Aan dit artikel is enkele uren gewerkt. Opzoeken, vertalen, plaatsen enz. Als u ons wilt ondersteunen dan kan dat via een al of niet anonieme donatie. Elk bedrag is welkom hoe klein ook. Klik hier als u ons wilt helpen kanker-actueel online te houden Wij zijn een ANBI organisatie en dus is uw donatie aftrekbaar voor de belasting

6 juni 2012: een review studie bevestigt goede resultaten van bexarotene plus Tarceva - erlotinib bij vormen van darmkanker met uitzaaiïngen in de longen onafhankelijk van KRAS mutatie zoals ook onderstaande studie aantoont. Onderaan staat het abstract van de review studie: Bexarotene plus erlotinib suppress lung carcinogenesis independent of KRAS mutations in two clinical trials and transgenic models.waarvan als u hier klikt het volledige studierapport gratis is in te zien.

18 januari 2006: Bron: J Clin Oncol. 2005 Dec 1;23(34):8757-64.

Bexarotene, een bewerkte vorm van vitamine A. met bijna geen bijwerkingen, geeft hoopvolle resultaten indien gegeven naast Tarceva bij kankerpatiënten met kanker aan de spijsverteringsorganen en met uitzaaiïngen in de longen. De 1 jaarsoverleving was maar liefst 73,8% bij deze groep van kankerpatiënten. Hier het abstract van deze studie die echt heel hoopvol klinkt. Als u hier klikt kunt u het volledige studierapport van deze studie gratis  inzien: Bexarotene and erlotinib for aerodigestive tract cancer.

Dragnev KH, Petty WJ, Shah S, Biddle A, Desai NB, Memoli V, Rigas JR, Dmitrovsky E. Hematology/Oncology Section, Department of Medicine, Norris Cotton Cancer Center, Lebanon, NH, USA.

PURPOSE: The epidermal growth factor receptor (EGFR) and cyclin D1 are overexpressed in lung carcinogenesis. The rexinoid, bexarotene, represses cyclin D1 and EGFR expression in vitro. It was hypothesized that combining bexarotene with the EGFR inhibitor, erlotinib, would augment clinical activity.

PATIENTS AND METHODS: In vitro studies and a phase I clinical trial were performed. Twenty-four patients with advanced aerodigestive tract cancers were enrolled; 79% had non-small-cell lung cancer (NSCLC). The primary objective was to determine the maximum-tolerated dose. Clinical activity was a secondary objective.

RESULTS: Combining erlotinib with bexarotene enhanced growth suppression in vitro compared with each single-agent treatment. This cooperatively repressed cyclin D1 expression. Clinically, the most frequent toxicities were mild hypertriglyceridemia and skin rash. Two serious treatment-related adverse events occurred (creatine phosphokinase elevation attributed to antilipid therapy and a case of generalized pain). Five objective responses (four partial and one minor) were observed in NSCLC patients. Responses were observed in males and smokers. EGFR sequence analyses did not reveal activating mutations in tumors from assessable responding patients. Median time to progression was 2.0 months; overall survival time was 14.1 months; and 1-year survival rate was 73.8%.

CONCLUSION: The recommended phase II doses are erlotinib 150 mg/d and bexarotene 400 mg/m2/d orally. These agents can be administered in combination at the recommended single-agent doses without added toxicity. Overall survival and clinical features of responding patients differ from prior reports of single-agent erlotinib treatment. These findings are encouraging and warrant further investigation of this regimen.

PMID: 16314636 [PubMed - in process]

Bexarotene plus Erlotinib Suppresses Lung Carcinogenesis Independent of KRAS Mutations in Two Clinical Trials and Transgenic Models

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 June 1.
Published in final edited form as:
PMCID: PMC3108499
NIHMSID: NIHMS293400

Bexarotene plus Erlotinib Suppresses Lung Carcinogenesis Independent of KRAS Mutations in Two Clinical Trials and Transgenic Models

