21 oktober 2022: lees ook dit artikel: https://kanker-actueel.nl/NL/e-nose-techniek-ruikt-verschil-tussen-darmkanker-en-darmpoliepen-en-zou-darmkanker-vroegtijdig-op-kunnen-sporen-aldus-studie-uit-het-vumc.html

21 oktober 2022: Lees ook dit artikel (abstract onderaan artikel): 

Sniffer dogs can identify lung cancer patients from breath and urine samples

Results of breath tests – detection rates

The dog correctly predicted cancer in 32 of 41 breath samples, corresponding to a detection rate of 78% (95% CI [62.4, 89.4%]). This did not differ significantly from the reference value of 78% (p = 0.5851). Results are depicted in Table 2.


21 oktober 2022: Bron: Tubantia en MST Twente

Sharina Kort, werkzaam als longarts in opleiding in het Medisch Spectrum Twente Enschede deed onderzoek naar de mogelijkheden van een ademtest via de aeoNose, een draagbare ademanalysator, ook wel de elektronische neus genoemd, om longkanker in een vroegtijdig stadium op te sporen. Sharina Kort presenteerde haar studie in Barcelona afgelopen week. 

Op de website van het MST staat een uitgebreide uitleg in het Engels wat zij gevonden heeft in haar onderzoek:  

DETECTION OF LUNG CANCER IN EXHALED BREATH WITH ELECTRONIC NOSE TECHNOLOGY

THE PHD DEFENCE OF SHARINA KORT WILL TAKE PLACE (PARTLY) ONLINE AND CAN BE FOLLOWED BY A LIVE STREAM.
LIVE STREAM

Sharina Kort is a PhD student in the research group Cognition, Data and Education. Supervisor is prof.dr. J.A.M. van der Palen from the Faculty of Behavioural, Management and Social Sciences and co-supervisors are dr. M.G.J. Brusse-Keizer from MST (Medisch Spectrum Twente) and dr. H. Schouwink from the Faculty of Behavioural Management and Social Sciences.

Een paar korte quotes uit dit artikel:

In Hoofdstuk 4 hebben we een verkennende multicenter studie uitgevoerd om de Aeonose te trainen om niet-kleincellige longkankerpatiënten te onderscheiden van proefpersonen zonder longkanker op basis van uitgeademde adem. Op basis van 290 proefpersonen (144 NSCLC-patiënten, 146 controles) was het voorspellingsmodel in staat om beide groepen te onderscheiden met een sensitiviteit van 94%, een specificiteit van 33%, een negatief voorspellende waarde (NPV) van 86% en een AUC van 0,76 (95% betrouwbaarheidsinterval (BI): 0,71-0,82).

........
Aangezien de trainingsstudies, met en zonder klinische variabelen, veelbelovende resultaten lieten zien van de Aeonose om longkanker te diagnosticeren, hebben we een groot, multicenter, multinationaal validatieonderzoek uitgevoerd met meerdere Aeonose-apparaten om de reproduceerbaarheid en robuustheid van de verkregen resultaten te beoordelen. De resultaten van deze validatiestudie worden gepresenteerd in hoofdstuk 6. 

........we rekruteerden nieuwe proefpersonen en voerden een split-sample-ontwerp uit dat de ontwikkeling en daaropvolgende validatie van een nieuw voorspellingsmodel mogelijk maakte. De trainingsset bestond uit 376 proefpersonen (160 longkankerpatiënten, 216 klinisch relevante controles) en de validatieset bestond uit 199 proefpersonen (79 longkankerpatiënten, 120 controles). ............Dit voorspellingsmodel toonde een sensitiviteit van 88%, een specificiteit van 48%, een PPV van 52%, een NPV van 87%, met een AUC van 0,79 (95% BI: 0,72-0,85) in de validatieset.>>>>>>>lees het hele artikel met de uitleg verder

De Tubantia schreef er ook een artikel over:

Enschedese onderzoekt elektrische neus: 'Longkanker kan je ruiken'

Sharina Kort uit Enschede deed onderzoek naar de mogelijkheden van de elektronische neus, een nieuwe methode om longkanker in een vroegtijdig stadium op te sporen. 'Het klinkt ongelofelijk, maar kanker kun je ruiken.'

Dit artikel is afkomstig uit Tubantia. 

Sinds 2015 al is ze met haar onderzoek bezig. Sharina Kort, momenteel werkzaam als longarts in opleiding in het Enschedese ziekenhuis MST, investeerde zes jaar van haar leven in de mogelijkheden van ademanalyse. Met haar promotie onlangs aan de Universiteit Twente rondde ze een eerste grote fase af, specifiek gericht op de opsporing van longkanker. Uitgangspunt was en is het gebruik van de elektronische neus, een relatief nieuwe techniek om de ziekte in een vroegtijdig stadium op te sporen.>>>>>>>lees verder

We conclude that olfactory detection of lung cancer by specifically trained dogs is highly suggestive to be a simple and non-invasive tool to detect lung cancer.


