.1078. [PMC free article] [PubMed] [CrossRef[]
19. Hwang-Verslues W.W., Chang P.H., Wei P.C., Yang C.Y., Huang C.K., Kuo W.H., Shew J.Y., Chang K.J., Lee E.Y., Lee W.H. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene. 2011;30:2463–2474. doi: 10.1038/onc.2010.618. [PubMed] [CrossRef[]
20. Fiorillo M., Toth F., Sotgia F., Lisanti M.P. Doxycycline, Azithromycin and Vitamin C (DAV): A potent combination therapy for targeting mitochondria and eradicating cancer stem cells (CSCs) Aging. 2019;11:2202–2216. doi: 10.18632/aging.101905. [PMC free article] [PubMed] [CrossRef[]
21. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA. 2003;100:3983–3988. doi: 10.1073/pnas.0530291100. [PMC free article] [PubMed] [CrossRef[]
22. Asadzadeh Z., Mansoori B., Mohammadi A., Aghajani M., Haji-Asgarzadeh K., Safarzadeh E., Mokhtarzadeh A., Duijf P.H.G., Baradaran B. microRNAs in cancer stem cells: Biology, pathways, and therapeutic opportunities. J. Cell. Physiol. 2019;234:10002–10017. doi: 10.1002/jcp.27885. [PubMed] [CrossRef[]
23. Okuda H., Xing F., Pandey P.R., Sharma S., Watabe M., Pai S.K., Mo Y.Y., Iiizumi-Gairani M., Hirota S., Liu Y., et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013;73:1434–1444. doi: 10.1158/0008-5472.CAN-12-2037. [PMC free article] [PubMed] [CrossRef[]
24. Ma W., Xiao G.G., Mao J., Lu Y., Song B., Wang L., Fan S., Fan P., Hou Z., Li J., et al. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget. 2015;6:10432–10444. doi: 10.18632/oncotarget.3394. [PMC free article] [PubMed] [CrossRef[]
25. Wang Y., Yu Y., Tsuyada A., Ren X., Wu X., Stubblefield K., Rankin-Gee E.K., Wang S.E. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011;30:1470–1480. doi: 10.1038/onc.2010.531. [PMC free article] [PubMed] [CrossRef[]
26. ClinicalTrials.gov Ph 2 Trial of Vitamin C & G-FLIP (Low Doses Gemcitabine, 5FU, Leucovorin, Irinotecan, Oxaliplatin) for Pancreatic Cancer) [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01905150?term=vitamin+c&recrs=ade&cond=Pancreatic+Cancer&cntry=US&rank=1.
27. Lechner A., Leech C.A., Abraham E.J., Nolan A.L., Habener J.F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun. 2002;293:670–674. doi: 10.1016/S0006-291X(02)00275-9. [PubMed] [CrossRef[]
28. Hasegawa S., Eguchi H., Nagano H., Konno M., Tomimaru Y., Wada H., Hama N., Kawamoto K., Kobayashi S., Nishida N., et al. MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br. J. Cancer. 2014;111:1572–1580. doi: 10.1038/bjc.2014.454. [PMC free article] [PubMed] [CrossRef[]
29. ClinicalTrials.gov Trial of Ascorbic Acid (AA) + Nanoparticle Paclitaxel Protein Bound + Cisplatin + Gemcitabine (AA NABPLAGEM) (AA NABPLAGEM) [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03410030?term=vitamin+c&recrs=ade&cond=Pancreatic+Cancer&cntry=US&phase=123&rank=2.
30. Tomuleasa C., Mosteanu O., Susman S., Cristea V. ALDH as a tumor marker for pancreatic cancer. J. Gastrointest. Liver Dis. 2011;20:443–444. author reply 444. [PubMed[]
31. Bao B., Ali S., Ahmad A., Azmi A.S., Li Y., Banerjee S., Kong D., Sethi S., Aboukameel A., Padhye S.B., et al. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS ONE. 2012;7:e50165. doi: 10.1371/journal.pone.0050165. [PMC free article] [PubMed] [CrossRef[]
32. ClinicalTrials.gov High Dose Vitamin C Intravenous Infusion in Patients with Resectable or Metastatic Solid Tumor Malignancies. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03146962?term=vitamin+c&recrs=ade&cond=Pancreatic+Cancer&cntry=US&phase=123&rank=3.
33. Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., Wicha M., Clarke M.F., Simeone D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030. [PubMed] [CrossRef[]
34. Sureban S.M., May R., Qu D., Weygant N., Chandrakesan P., Ali N., Lightfoot S.A., Pantazis P., Rao C.V., Postier R.G., et al. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS ONE. 2013;8:e73940. doi: 10.1371/journal.pone.0073940. [PMC free article] [PubMed] [CrossRef[]
35. Immervoll H., Hoem D., Sakariassen P.O., Steffensen O.J., Molven A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer. 2008;8:48. doi: 10.1186/1471-2407-8-48. [PMC free article] [PubMed] [CrossRef[]
36. Lu Y., Lu J., Li X., Zhu H., Fan X., Zhu S., Wang Y., Guo Q., Wang L., Huang Y., et al. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer. 2014;14:85. doi: 10.1186/1471-2407-14-85. [PMC free article] [PubMed] [CrossRef[]
37. Pramanik D., Campbell N.R., Karikari C., Chivukula R., Kent O.A., Mendell J.T., Maitra A. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol. Cancer Ther. 2011;10:1470–1480. doi: 10.1158/1535-7163.MCT-11-0152. [PMC free article] [PubMed] [CrossRef[]
38. Corney D.C., Flesken-Nikitin A., Godwin A.K., Wang W., Nikitin A.Y. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 2007;67:8433–8438. doi: 10.1158/0008-5472.CAN-07-1585. [PubMed] [CrossRef[]
39. ClinicalTrials.gov Treatment of Newly Diagnosed Ovarian Cancer with Antioxidants. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT00228319?term=vitamin+c&recrs=ade&cond=Ovarian+cancer&cntry=US&phase=123&rank=1.
40. Dou J., Jiang C., Wang J., Zhang X., Zhao F., Hu W., He X., Li X., Zou D., Gu N. Using ABCG2-molecule-expressing side population cells to identify cancer stem-like cells in a human ovarian cell line. Cell Biol. Int. 2011;35:227–234. doi: 10.1042/CBI20100347. [PubMed] [CrossRef[]
41. Stewart J.M., Shaw P.A., Gedye C., Bernardini M.Q., Neel B.G., Ailles L.E. Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells. Proc. Natl. Acad. Sci. USA. 2011;108:6468–6473. doi: 10.1073/pnas.1005529108. [PMC free article] [PubMed] [CrossRef[]
42. ClinicalTrials.gov A Phase 2 Trial of High-Dose Ascorbate in Glioblastoma Multiforme. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02344355?term=vitamin+c&recrs=ade&cond=Glioblastoma&cntry=US&phase=123&rank=1.
43. Cui S.Y., Wang R., Chen L.B. MicroRNA-145: A potent tumour suppressor that regulates multiple cellular pathways. J. Cell. Mol. Med. 2014;18:1913–1926. doi: 10.1111/jcmm.12358. [PMC free article] [PubMed] [CrossRef[]
44. Shang C., Guo Y., Hong Y., Liu Y.H., Xue Y.X. MiR-21 up-regulation mediates glioblastoma cancer stem cells apoptosis and proliferation by targeting FASLG. Mol. Biol. Rep. 2015;42:721–727. doi: 10.1007/s11033-014-3820-3. [PubMed] [CrossRef[]
45. Turchi L., Debruyne D.N., Almairac F., Virolle V., Fareh M., Neirijnck Y., Burel-Vandenbos F., Paquis P., Junier M.P., Van Obberghen-Schilling E., et al. Tumorigenic potential of miR-18A* in glioma initiating cells requires NOTCH-1 signaling. Stem Cells. 2013;31:1252–1265. doi: 10.1002/stem.1373. [PubMed] [CrossRef[]
46. Ying Z., Li Y., Wu J., Zhu X., Yang Y., Tian H., Li W., Hu B., Cheng S.Y., Li M. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 2013;73:990–999. doi: 10.1158/0008-5472.CAN-12-2895. [PMC free article] [PubMed] [CrossRef[]
47. Godlewski J., Nowicki M.O., Bronisz A., Williams S., Otsuki A., Nuovo G., Raychaudhury A., Newton H.B., Chiocca E.A., Lawler S. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68:9125–9130. doi: 10.1158/0008-5472.CAN-08-2629. [PubMed] [CrossRef[]