Abstract

The rexinoid bexarotene represses cyclin D1 by causing its proteasomal degradation. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) erlotinib represses cyclin D1 via different mechanisms. We conducted a preclinical study and two clinical/translational trials (a window-of-opportunity and phase II) of bexarotene plus erlotinib. The combination repressed growth and cyclin D1 expression in cyclin-E– and KRAS/p53–driven transgenic lung cancer cells. The window-of-opportunity trial in early-stage non-small-cell lung cancer (NSCLC) patients (10 evaluable) repressed cyclin D1 (in tumor biopsies and buccal swabs) and induced necrosis and inflammatory responses including in cases with KRAS mutations. The phase II trial in heavily pre-treated, advanced NSCLC patients (40 evaluable; a median of two prior relapses per patient [range, 0–5]; 21% with prior EGFR-inhibitor therapy) produced three major clinical responses in patients with prolonged progression-free survival (583, 665, and 1460-plus days). Median overall survival was 22 weeks. Hypertriglyceridemia was associated with an increased median overall survival (P = 0.001). Early PET response did not reliably predict clinical response. The combination was generally well tolerated, with toxicities similar to those of the single agents. In conclusion, bexarotene plus erlotinib was active in KRAS-driven lung cancer cells, was biologically active in early-stage mutant-KRAS NSCLC, and was clinically active in advanced, chemotherapy-refractory mutant-KRAS tumors in this study and previous trials. Additional lung cancer therapy or prevention trials with this oral regimen are warranted.

 