Abstract

Background

Lung cancer is the most common oncological cause of death in the Western world. Early diagnosis is critical for successful treatment. However, no effective screening methods exist. A promising approach could be the use of volatile organic compounds as diagnostic biomarkers. To date there are several studies, in which dogs were trained to discriminate cancer samples from controls. In this study we evaluated the abilities of specifically trained dogs to distinguish samples derived from lung cancer patients of various tumor stages from matched healthy controls.

Methods

This single center, double-blind clinical trial was approved by the local ethics committee, project no FF20/2016. The dog was conditioned with urine and breath samples of 36 cancer patients and 150 controls; afterwards, further 246 patients were included: 41 lung cancer patients comprising all stages and 205 healthy controls. From each patient two breath and urine samples were collected and shock frozen. Only samples from new subjects were presented to the dog during study phase randomized, double-blinded. This resulted in a specific conditioned reaction pointing to the cancer sample.

Results

Using a combination of urine and breath samples, the dog correctly predicted 40 out of 41 cancer samples, corresponding to an overall detection rate of cancer samples of 97.6% (95% CI [87.1, 99.9%]). Using urine samples only the dog achieved a detection rate of 87.8% (95% CI [73.8, 95.9%]). With breath samples, the dog correctly identified cancer in 32 of 41 samples, resulting in a detection rate of 78% (95% CI [62.4, 89.4%]).

Conclusions

It is known from current literature that breath and urine samples carry VOCs pointing to cancer growth. We conclude that olfactory detection of lung cancer by specifically trained dogs is highly suggestive to be a simple and non-invasive tool to detect lung cancer. To translate this approach into practice further target compounds need to be identified.

References

  1. Koch-Institut R. Krebs in Deutschland 2015/2016. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2019/krebs_in_deutschland_2019.pdf?__blob=publicationFile.

  2. Onkologie L. S3-Leitlinie Lungenkarzinom 2018. https://www.awmf.org/uploads/tx_szleitlinien/020-007OL_l_S3_Lungenkarzinom_2018-03.pdf.

  3. The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. https://doi.org/10.1056/NEJMoa1102873.

    Article PubMed Central Google Scholar 

  4. De Konig H, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–13. https://doi.org/10.1056/NEJMoa1911793.

    Article Google Scholar 

  5. Jenkins EK, DeChant MT, Perry EB. When the nose Doesn’t know: canine olfactory function associated with health, management, and potential links to microbiota. Front Vet Sci. 2018;5:56. https://doi.org/10.3389/fvets.2018.00056.

    Article PubMed PubMed Central Google Scholar 

  6. Robin S, Tacher S, Rimbault M, Vaysse A, Dréano S, André C, et al. Genetic diversity of canine olfactory receptors. BMC Genomics. 2009;10(1):21. https://doi.org/10.1186/1471-2164-10-21.

    Article CAS PubMed PubMed Central Google Scholar 

  7. McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther. 2006;1:30–9.

    Article Google Scholar 

  8. Pirrone F, Albertini M. Olfactory detection of cancer by trained sniffer dogs: a systematic review of the literature. J Vet Behav. 2017;19:105–17. https://doi.org/10.1016/j.jveb.2017.03.004.

    Article Google Scholar 

  9. Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, et al. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J. 2011;39:669–76.

    Article Google Scholar 

  10. Amundsen T, Sundstrom S, Buvik T, Gederaas OA, Haaverstad R. Can dogs smell lung cancer? First study using exhaled breath and urine screening in unselected patients with suspected lung cancer. Acta Oncol (Madr). 2014;53:307–15.

    Article Google Scholar 

  11. Hackner K, Errhalt P, Mueller MR, Speiser M, Marzluf BA, Schulheim A, et al. Canine scent detection for the diagnosis of lung cancer in a screening-like situation. J Breath Res. 2016;10(4):046003. https://doi.org/10.1088/1752-7155/10/4/046003.

  12. Jezierski T, Walczak M, Ligor T, Rudnicka J, Buszewski B. Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. J Breath Res. 2015;9(2).

  13. Biehl W, Hattesohl A, Jörres RA, Duell T, Althöhn U, Rembert Koczulla A, et al. VOC pattern recognition of lung cancer: a comparative evaluation of different dog- and eNose-based strategies using different sampling materials. Acta Oncol. 2019;58(9):1216–24. https://doi.org/10.1080/0284186X.2019.1634284.

    Article CAS PubMed Google Scholar 

  14. Horvath G, Andersson H, Paulsson G. Characteristic odour in the blood reveals ovarian carcinoma. BMC Cancer. 2010;643.

  15. Criee C, Baur X, Berdel D, Bosch D, Gappa M, Haidl P, et al. Spirometrie S2k-Leitlinie der Deutschen Atemwegsliga, der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin und der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin zur Spirometrie. https://www.awmf.org/uploads/tx_szleitlinien/020-017l_S2k_Spirometrie-2015-05.pdf.

