Wie advies wilt over hoe het microbioom te verbeteren zou contact op kunnen nemen met deze website: Www.microbiome-Center.nl Voor zowel artsen als individuele burgers staat een groep van artsen en wetenschappers klaar om u een persoonlijk advies te geven.

Zie ook artikelen over probiotica

21 mei 2025: Bronnen: 2024 Oct;26(10):2418-2430 en 2023 Nov;149(14):13477-13494 o.a.

De laatste jaren is er veel aandacht voor de rol van het darmmicrobioom - darmflora in relatie tot de immuniteit van dier en mens. In zijn algemeenheid is aangetoond dat hoe gevarieerder het darmmicrobioom - darmflora is hoe beter de weerstand.

Uit meerdere studies blijkt nu ook dat 1 specieke bacterie genaamd Akkermansia muciniphila een grote rol kan spelen in het verbeteren van de effectiviteit van immuuntherapie bij patiënten met verschillende vormen van kanker. 

Een vertaald citaat uit een reviewstudie gepubliceerd in april 2024: Akkermansia muciniphila, een anaërobe bacterie, kan tumorimmuniteit induceren, de gastro-intestinale micro-omgeving reguleren via metabolieten, buitenmembraaneiwitten en sommige cytokinen, en het curatieve effect versterken door gecombineerde immunisatie. Echter in dat studieverslag is slechts een kort abstract gratis beschikbaar en moet voor het volledige studierapport worden betaald. (abstract staat verderop in dit artikel) 

Akkermania muciniphila: a rising star in tumor immunology

Een vergelijkbare studie als eerstgenoemde studie is ook alleen een kort abstract beschikbaar, de titel van deze studie is:

Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy



Een andere studie gepubliceerd januari 2025 in Nutrients is het studierapport wel gratis in te zien of fe downloaden (abstract ook verderop in dit artikel:

Health Effects and Therapeutic Potential of the Gut Microbe Akkermansia muciniphila


En ook kan Akkermansia muciniphila uitstekend helpen bij het tegengaan van obesitas 1 en 2. In Nature werd nog niet zo lang geleden een studie gepubliceerd over Akkermansia muciniphila en obesitas 1 en 2. De titel van dat studierapport is: 

Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms 


Samenvattend blijkt dus Akkermansia muciniphila een interessante probiotica bacterie met vele goede eigenschappen.

Hier achtereenvolgens de abstracten van hierboven genoemde studies met daarbij gerelateerde artikelen en referentielijsten.




Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization.

Review
 
 doi: 10.1007/s12094-024-03493-6. Epub 2024 Apr 23.

Akkermania muciniphila: a rising star in tumor immunology

Affiliations 

Abstract

Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.

In this review, the current state of A. muciniphila research is discussed, highlighting the recent advances in investigating its mechanisms of action, its significance in human health, and its prospective therapeutic applications.

Logo of nutrients Link to Publisher's site
Nutrients. 2025 Feb; 17(3): 562.
Published online 2025 Jan 31.https://doi.org/10.3390/nu17030562
PMCID: PMC11820462
PMID: 39940420

Health Effects and Therapeutic Potential of the Gut Microbe Akkermansia muciniphila

Mauro Cataldi, Academic Editor

1. Introduction

The gastrointestinal (GI) tract has a diverse microbial ecology that greatly influences host health and physiology [1]. The host-derived mucus layer that separates the microbial community in the lumen of the GI tract from intestinal epithelial cells is inhabited by microorganisms. One such microbe, Akkermansia muciniphila, has received significant attention in recent years. This unique bacterium, first isolated in 2004 [2], has emerged as a potential key player in maintaining human health and preventing various disease states. Studies have demonstrated that A. muciniphila can protect against pathogens and reduce inflammation by promoting intestinal barrier function. A. muciniphila has also been associated with the prevention of obesity, including reduced adiposity and increased insulin sensitivity [3,4]. This is associated with the altered metabolism of fatty acids and bile acids, potentially impacting host metabolism [5,6]. In this review, the current state of A. muciniphila research is discussed, highlighting the recent advances in investigating its mechanisms of action, its significance in human health, and its prospective therapeutic applications.