48. Geng J., Luo H., Pu Y., Zhou Z., Wu X., Xu W., Yang Z. Methylation mediated silencing of miR-23b expression and its role in glioma stem cells. Neurosci. Lett. 2012;528:185–189. doi: 10.1016/j.neulet.2012.08.055. [PubMed] [CrossRef[]
49. Summer R., Kotton D.N., Sun X., Ma B., Fitzsimmons K., Fine A. Side population cells and Bcrp1 expression in lung. Am. J. Physiol Lung Cell. Mol. Physiol. 2003;285:97–104. doi: 10.1152/ajplung.00009.2003. [PubMed] [CrossRef[]
50. Hu J., Qiu M., Jiang F., Zhang S., Yang X., Wang J., Xu L., Yin R. MiR-145 regulates cancer stem-like properties and epithelial-to-mesenchymal transition in lung adenocarcinoma-initiating cells. Tumour Biol. 2014;35:8953–8961. doi: 10.1007/s13277-014-2158-8. [PubMed] [CrossRef[]
51. ClinicalTrials.gov Pharmacological Ascorbate for Lung Cancer. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02420314?term=vitamin+c&recrs=ade&cond=lung+cancer&cntry=US&phase=123&rank=1.
52. Jiang F., Qiu Q., Khanna A., Todd N.W., Deepak J., Xing L., Wang H., Liu Z., Su Y., Stass S.A., et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res. 2009;7:330–338. doi: 10.1158/1541-7786.MCR-08-0393. [PMC free article] [PubMed] [CrossRef[]
53. Xu W., Ji J., Xu Y., Liu Y., Shi L., Liu Y., Lu X., Zhao Y., Luo F., Wang B., et al. MicroRNA-191, by promoting the EMT and increasing CSC-like properties, is involved in neoplastic and metastatic properties of transformed human bronchial epithelial cells. Mol. Carcinog. 2015;54:148–161. doi: 10.1002/mc.22221. [PubMed] [CrossRef[]
54. ClinicalTrials.gov A Phase 2 Study Adding Ascorbate to Chemotherapy and Radiation Therapy for NSCLC (XACT-LUNG) [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02905591?term=vitamin+c&recrs=ade&cond=lung+cancer&cntry=US&phase=123&rank=2.
55. Xi S., Xu H., Shan J., Tao Y., Hong J.A., Inchauste S., Zhang M., Kunst T.F., Mercedes L., Schrump D.S. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J. Clin. Investig. 2013;123:1241–1261. doi: 10.1172/JCI61271. [PMC free article] [PubMed] [CrossRef[]
56. Bertolini G., Roz L., Perego P., Tortoreto M., Fontanella E., Gatti L., Pratesi G., Fabbri A., Andriani F., Tinelli S., et al. Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc. Natl. Acad. Sci. USA. 2009;106:16281–16286. doi: 10.1073/pnas.0905653106. [PMC free article] [PubMed] [CrossRef[]
57. King C.E., Cuatrecasas M., Castells A., Sepulveda A.R., Lee J.S., Rustgi A.K. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 2011;71:4260–4268. doi: 10.1158/0008-5472.CAN-10-4637. [PMC free article] [PubMed] [CrossRef[]
58. Huang E.H., Hynes M.J., Zhang T., Ginestier C., Dontu G., Appelman H., Fields J.Z., Wicha M.S., Boman B.M. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 2009;69:3382–3389. doi: 10.1158/0008-5472.CAN-08-4418. [PMC free article] [PubMed] [CrossRef[]
59. Dalerba P., Dylla S.J., Park I.K., Liu R., Wang X., Cho R.W., Hoey T., Gurney A., Huang E.H., Simeone D.M., et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl. Acad. Sci. USA. 2007;104:10158–10163. doi: 10.1073/pnas.0703478104. [PMC free article] [PubMed] [CrossRef[]
60. Jaksch M., Munera J., Bajpai R., Terskikh A., Oshima R.G. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res. 2008;68:7882–7886. doi: 10.1158/0008-5472.CAN-08-0723. [PMC free article] [PubMed] [CrossRef[]
61. ClinicalTrials.gov TET2 Mutations in Myelodysplastic Syndromes and Acute Myeloid Leukemia with Azacitidine + Ascorbic Acid. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03397173?term=vitamin+c&recrs=ade&cond=Leukemia&cntry=US&phase=123&rank=1.