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2020;60:277–300. [PubMed]
2. Dragnev KH, Stover D, Dmitrovsky E. Lung cancer prevention: the guidelines. Chest. 2003;123:60S–71S. [PubMed]
3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. [PubMed]
4. Sherr CJ. Cell cycle control and cancer. Harvey Lect. 2000;96:73–92. [PubMed]
5. Lonardo F, Rusch V, Langenfeld J, Dmitrovsky E, Klimstra DS. Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Res. 1999;59:2470–2476. [PubMed]
6. Betticher DC, Heighway J, Hasleton PS, et al. Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small-cell lung cancer. Br J Cancer. 1996;73:294–300. [PMC free article] [PubMed]
7. Betticher DC, White GR, Vonlanthen S, et al. G1 control gene status is frequently altered in resectable non-small cell lung cancer. Int J Cancer. 1997;74:556–562. [PubMed]
8. Ratschiller D, Heighway J, Gugger M, et al. Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol. 2003;21:2085–2093. [PubMed]
9. Freemantle SJ, Liu X, Feng Q, et al. Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem. 2007;102:869–877. [PubMed]
10. Rusch V, Mendelsohn J, Dmitrovsky E. The epidermal growth factor receptor and its ligands as therapeutic targets in human tumors. Cytokine Growth Factor Rev. 1996;7:133–141. [PubMed]
11. Rusch V, Klimstra D, Linkov I, Dmitrovsky E. Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. Cancer Res. 1995;55:1365–1372. [PubMed]
12. Sah JF, Eckert RL, Chandraratna RAS, Rorke EA. Retinoids suppress epidermal growth factor-associated cell proliferation by inhibiting epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem. 2002;277:9728–9735. [PubMed]
13. Masuda M, Suzui M, Yasumatu R, et al. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 2002;62:3351–3355. [PubMed]
14. Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3:802–808. [PubMed]
15. Kijima T, Niwa H, Steinman RA, et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ. 2002;13:355–362. [PubMed]
16. Buerger C, Nagel-Wolfrum K, Kunz C, et al. Sequence-specific peptide aptamers, interacting with the intracellular domain of the epidermal growth factor receptor, interfere with Stat3 activation and inhibit the growth of tumor cells. J Biol Chem. 2003;278:37610–37621. [PubMed]
17. Song L, Turkson J, Karras JG, Jove R, Haura EB. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene. 2003;22:4150–4165. [PubMed]
18. Park OK, Schaefer TS, Nathans D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci USA. 1996;93:13704–13708. [PMC free article] [PubMed]
19. Petty WJ, Dragnev KH, Memoli VA, et al. Epidermal growth factor receptor tyrosine kinase inhibition represses cyclin D1 in aerodigestive tract cancers. Clin Cancer Res. 2004;10:7547–7554. [PubMed]
20. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–132. [PubMed]
21. Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9:962–972. [PubMed]
22. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl Med. 2004;350:2129–2139.
23. Paez JG, Jänne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. [PubMed]
24. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17. [PMC free article] [PubMed]
25. Freemantle SJ, Spinella MJ, Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene. 2003;22:7305–7315. [PubMed]
26. Dragnev KH, Pitha-Rowe I, Ma Y, et al. Specific chemopreventive agents trigger proteasomal degradation of G1 cyclins: implications for combination therapy. Clin Cancer Res. 2004;10:2570–2577. [PubMed]
27. Langenfeld J, Kiyokawa H, Sekula D, Boyle J, Dmitrovsky E. Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Proc Natl Acad Sci USA. 1997;94:12070–12074. [PMC free article] [PubMed]
28. Lonardo F, Dragnev KH, Freemantle SJ, et al. Evidence for the epidermal growth factor receptor as a target for lung cancer prevention. Clin Cancer Res. 2002;8:54–60. [PubMed]
29. Boyle JO, Langenfeld J, Lonardo F, et al. Cyclin D1 proteolysis: a retinoid chemoprevention signal in normal, immortalized, and transformed human bronchial epithelial cells. J Natl Cancer Inst. 1999;91:373–379. [PubMed]
30. Dragnev KH, Petty WJ, Shah SJ, et al. A proof-of-principle clinical trial of bexarotene in patients with non-small cell lung cancer. Clin Cancer Res. 2007;13:1794–1800. [PubMed]
31. Kobayashi S, Shimamura T, Monti S, et al. Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling. Cancer Res. 2006;66:11389–11398. [PubMed]
32. Rubin Grandis J, Zeng Q, Tweardy DJ. Retinoic acid normalizes the increased gene transcription rate of TGF-alpha and EGFR in head and neck cancer cell lines. Nat Med. 1996;2:237–240. [PubMed]
33. Dragnev KH, Petty WJ, Shah S, et al. Bexarotene and erlotinib for aerodigestive tract cancer. J Clin Oncol. 2005;23:8757–8764. [PubMed]
34. Ma Y, Fiering S, Black C, et al. Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci USA. 2007;104:4089–4094. [PMC free article] [PubMed]
35. Freemantle SJ, Dmitrovsky E. Cyclin E transgenic mice: discovery tools for lung cancer biology, therapy and prevention. Cancer Prev Res. 2010;3:1513–1518.
36. Gibbons DL, Lin W, Creighton CJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23:2140–2151. [PMC free article] [PubMed]
37. Lièvre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26:374–379. [PubMed]
38. Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7:396–403. [PMC free article] [PubMed]
39. Clopper C, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–413.
40. Kim ES, Herbst RS, Wistuba, et al. The Battle trial: personalizing therapy for lung cancer. Cancer Discovery. doi: 10.1158/2159-8274.CD-10-0010. published ahead of print. [Cross Ref]
41. Khuri FR, Rigas JR, Figlin RA, et al. Multi-institutional phase I/II trial of oral bexarotene in combination with cisplatin and vinorelbine in previously untreated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2001;19:2626–2637. [PubMed]
42. Blumenschein GR, Khuri FR, von Pawel J, et al. Phase III trial comparing carboplatin, paclitaxel, and bexarotene with carboplatin and paclitaxel in chemotherapy-naive patients with advanced or metastatic non-small-cell lung cancer: SPIRIT II. J Clin Oncol. 2008;26:1879–1885. [PubMed]
43. Edelman MJ. Second-line chemotherapy and beyond for non-small-cell lung cancer. Clin Adv Hematol Oncol. 2004;2:373–378. [PubMed]
44. Massarelli E, Andre F, Liu DD, et al. A retrospective analysis of the outcome of patients who have received two prior chemotherapy regimens including platinum and docetaxel for recurrent non-small-cell lung cancer. Lung Cancer. 2003;39:55–61. [PubMed]
45. Su H, Bodenstein C, Dumont RA, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2006;12:5659–5667. [PubMed]
46. Sunaga N, Oriuchi N, Kaira K, et al. Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer. 2008;59:203–210. [PubMed]
47. Mok TS, Wu Y, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–957. [PubMed]
48. Massarelli E, Varella-Garcia M, Tang X, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res. 2007;13:2890–2896. [PubMed]
49. Galimberti F, Thompson SL, Liu X, et al. Targeting the cyclin E-Cdk-2 complex represses lung cancer growth by triggering anaphase catastrophe. Clin Cancer Res. 2010;16:109–120. [PMC free article] [PubMed]
50. Liby K, Black CC, Royce DB, et al. The rexinoid LG100268 and the synthetic triterpenoid CDDO-methyl amide are more potent than erlotinib for prevention of mouse lung carcinogenesis. Mol Cancer Ther. 2008;7:1251–1257. [PubMed]

Plaats een reactie ...

Reageer op "Bexarotene - een bewerkte vorm van vitamine A - gegeven naast Tarceva - erlotinib geeft betere kwaliteit van leven en betere overleving bij spijsverteringskanker met uitzaaiïngen in de longen."


Gerelateerde artikelen
 

Gerelateerde artikelen

All-Trans-Retinoic Acid - >> Antioxidanten - vitamines >> Acetylcysteine (Glutathion) >> Astragalus polysaccharide >> Bexarotene - een bewerkte >> Broccoli voorkomt longkanker >> Chinese kruiden mix - injecties >> Hydrazine sulfaat vermindert >> Melatonine naast chemo geeft >> OK-432 zorgt in vergelijking >>