Similar Articles 


Funding Statement

This research received no external funding.

Author Contributions

Conceptualization, E.A.; writing—original draft preparation, E.A., A.Z., W.G., K.C., A.C. and J.P.J.; writing—review and editing, E.A., A.Z., W.G., K.C., A.C. and J.P.J.; visualization, E.A.; supervision, J.P.J. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References see in full study report

The potential clinical applications of A. muciniphila on cancer immunotherapy are also proposed, which have great prospects for anti-tumor therapy.

Review
 
2023 Nov;149(14):13477-13494.
 doi: 10.1007/s00432-023-05199-8. Epub 2023 Jul 25.

Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy

Affiliations 

Abstract

Cancer immunotherapy has emerged as a groundbreaking method of treating malignancies. However, cancer immunotherapy can only benefit a small percentage of patients, and the numerous side effects that might develop during treatment reduce its effectiveness or even put patients' lives in jeopardy. Surprisingly, the gut microbiome Akkermansia muciniphila (A. muciniphila) can significantly inhibit carcinogenesis and improve anti-tumor effects, thus increasing the effectiveness of cancer immunotherapy and decreasing the likelihood of side effects. In this review, we focus on the effects of A. muciniphila on the human immune system and the positive impacts of A. muciniphila on cancer immunotherapy, which can build on strengths and improve weaknesses of cancer immunotherapy. The potential clinical applications of A. muciniphila on cancer immunotherapy are also proposed, which have great prospects for anti-tumor therapy.