62. Scheibner K.A., Teaboldt B., Hauer M.C., Chen X., Cherukuri S., Guo Y., Kelley S.M., Liu Z., Baer M.R., Heimfeld S., et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta. PLoS ONE. 2012;7:e50895. doi: 10.1371/journal.pone.0050895. [PMC free article] [PubMed] [CrossRef[]
63. ClinicalTrials.gov Therapeutic Use of Intravenous Vitamin C in Allogeneic Stem Cell Transplant Recipients. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03613727?term=vitamin+c&recrs=ade&cond=Leukemia&cntry=US&phase=123&rank=2.
64. ClinicalTrials.gov Ascorbic Acid and Combination Chemotherapy in Treating Patients with Relapsed or Refractory Lymphoma. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03418038?term=vitamin+c&recrs=ade&cond=Lymphoma&cntry=US&phase=123&rank=1.
65. Ma S., Tang K.H., Chan Y.P., Lee T.K., Kwan P.S., Castilho A., Ng I., Man K., Wong N., To K.F., et al. miR-130b Promotes CD133+ liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707. doi: 10.1016/j.stem.2010.11.010. [PubMed] [CrossRef[]
66. Han Y.C., Park C.Y., Bhagat G., Zhang J., Wang Y., Fan J.B., Liu M., Zou Y., Weissman I.L., Gu H. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J. Exp. Med. 2010;207:475–489. doi: 10.1084/jem.20090831. [PMC free article] [PubMed] [CrossRef[]
67. Babashah S., Sadeghizadeh M., Hajifathali A., Tavirani M.R., Zomorod M.S., Ghadiani M., Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int. J. Cancer. 2013;133:579–589. doi: 10.1002/ijc.28043. [PubMed] [CrossRef[]
68. Morris V.A., Zhang A., Yang T., Stirewalt D.L., Ramamurthy R., Meshinchi S., Oehler V.G. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PLoS ONE. 2013;8:e75815. doi: 10.1371/journal.pone.0075815. [PMC free article] [PubMed] [CrossRef[]
69. ClinicalTrials.gov Docetaxel with or without Ascorbic Acid in Treating Patients with Metastatic Prostate Cancer. [(accessed on 2 October 2019)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02516670?term=vitamin+c&recrs=ade&cond=Prostate+cancer&cntry=US&phase=123&rank=1.