  16. Liu J, Thomas PS. Relationship between exhaled breath condensate volume and measurements of lung volumes. Respiration. 2007;74(2):142–5. https://doi.org/10.1159/000094238.

    Article PubMed Google Scholar 

  17. Fischer-Tenhagen C, Johnen D, Nehls I, Becker R. A proof of concept: Are detection dogs a useful tool to verify potential biomarkers for lung cancer? Front Vet Sci. 2018;5(52).

  18. Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C, Kroener J, et al. The use of canines in the detection of human cancers. J Altern Complement Med. 2008;14(1):61–7. https://doi.org/10.1089/acm.2006.6408.

    Article PubMed Google Scholar 

  19. Dammas S, Patz EF, Goodman PC. Identification of small lung nodules at autopsy: implications for lung cancer screening and overdiagnosis bias. Lung Cancer. 2001;33(1):11–6. https://doi.org/10.1016/S0169-5002(01)00190-8.

    Article CAS PubMed Google Scholar 

  20. Walczak M, Jezierski T, Gorecka-Bruzda A, Sobczyńska M, Ensminger J. Impact of individual training parameters and manner of taking breath odor samples on the reliability of canines as cancer screeners. J Vet Behav. 2012;7(5):283–94. https://doi.org/10.1016/j.jveb.2012.01.001.

    Article Google Scholar 

  21. Baldini C, Billeci L, Sansone F, Conte R, Domenici C. Tonacci a electronic nose as a novel method for diagnosing Cancer: a systematic review. Biosensors (Basel). 2020;10(8):84–93. https://doi.org/10.3390/bios10080084.

    Article CAS Google Scholar 

  22. Li W, Dai W, Liu M, Long Y, Wang C, Xie S, et al. VOC biomarkers identification and predictive model construction for lung cancer based on exhaled breath analysis: research protocol for an exploratory study. BMJ Open. 2019;9(8):e028448. https://doi.org/10.1136/bmjopen-2018-028448.

    Article PubMed PubMed Central Google Scholar 

  23. Schallschmidt K, Becker R, Jung C, Bremser W, Walles T, Neudecker J, Leschber G, Frese S, Nehls I. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study. J Breath Res. 2016;10(4):046007. https://doi.org/10.1088/1752-7155/10/4/046007.

  24. Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sensors Actuators B Chem. 2014;202:615–21. https://doi.org/10.1016/j.snb.2014.06.006.

    Article CAS Google Scholar 

  25. Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. Anal Bioanal Chem. 2012;404(1):141–6. https://doi.org/10.1007/s00216-012-6102-8.

    Article CAS PubMed PubMed Central Google Scholar 

  26. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808(2):269–77. https://doi.org/10.1016/j.jchromb.2004.05.015.

    Article CAS Google Scholar 

  27. Sponring A, Filipiak W, Mikoviny T, Ager C, Schubert J, Miekisch W, et al. Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 2009;29(1):419–26.

    CAS PubMed Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Riemann-Seibert, Chairman of the board of the Heidrun-Seibert Stiftung, Dieburg, Germany, who proposed the idea behind the presented study to CS. We would also like to thank the Heidrun-Seibert Stiftung for financial support.

Funding

This study was supported by grants from the Heidrun-Seibert Stiftung, Dieburg, Germany. The funding organization was not involved in the design and implementation of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Contributions

All authors made contributions to the study concept and design; CF, TS, and AF acquired study participants, samples or data; CF, FS, MRB, TS, IS, CS interpreted data; IS provided support for statistical analysis; CF wrote the manuscript; FS, MRB, TS and CS proofread and revised the manuscript. All authors read and approved the final manuscript. CF and FS contributed equally (shared first authorship).

Corresponding author

Correspondence to Carl C. Schimanski.

Ethics declarations

Ethics approval and consent to participate

The study and all experimental protocols, which also include the involved sniffer dog, were approved by the local ethics committee (at the national physician chamber Hessen in Frankfurt, Germany), project no FF20/2016 and have been performed in accordance with the Declaration of Helsinki. All methods were carried out in accordance with their relevant guidelines and regulations. Written informed consent was obtained from all study participants. Furthermore, informed consent was obtained from the owner of the involved dog.

The animal study was carried out in compliance with the ARRIVE guidelines.

Consent for publication

Not applicable.

Competing interests

The authors have declared that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions


Plaats een reactie ...

Reageer op "Ademtest via electronische neus ruikt niet-kleincellige longkanker blijkt uit nieuwe studie van Sharina Kort aan het Medisch Spectrum Twente (MST)"


Gerelateerde artikelen
 

Gerelateerde artikelen

Ademtest via electronische >> Luchtvervuiling lijkt voornaamste >> Bevolkingsonderzoek via CT-scan >> Westers dieet met voeding >> Rauwe knoflook zou de de kans >> Preventie longkanker: Regelmatige >> Tiotropium Respimat zachte >> Longkanker: D-Alpha-tocopherol >> Longkanker: Zelfs minder roken >> Longkanker: Cadmium in urine >>