Similar articles

Cited by

References

    1. Adusumilli PS, Zauderer MG, Riviere I, Solomon SB, Rusch VW, O’Cearbhaill RE et al (2021) A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov 11(11):2748–2763. https://doi.org/10.1158/2159-8290.CD-21-0407 - DOI PubMed PMC
    1. Ahluwalia B, Magnusson MK, Ohman L (2017) Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 52(11):1185–1193. https://doi.org/10.1080/00365521.2017.1349173 - DOI PubMed
    1. Ansaldo E, Slayden LC, Ching KL, Koch MA, Wolf NK, Plichta DR et al (2019) Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science 364(6446):1179–1184. https://doi.org/10.1126/science.aaw7479 - DOI PubMed PMC
    1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929. https://doi.org/10.1056/NEJMoa1709937 - DOI PubMed
    1. Bae M, Cassilly CD, Liu X, Park SM, Tusi BK, Chen X et al (2022) Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 608(7921):168–173. https://doi.org/10.1038/s41586-022-04985-7 - DOI PubMed PMC
    1. Bagchi S, Yuan R, Engleman EG (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 16:223–249. https://doi.org/10.1146/annurev-pathol-042020-042741 - DOI PubMed
    1. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76. https://doi.org/10.1016/S0140-6736(16)32455-2 - DOI PubMed
    1. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L et al (2021) Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371(6529):602–609. https://doi.org/10.1126/science.abb5920 - DOI PubMed
    1. Baxevanis CN, Perez SA, Papamichail M (2009) Cancer immunotherapy. Crit Rev Clin Lab Sci 46(4):167–189. https://doi.org/10.1080/10408360902937809 - DOI PubMed
    1. Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y et al (2019) Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol 10:2259. https://doi.org/10.3389/fmicb.2019.02259 - DOI PubMed PMC
    1. Calabro L, Morra A, Fonsatti E, Cutaia O, Fazio C, Annesi D et al (2015) Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study. Lancet Respir Med 3(4):301–309. https://doi.org/10.1016/S2213-2600(15)00092-2 - DOI PubMed
    1. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012 - DOI PubMed
    1. Chen Z, Qian X, Chen S, Fu X, Ma G, Zhang A (2020) Akkermansia muciniphila enhances the antitumor effect of cisplatin in Lewis lung cancer mice. J Immunol Res 2020:2969287. https://doi.org/10.1155/2020/2969287 - DOI PubMed PMC
    1. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J et al (2018) Randomized, open-label phase II Study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 36(17):1658–1667. https://doi.org/10.1200/JCO.2017.73.7379 - DOI PubMed
    1. Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W et al (2018) Prospects of IL-2 in cancer immunotherapy. Biomed Res Int 2018:9056173. https://doi.org/10.1155/2018/9056173 - DOI PubMed PMC
    1. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang YH et al (2021) Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med 385(8):683–694. https://doi.org/10.1056/NEJMoa2106391 - DOI PubMed
    1. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396(10265):1817–1828. https://doi.org/10.1016/S0140-6736(20)32531-9 - DOI PubMed
    1. D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M (2018) CAR-T cells: the long and winding road to solid tumors. Cell Death Dis 9(3):282. https://doi.org/10.1038/s41419-018-0278-6 - DOI PubMed PMC
    1. Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM et al (2021) Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371(6529):595–602. https://doi.org/10.1126/science.abf3363 - DOI PubMed PMC
    1. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S et al (2019) Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2 - DOI PubMed PMC
    1. Derakhshani A, Rostami Z, Safarpour H, Shadbad MA, Nourbakhsh NS, Argentiero A et al (2021) From oncogenic signaling pathways to single-cell sequencing of immune cells: changing the landscape of cancer immunotherapy. Molecules. https://doi.org/10.3390/molecules26082278 - DOI PubMed PMC
    1. Derosa L, Routy B, Thomas AM, Iebba V, Zalcman G, Friard S et al (2022) Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat Med 28(2):315–324. https://doi.org/10.1038/s41591-021-01655-5 - DOI PubMed PMC
    1. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54(Pt 5):1469–1476. https://doi.org/10.1099/ijs.0.02873-0 - DOI PubMed
    1. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74(5):1646–1648. https://doi.org/10.1128/AEM.01226-07 - DOI PubMed
    1. Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S et al (2018) Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med 378(19):1789–1801. https://doi.org/10.1056/NEJMoa1802357 - DOI PubMed