70. Hellsten R., Johansson M., Dahlman A., Sterner O., Bjartell A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS ONE. 2011;6:e22118. doi: 10.1371/journal.pone.0022118. [PMC free article] [PubMed] [CrossRef[]
71. Chang Y.L., Zhou P.J., Wei L., Li W., Ji Z., Fang Y.X., Gao W.Q. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6:24017–24031. doi: 10.18632/oncotarget.4447. [PMC free article] [PubMed] [CrossRef[]
72. Collins A.T., Berry P.A., Hyde C., Stower M.J., Maitland N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–10951. doi: 10.1158/0008-5472.CAN-05-2018. [PubMed] [CrossRef[]
73. Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., Patrawala L., Yan H., Jeter C., Honorio S., et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 2011;17:211–215. doi: 10.1038/nm.2284. [PMC free article] [PubMed] [CrossRef[]
74. Vander Griend D.J., Karthaus W.L., Dalrymple S., Meeker A., DeMarzo A.M., Isaacs J.T. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 2008;68:9703–9711. doi: 10.1158/0008-5472.CAN-08-3084. [PMC free article] [PubMed] [CrossRef[]
75. Hatanaka K., Okada M. Retarded nuclear migration in Drosophila embryos with aberrant F-actin reorganization caused by maternal mutations and by cytochalasin treatment. Development. 1991;111:909–920. [PubMed[]
76. Padayatty S.J., Levine M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016;22:463–493. doi: 10.1111/odi.12446. [PMC free article] [PubMed] [CrossRef[]
77. Svirbely J.L., Szent-Gyorgyi A. The chemical nature of vitamin C. Biochem. J. 1932;26:865–870. doi: 10.1042/bj0260865. [PMC free article] [PubMed] [CrossRef[]
78. King C.G., Waugh W.A. The Chemical Nature of Vitamin C. Science. 1932;75:357–358. doi: 10.1126/science.75.1944.357-a. [PubMed] [CrossRef[]
79. Parrow N.L., Leshin J.A., Levine M. Parenteral ascorbate as a cancer therapeutic: A reassessment based on pharmacokinetics. Antioxid. Redox Signal. 2013;19:2141–2156. doi: 10.1089/ars.2013.5372. [PMC free article] [PubMed] [CrossRef[]
80. Burzle M., Hediger M.A. Functional and physiological role of vitamin C transporters. Curr. Top. Membr. 2012;70:357–375. doi: 10.1016/B978-0-12-394316-3.00011-9. [PubMed] [CrossRef[]
81. Englard S., Seifter S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986;6:365–406. doi: 10.1146/annurev.nu.06.070186.002053. [PubMed] [CrossRef[]
82. Tsukaguchi H., Tokui T., Mackenzie B., Berger U.V., Chen X.Z., Wang Y., Brubaker R.F., Hediger M.A. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399:70–75. doi: 10.1038/19986. [PubMed] [CrossRef[]
83. Wang H., Dutta B., Huang W., Devoe L.D., Leibach F.H., Ganapathy V., Prasad P.D. Human Na+-dependent vitamin C transporter 1 (hSVCT1): Primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim. Biophys. Acta Biomembr. 1999;1461:1–9. doi: 10.1016/S0005-2736(99)00182-0. [PubMed] [CrossRef[]
84. Daruwala R., Song J., Koh W.S., Rumsey S.C., Levine M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999;460:480–484. doi: 10.1016/S0014-5793(99)01393-9. [PubMed] [CrossRef[]
85. Wang Y., Mackenzie B., Tsukaguchi H., Weremowicz S., Morton C.C., Hediger M.A. Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem. Biophys. Res. Commun. 2000;267:488–494. doi: 10.1006/bbrc.1999.1929. [PubMed] [CrossRef[]
86. Corpe C.P., Eck P., Wang J., Al-Hasani H., Levine M. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. J. Biol. Chem. 2013;288:9092–9101. doi: 10.1074/jbc.M112.436790. [PMC free article] [PubMed] [CrossRef[]
87. Rumsey S.C., Kwon O., Xu G.W., Burant C.F., Simpson I., Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem. 1997;272:18982–18989. doi: 10.1074/jbc.272.30.18982. [PubMed] [CrossRef[]