    1. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110 - DOI PubMed PMC
    1. Fan L, Xu C, Ge Q, Lin Y, Wong CC, Qi Y et al (2021) A. muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs. Cancer Immunol Res 9(10):1111–1124. https://doi.org/10.1158/2326-6066.CIR-20-1019 - DOI PubMed
    1. Fong W, Li Q, Yu J (2020) Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 39(26):4925–4943. https://doi.org/10.1038/s41388-020-1341-1 - DOI PubMed PMC
    1. Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM et al (2022) Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med 386(21):1973–1985. https://doi.org/10.1056/NEJMoa2202170 - DOI PubMed PMC
    1. Frey N, Porter D (2019) Cytokine release syndrome with chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 25(4):e123–e127. https://doi.org/10.1016/j.bbmt.2018.12.756 - DOI PubMed
    1. Ghotaslou R, Nabizadeh E, Memar MY, Law WMH, Ozma MA, Abdi M et al (2023) The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiol Res 266:127245. https://doi.org/10.1016/j.micres.2022.127245 - DOI PubMed
    1. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580. https://doi.org/10.1016/j.ccell.2018.03.015 - DOI PubMed PMC
    1. Greer RL, Dong X, Moraes AC, Zielke RA, Fernandes GR, Peremyslova E et al (2016) Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism. Nat Commun 7:13329. https://doi.org/10.1038/ncomms13329 - DOI PubMed PMC
    1. Haanen J, Obeid M, Spain L, Carbonnel F, Wang Y, Robert C et al (2022) Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 33(12):1217–1238. https://doi.org/10.1016/j.annonc.2022.10.001 - DOI PubMed
    1. He R, Lao Y, Yu W, Zhang X, Jiang M, Zhu C (2021) Progress in the application of immune checkpoint inhibitor-based immunotherapy for targeting different types of colorectal cancer. Front Oncol 11:764618. https://doi.org/10.3389/fonc.2021.764618 - DOI PubMed PMC
    1. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466 - DOI PubMed PMC
    1. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9 - DOI PubMed
    1. Hu Y, Li J, Ni F, Yang Z, Gui X, Bao Z et al (2022) CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. Nat Commun 13(1):5313. https://doi.org/10.1038/s41467-022-32960-3 - DOI PubMed PMC
    1. Igarashi Y, Sasada T (2020) Cancer vaccines: toward the next breakthrough in cancer immunotherapy. J Immunol Res 2020:5825401. https://doi.org/10.1155/2020/5825401 - DOI PubMed PMC
    1. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L et al (2021) First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398(10294):27–40. https://doi.org/10.1016/S0140-6736(21)00797-2 - DOI PubMed PMC
    1. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y et al (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375(18):1749–1755. https://doi.org/10.1056/NEJMoa1609214 - DOI PubMed PMC
    1. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. https://doi.org/10.1056/NEJMoa1001294 - DOI PubMed
    1. Kato K, Cho BC, Takahashi M, Okada M, Lin CY, Chin K et al (2019) Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 20(11):1506–1517. https://doi.org/10.1016/S1470-2045(19)30626-6 - DOI PubMed
    1. Kaur J, Elms J, Munn AL, Good D, Wei MQ (2021) Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit Rev Oncol Hematol 164:103417. https://doi.org/10.1016/j.critrevonc.2021.103417 - DOI PubMed
    1. Kawazoe A, Fukuoka S, Nakamura Y, Kuboki Y, Wakabayashi M, Nomura S et al (2020) Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial. Lancet Oncol 21(8):1057–1065. https://doi.org/10.1016/S1470-2045(20)30271-0 - DOI PubMed
    1. Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK et al (2021) Safety, efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients with unresectable hepatocellular carcinoma: randomized expansion of a phase I/II study. J Clin Oncol 39(27):2991–3001. https://doi.org/10.1200/JCO.20.03555 - DOI PubMed PMC
    1. Kennedy LB, Salama AKS (2020) A review of cancer immunotherapy toxicity. CA Cancer J Clin 70(2):86–104. https://doi.org/10.3322/caac.21596 - DOI PubMed
    1. Kim S, Lee Y, Kim Y, Seo Y, Lee H, Ha J et al (2020) Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol. https://doi.org/10.1128/AEM.03004-19 - DOI PubMed PMC
    1. Krieg C, Letourneau S, Pantaleo G, Boyman O (2010) Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci USA 107(26):11906–11911. https://doi.org/10.1073/pnas.1002569107 - DOI PubMed PMC
    1. Lam KC, Araya RE, Huang A, Chen Q, Di Modica M, Rodrigues RR et al (2021) Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184(21):5338-5356 e5321. https://doi.org/10.1016/j.cell.2021.09.019 - DOI PubMed PMC