88. Rumsey S.C., Daruwala R., Al-Hasani H., Zarnowski M.J., Simpson I.A., Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J. Biol. Chem. 2000;275:28246–28253. doi: 10.1074/jbc.M000988200. [PubMed] [CrossRef[]
89. Vera J.C., Rivas C.I., Fischbarg J., Golde D.W. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature. 1993;364:79–82. doi: 10.1038/364079a0. [PubMed] [CrossRef[]
90. Tu H., Li H., Wang Y., Niyyati M., Wang Y., Leshin J., Levine M. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. EBioMedicine. 2015;2:1735–1750. doi: 10.1016/j.ebiom.2015.09.049. [PMC free article] [PubMed] [CrossRef[]
91. Gillberg L., Orskov A.D., Liu M., Harslof L.B.S., Jones P.A., Gronbaek K. Vitamin C—A new player in regulation of the cancer epigenome. Semin. Cancer Biol. 2018;51:59–67. doi: 10.1016/j.semcancer.2017.11.001. [PubMed] [CrossRef[]
92. Mayland C.R., Bennett M.I., Allan K. Vitamin C deficiency in cancer patients. Palliat. Med. 2005;19:17–20. doi: 10.1191/0269216305pm970oa. [PubMed] [CrossRef[]
93. Klimant E., Wright H., Rubin D., Seely D., Markman M. Intravenous vitamin C in the supportive care of cancer patients: A review and rational approach. Curr. Oncol. 2018;25:139–148. doi: 10.3747/co.25.3790. [PMC free article] [PubMed] [CrossRef[]
94. Kagohara L.T., Stein-O’Brien G.L., Kelley D., Flam E., Wick H.C., Danilova L.V., Easwaran H., Favorov A.V., Qian J., Gaykalova D.A., et al. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Brief. Funct. Genom. 2018;17:49–63. doi: 10.1093/bfgp/elx018. [PMC free article] [PubMed] [CrossRef[]
95. Padayatty S.J., Katz A., Wang Y., Eck P., Kwon O., Lee J.H., Chen S., Corpe C., Dutta A., Dutta S.K., et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003;22:18–35. doi: 10.1080/07315724.2003.10719272. [PubMed] [CrossRef[]
96. Wilson M.K., Baguley B.C., Wall C., Jameson M.B., Findlay M.P. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac. J. Clin. Oncol. 2014;10:22–37. doi: 10.1111/ajco.12173. [PubMed] [CrossRef[]
97. Lee W.J. The prospects of vitamin C in cancer therapy. Immune Netw. 2009;9:147–152. doi: 10.4110/in.2009.9.5.147. [PMC free article] [PubMed] [CrossRef[]
98. Lv H., Wang C., Fang T., Li T., Lv G., Han Q., Yang W., Wang H. Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2. NPJ Precis. Oncol. 2018;2:1. doi: 10.1038/s41698-017-0044-8. [PMC free article] [PubMed] [CrossRef[]
99. Ngo B., Van Riper J.M., Cantley L.C., Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer. 2019;19:271–282. doi: 10.1038/s41568-019-0135-7. [PMC free article] [PubMed] [CrossRef[]
100. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:453–462. doi: 10.1016/j.cub.2014.03.034. [PMC free article] [PubMed] [CrossRef[]
101. Chio I.I.C., Tuveson D.A. ROS in Cancer: The Burning Question. Trends Mol. Med. 2017;23:411–429. doi: 10.1016/j.molmed.2017.03.004. [PMC free article] [PubMed] [CrossRef[]
102. Klein E.A., Thompson I.M., Jr., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M., et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) JAMA. 2011;306:1549–1556. doi: 10.1001/jama.2011.1437. [PMC free article] [PubMed] [CrossRef[]
103. Omenn G.S., Goodman G.E., Thornquist M.D., Balmes J., Cullen M.R., Glass A., Keogh J.P., Meyskens F.L., Valanis B., Williams J.H., et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 1996;334:1150–1155. doi: 10.1056/NEJM199605023341802. [PubMed] [CrossRef[]
104. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014;2014:761264. doi: 10.1155/2014/761264. [PMC free article] [PubMed] [CrossRef[]
105. Wondrak G.T. Redox-directed cancer therapeutics: Molecular mechanisms and opportunities. Antioxid. Redox Signal. 2009;11:3013–3069. doi: 10.1089/ars.2009.2541. [PMC free article] [PubMed] [CrossRef[]
106. Torti S.V., Torti F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer. 2013;13:342–355. doi: 10.1038/nrc3495. [PMC free article] [PubMed] [CrossRef[]
107. DeBerardinis R.J., Chandel N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016;2:e1600200. doi: 10.1126/sciadv.1600200. [PMC free article] [PubMed] [CrossRef[]
108. Rychtarcikova Z., Lettlova S., Tomkova V., Korenkova V., Langerova L., Simonova E., Zjablovskaja P., Alberich-Jorda M., Neuzil J., Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 2017;8:6376–6398. doi: 10.18632/oncotarget.14093. [PMC free article] [PubMed] [CrossRef[]
109. Kiessling M.K., Klemke C.D., Kaminski M.M., Galani I.E., Krammer P.H., Gulow K. Inhibition of constitutively activated nuclear factor-kappaB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res. 2009;69:2365–2374. doi: 10.1158/0008-5472.CAN-08-3221. [PubMed] [CrossRef[]
110. Liberti M.V., Locasale J.W. Correction to: ‘The Warburg Effect: How Does it Benefit Cancer Cells?’: [Trends in Biochemical Sciences, 41 (2016) 211] Trends Biochem. Sci. 2016;41:287. doi: 10.1016/j.tibs.2016.01.004. [PubMed] [CrossRef[]
111. Yun J., Rago C., Cheong I., Pagliarini R., Angenendt P., Rajagopalan H., Schmidt K., Willson J.K., Markowitz S., Zhou S., et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325:1555–1559. doi: 10.1126/science.1174229. [PMC free article] [PubMed] [CrossRef[]
112. Bhattacharjee S., Nandi S. Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy. Cancers. 2018;10:298. doi: 10.3390/cancers10090298. [PMC free article] [PubMed] [CrossRef[]
113. Bhattacharjee S., Nandi S. Synthetic lethality in DNA repair network: A novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life. 2017;69:929–937. doi: 10.1002/iub.1696. [PubMed] [CrossRef[]
114. Rasmussen K.D., Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–750. doi: 10.1101/gad.276568.115. [PMC free article] [PubMed] [CrossRef[]
115. Melamed P., Yosefzon Y., David C., Tsukerman A., Pnueli L. Tet Enzymes, Variants, and Differential Effects on Function. Front. Cell Dev. Biol. 2018;6:22. doi: 10.3389/fcell.2018.00022. [PMC free article] [PubMed] [CrossRef[]
116. Mastrangelo D., Pelosi E., Castelli G., Lo-Coco F., Testa U. Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol. Dis. 2018;69:57–64. doi: 10.1016/j.bcmd.2017.09.005. [PubMed] [CrossRef[]
117. Bonuccelli G., De Francesco E.M., de Boer R., Tanowitz H.B., Lisanti M.P. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting “stemness” Oncotarget. 2017;8:20667–20678. doi: 10.18632/oncotarget.15400. [PMC free article] [PubMed] [CrossRef[]
118. Kulis M., Esteller M. DNA methylation and cancer. Adv. Genet. 2010;70:27–56. doi: 10.1016/B978-0-12-380866-0.60002-2. [PubMed] [CrossRef[]
119. Hore T.A., von Meyenn F., Ravichandran M., Bachman M., Ficz G., Oxley D., Santos F., Balasubramanian S., Jurkowski T.P., Reik W. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naive pluripotency by complementary mechanisms. Proc. Natl. Acad. Sci. USA. 2016;113:12202–12207. doi: 10.1073/pnas.1608679113. [PMC free article] [PubMed] [CrossRef[]
120. De Francesco E.M., Bonuccelli G., Maggiolini M., Sotgia F., Lisanti M.P. Vitamin C and Doxycycline: A synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs) Oncotarget. 2017;8:67269–67286. doi: 10.18632/oncotarget.18428. [PMC free article] [PubMed] [CrossRef[]
121. De Francesco E.M., Ozsvari B., Sotgia F., Lisanti M.P. Dodecyl-TPP Targets Mitochondria and Potently Eradicates Cancer Stem Cells (CSCs): Synergy With FDA-Approved Drugs and Natural Compounds (Vitamin C and Berberine) Front. Oncol. 2019;9:615. doi: 10.3389/fonc.2019.00615. [PMC free article] [PubMed] [CrossRef[]
122. An J., Rao A., Ko M. TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp. Mol. Med. 2017;49:e323. doi: 10.1038/emm.2017.5. [PMC free article] [PubMed] [CrossRef[]