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD et al (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 381(16):1535–1546. https://doi.org/10.1056/NEJMoa1910836 - DOI PubMed
    1. Lee JS, Song WS, Lim JW, Choi TR, Jo SH, Jeon HJ et al (2022) An integrative multiomics approach to characterize anti-adipogenic and anti-lipogenic effects of Akkermansia muciniphila in adipocytes. Biotechnol J 17(2):e2100397. https://doi.org/10.1002/biot.202100397 - DOI PubMed
    1. Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M et al (2022) First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol 40(2):161–170. https://doi.org/10.1200/JCO.21.01015 - DOI PubMed
    1. Li K, Zhang A, Li X, Zhang H, Zhao L (2021) Advances in clinical immunotherapy for gastric cancer. Biochim Biophys Acta Rev Cancer 1876(2):188615. https://doi.org/10.1016/j.bbcan.2021.188615 - DOI PubMed
    1. Liu Y, Yang M, Tang L, Wang F, Huang S, Liu S et al (2022) TLR4 regulates RORgammat(+) regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila. Microbiome 10(1):98. https://doi.org/10.1186/s40168-022-01296-x - DOI PubMed PMC
    1. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC et al (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. Mbio. https://doi.org/10.1128/mBio.01438-14 - DOI PubMed PMC
    1. Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK et al (2021) Extracellular vesicles from Akkermansia muciniphila elicit antitumor immunity against prostate cancer via modulation of CD8(+) T cells and macrophages. Int J Nanomedicine 16:2949–2963. https://doi.org/10.2147/IJN.S304515 - DOI PubMed PMC
    1. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M et al (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16(9):563–580. https://doi.org/10.1038/s41571-019-0218-0 - DOI PubMed
    1. Meng X, Zhang J, Wu H, Yu D, Fang X (2020) Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. Int J Mol Sci. https://doi.org/10.3390/ijms21093385 - DOI PubMed PMC
    1. Morad G, Helmink BA, Sharma P, Wargo JA (2021) Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184(21):5309–5337. https://doi.org/10.1016/j.cell.2021.09.020 - DOI PubMed PMC
    1. Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK et al (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378(14):1277–1290. https://doi.org/10.1056/NEJMoa1712126 - DOI PubMed PMC
    1. Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT et al (2019) Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380(12):1103–1115. https://doi.org/10.1056/NEJMoa1816047 - DOI PubMed PMC
    1. Newsome RC, Gharaibeh RZ, Pierce CM, da Silva WV, Paul S, Hogue SR et al (2022) Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med 14(1):35. https://doi.org/10.1186/s13073-022-01037-7 - DOI PubMed PMC
    1. Niederreiter L, Adolph TE, Tilg H (2018) Food, microbiome and colorectal cancer. Dig Liver Dis 50(7):647–652. https://doi.org/10.1016/j.dld.2018.03.030 - DOI PubMed
    1. Ottman N, Reunanen J, Meijerink M, Pietila TE, Kainulainen V, Klievink J et al (2017) Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12(3):e0173004. https://doi.org/10.1371/journal.pone.0173004 - DOI PubMed PMC
    1. Ozato K, Tsujimura H, Tamura T (2002) Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques Suppl, 66–68, 70, 72 passim. https://www.ncbi.nlm.nih.gov/pubmed/12395929
    1. Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D et al (2019) Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394(10212):1929–1939. https://doi.org/10.1016/S0140-6736(19)32222-6 - DOI PubMed
    1. Pires da Silva I, Ahmed T, Reijers ILM, Weppler AM, Betof Warner A, Patrinely JR et al (2021) Ipilimumab alone or ipilimumab plus anti-PD-1 therapy in patients with metastatic melanoma resistant to anti-PD-(L)1 monotherapy: a multicentre, retrospective, cohort study. Lancet Oncol 22(6):836–847. https://doi.org/10.1016/S1470-2045(21)00097-8 - DOI PubMed
    1. Powles T, O’Donnell PH, Massard C, Arkenau HT, Friedlander TW, Hoimes CJ et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol 3(9):e172411. https://doi.org/10.1001/jamaoncol.2017.2411 - DOI PubMed PMC
    1. Powles T, Park SH, Voog E, Caserta C, Valderrama BP, Gurney H et al (2020) Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 383(13):1218–1230. https://doi.org/10.1056/NEJMoa2002788 - DOI PubMed
    1. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774 - DOI PubMed
    1. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H et al (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81(11):3655–3662. https://doi.org/10.1128/AEM.04050-14 - DOI PubMed PMC
    1. Ring A, Kim YM, Kahn M (2014) Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev Rep 10(4):512–525. https://doi.org/10.1007/s12015-014-9515-2 - DOI PubMed
    1. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR et al (1994). Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271(12):907–913. https://www.ncbi.nlm.nih.gov/pubmed/8120958
    1. Routy B, Gopalakrishnan V, Daillere R, Zitvogel L, Wargo JA, Kroemer G (2018a) The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 15(6):382–396. https://doi.org/10.1038/s41571-018-0006-2 - DOI PubMed
    1. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R et al (2018b) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97. https://doi.org/10.1126/science.aan3706 - DOI PubMed
    1. Schubert ML, Schmitt M, Wang L, Ramos CA, Jordan K, Muller-Tidow C et al (2021) Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 32(1):34–48. https://doi.org/10.1016/j.annonc.2020.10.478 - DOI PubMed
    1. Sezer A, Kilickap S, Gumus M, Bondarenko I, Ozguroglu M, Gogishvili M et al (2021) Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 397(10274):592–604. https://doi.org/10.1016/S0140-6736(21)00228-2 - DOI PubMed
    1. Shi L, Sheng J, Chen G, Zhu P, Shi C, Li B et al (2020) Combining IL-2-based immunotherapy with commensal probiotics produces enhanced antitumor immune response and tumor clearance. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-000973 - DOI PubMed PMC
    1. Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73(1):17–48. https://doi.org/10.3322/caac.21763 - DOI PubMed
    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660 - DOI PubMed
    1. Szeto GL, Finley SD (2019) Integrative approaches to cancer immunotherapy. Trends Cancer 5(7):400–410. https://doi.org/10.1016/j.trecan.2019.05.010 - DOI PubMed PMC
    1. Thompson JA (2018) New NCCN guidelines: recognition and management of immunotherapy-related toxicity. J Natl Compr Canc Netw 16(5S):594–596. https://doi.org/10.6004/jnccn.2018.0047 - DOI PubMed
    1. Vernocchi P, Gili T, Conte F, Del Chierico F, Conta G, Miccheli A et al (2020) Network analysis of gut microbiome and metabolome to discover microbiota-linked biomarkers in patients affected by non-small cell lung cancer. Int J Mol Sci. https://doi.org/10.3390/ijms21228730 - DOI PubMed PMC
    1. von Itzstein MS, Khan S, Gerber DE (2020) Investigational biomarkers for checkpoint inhibitor immune-related adverse event prediction and diagnosis. Clin Chem 66(6):779–793. https://doi.org/10.1093/clinchem/hvaa081 - DOI
    1. Wang Z, Cao YJ (2020) Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol 11:176. https://doi.org/10.3389/fimmu.2020.00176 - DOI PubMed PMC
    1. Wei C, Ma Y, Wang F, Liao Y, Chen Y, Zhao B et al (2022) Igniting hope for tumor immunotherapy: promoting the “hot and cold” tumor transition. Clin Med Insights Oncol 16:11795549221120708. https://doi.org/10.1177/11795549221120708 - DOI PubMed PMC
    1. Wrangle JM, Velcheti V, Patel MR, Garrett-Mayer E, Hill EG, Ravenel JG et al (2018) ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol 19(5):694–704. https://doi.org/10.1016/S1470-2045(18)30148-7 - DOI PubMed PMC
    1. Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D et al (2020) Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol 11:814. https://doi.org/10.3389/fmicb.2020.00814 - DOI PubMed PMC
    1. Yang M, Bose S, Lim S, Seo J, Shin J, Lee D et al (2020) Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms. https://doi.org/10.3390/microorganisms8091413 - DOI PubMed PMC
    1. Yi M, Zhang J, Li A, Niu M, Yan Y, Jiao Y et al (2021) The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-beta and PD-L1. J Hematol Oncol 14(1):27. https://doi.org/10.1186/s13045-021-01045-x - DOI PubMed PMC
    1. Yi M, Wu Y, Niu M, Zhu S, Zhang J, Yan Y et al (2022) Anti-TGF-beta/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer. https://doi.org/10.1136/jitc-2022-005543 - DOI PubMed PMC
    1. Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim JH et al (2021) Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol 6(5):563–573. https://doi.org/10.1038/s41564-021-00880-5 - DOI PubMed
    1. Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L et al (2021) Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 40(1):184. https://doi.org/10.1186/s13046-021-01987-7 - DOI PubMed PMC
    1. Zhu L, Lu X, Liu L, Voglmeir J, Zhong X, Yu Q (2020) Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Vet Res 51(1):34. https://doi.org/10.1186/s13567-020-00755-3 - DOI PubMed PMC