123. Cimmino L., Abdel-Wahab O., Levine R.L., Aifantis I. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell. 2011;9:193–204. doi: 10.1016/j.stem.2011.08.007. [PMC free article] [PubMed] [CrossRef[]
124. Huang Y., Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 2014;30:464–474. doi: 10.1016/j.tig.2014.07.005. [PMC free article] [PubMed] [CrossRef[]
125. Ko M., An J., Pastor W.A., Koralov S.B., Rajewsky K., Rao A. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 2015;263:6–21. doi: 10.1111/imr.12239. [PMC free article] [PubMed] [CrossRef[]
126. Guillamot M., Cimmino L., Aifantis I. The Impact of DNA Methylation in Hematopoietic Malignancies. Trends Cancer. 2016;2:70–83. doi: 10.1016/j.trecan.2015.12.006. [PMC free article] [PubMed] [CrossRef[]
127. Chung T.L., Brena R.M., Kolle G., Grimmond S.M., Berman B.P., Laird P.W., Pera M.F., Wolvetang E.J. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells. 2010;28:1848–1855. doi: 10.1002/stem.493. [PubMed] [CrossRef[]
128. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. doi: 10.1126/science.1170116. [PMC free article] [PubMed] [CrossRef[]
129. Yin R., Mao S.Q., Zhao B., Chong Z., Yang Y., Zhao C., Zhang D., Huang H., Gao J., Li Z., et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 2013;135:10396–10403. doi: 10.1021/ja4028346. [PubMed] [CrossRef[]
130. Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. doi: 10.1126/science.1210597. [PMC free article] [PubMed] [CrossRef[]
131. Gustafson C.B., Yang C., Dickson K.M., Shao H., Van Booven D., Harbour J.W., Liu Z.J., Wang G. Epigenetic reprogramming of melanoma cells by vitamin C treatment. Clin. Epigenet. 2015;7:51. doi: 10.1186/s13148-015-0087-z. [PMC free article] [PubMed] [CrossRef[]
132. Mustafi S., Sant D.W., Liu Z.J., Wang G. Ascorbate induces apoptosis in melanoma cells by suppressing Clusterin expression. Sci. Rep. 2017;7:3671. doi: 10.1038/s41598-017-03893-5. [PMC free article] [PubMed] [CrossRef[]
133. Knowles H.J., Raval R.R., Harris A.L., Ratcliffe P.J. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 2003;63:1764–1768. [PubMed[]
134. Semenza G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 2012;33:207–214. doi: 10.1016/j.tips.2012.01.005. [PMC free article] [PubMed] [CrossRef[]
135. Kuiper C., Vissers M.C. Ascorbate as a co-factor for Fe- and 2-Oxoglutarate dependent dioxygenases: Physiological activity in tumor growth and progression. Front. Oncol. 2014;4:359. doi: 10.3389/fonc.2014.00359. [PMC free article] [PubMed] [CrossRef[]
136. Lee Chong T., Ahearn E.L., Cimmino L. Reprogramming the Epigenome With Vitamin C. Front. Cell Dev. Biol. 2019;7:128. doi: 10.3389/fcell.2019.00128. [PMC free article] [PubMed] [CrossRef[]
137. Wang F., Li Y.C., Liu L.P., Zhang H.M., Tong S. Circulating Tumor Cells and Tumor Stem Cells Detection in the Peripheral Blood Mononuclear Cells of Breast Cancer. J. Clin. Lab. Anal. 2016;30:616–622. doi: 10.1002/jcla.21911. [PMC free article] [PubMed] [CrossRef[]

Articles from Biomolecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)


Plaats een reactie ...

Reageer op "Combinatietherapie van reguliere behandelingen met vitamine C blijkt kankerstamcellen te vernietigen doordat het energiemetabolisme in kankerstamcellen wordt verstoord."


Gerelateerde artikelen
 

Gerelateerde artikelen

Vitamine C verlaagt de bloeddruk, >> Combinatietherapie van reguliere >> Anton Kuraia had leukemie >> Infusen met (hoge dosis) vitamine >> Infusen met Vitamine C, hydrocortisone >> Infusen met hoge dosis vitamine >> Het effect van intraveneuze >> Vitamine C: een man met hairycell >> Twee patiënten met uitgezaaide >> Intraveneus toedienen van >>