In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.

  • Review Article
  • Published: 

Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms

An Author Correction to this article was published on 23 June 2022

This article has been updated

Abstract

Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.

Key points

  • A lower abundance of Akkermansia muciniphila has been associated with multiple diseases in both mouse models and in humans.

  • A. muciniphila has proven efficacy to improve obesity, type 2 and type 1 diabetes mellitus, hepatic steatosis, intestinal inflammation and different cancers (colon cancer, response to immune checkpoints) in mice.

  • Numerous mechanisms linking A. muciniphila, specific metabolites or membrane proteins and host cell types or receptors have been identified.

  • Pasteurized A. muciniphila MucT is more efficient than the live bacterium and has proven safety and efficacy in numerous studies in mice and in a proof-of-concept study in humans.

  • A. muciniphila contributes to the maintenance of a healthy gut barrier, thereby regulating immunity, and also limits the onset of inflammation, which is the root cause of numerous diseases.


Change history

References

  1. Cani, P. D. Gut microbiota-at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 14, 321–322 (2017).

    Article PubMed Google Scholar 

  2. Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).

    Article CAS PubMed Google Scholar 

  3. Ouwehand, A. C., Derrien, M., de Vos, W., Tiihonen, K. & Rautonen, N. Prebiotics and other microbial substrates for gut functionality. Curr. Opin. Biotechnol. 16, 212–217 (2005).

    Article CAS PubMed Google Scholar 

  4. Tailford, L., Crost, E., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. https://doi.org/10.3389/fgene.2015.00081 (2015).

    Article PubMed PubMed Central Google Scholar 

  5. Raimondi, S., Musmeci, E., Candeliere, F., Amaretti, A. & Rossi, M. Identification of mucin degraders of the human gut microbiota. Sci. Rep. 11, 11094 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  6. Derrien, M. et al. The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microb. Ecol. Health Dis. 16, 137–144 (2004).

    Google Scholar 

  7. Hoskins, L. C. et al. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest. 75, 944–953 (1985).

    Article CAS PubMed PubMed Central Google Scholar 

  8. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evolut. Microbiol. 54, 1469–1476 (2004).

    Article CAS Google Scholar 

  9. Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).

    Article CAS PubMed Google Scholar 

  10. Derrien, M. et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphilaFront. Microbiol. https://doi.org/10.3389/fmicb.2011.00166 (2011).

    Article PubMed PubMed Central Google Scholar 

  11. van Passel, M. W. J. et al. The Genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876 (2011).

    Article PubMed PubMed Central Google Scholar 

  12. Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

    Article CAS PubMed Google Scholar 

  13. Kostopoulos, I. et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci. Rep. 10, 14330 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  14. Luna, E. et al. Utilization efficiency of human milk oligosaccharides by human-associated Akkermansia is strain-dependent. Appl. Environ. Microbiol. 88, e0148721 (2021).

    Article PubMed Google Scholar 

  15. Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770 (2007).

    Article CAS PubMed PubMed Central Google Scholar 

  16. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article CAS PubMed Google Scholar 

  17. Ribo, S. et al. Increasing breast milk betaine modulates Akkermansia abundance in mammalian neonates and improves long-term metabolic health. Sci. Transl. Med. 13, eabb0322 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  18. Yin, J. et al. Dose-dependent beneficial effects of tryptophan and its derived metabolites on Akkermansia in vitro: a preliminary prospective study. Microorganisms 9, 1511 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  19. Ouwerkerk, J. P., Aalvink, S., Belzer, C. & de Vos, W. M. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. Int. J. Syst. Evolut. Microbiol. 66, 4614–4620 (2016).

    Article CAS Google Scholar 

  20. Karcher, N. et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 22, 209 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  21. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  22. Fragiadakis, G. K. et al. Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes 10, 216–227 (2019).

    Article CAS PubMed Google Scholar 

  23. Geerlings, S. Y. et al. Genomic convergence between Akkermansia muciniphila in different mammalian hosts. BMC Microbiol. 21, 298 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  24. Belzer, C. & de Vos, W. M. Microbes inside-from diversity to function: the case of Akkermansia. ISME J. 6, 1449–1458 (2012).

    Article CAS PubMed PubMed Central Google Scholar 

  25. Zhai, R. et al. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front. Cell. Infect. Microbiol. 9, 239 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  26. Guo, X. et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 18, 800 (2017).

    Article PubMed PubMed Central Google Scholar 

  27. Becken, B. et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphilamBio 12, e00478-21 (2021).

    Article PubMed PubMed Central Google Scholar 

  28. Yang, M. et al. Beneficial effects of newly isolated Akkermansia muciniphila strains from the human gut on obesity and metabolic dysregulation. Microorganisms 8, 1413 (2020).

    Article CAS PubMed Central Google Scholar 

  29. Kirmiz, N. et al. Comparative genomics guides elucidation of vitamin B(12) biosynthesis in novel human-associated Akkermansia strains. Appl. Environ. Microbiol. 86, e02117-19 (2020).

    Article PubMed PubMed Central Google Scholar 

  30. Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-17 (2017).

    Article PubMed PubMed Central Google Scholar 

  31. Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B(12) production by intestinal symbionts. mBio 8, e00770-17 (2017).

    Article PubMed PubMed Central Google Scholar 

  32. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article CAS PubMed Google Scholar 

  33. Asnicar, F. et al. Blue poo: impact of gut transit time on the gut microbiome using a novel marker. Gut 70, 1665–1674 (2021).

    Article CAS PubMed Google Scholar 

  34. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  35. Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J. & Woods, J. A. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc. Sport Sci. Rev. 47, 75–85 (2019).

    Article PubMed Google Scholar 

  36. Verhoog, S. et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients 11, 1565 (2019).

    Article CAS PubMed Central Google Scholar 

  37. von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Article Google Scholar 

  38. Leng, B. et al. Severe gut microbiota dysbiosis caused by malnourishment can be partly restored during 3 weeks of refeeding with fortified corn-soy-blend in a piglet model of childhood malnutrition. BMC Microbiol. 19, 277 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  39. Remely, M. et al. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien. Klin. Wochenschr. 127, 394–398 (2015).

    Article PubMed PubMed Central Google Scholar 

  40. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article CAS PubMed PubMed Central Google Scholar 

  41. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article CAS PubMed PubMed Central Google Scholar 

  42. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    Article CAS PubMed PubMed Central Google Scholar 

  43. Crovesy, L., Masterson, D. & Rosado, E. L. Profile of the gut microbiota of adults with obesity: a systematic review. Eur. J. Clin. Nutr. 74, 1251–1262 (2020).

    Article PubMed Google Scholar 

  44. Macchione, I. G. et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci. 23, 8075–8083 (2019).

    CAS PubMed Google Scholar 

  45. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article CAS PubMed PubMed Central Google Scholar 

  46. Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).

    Article CAS PubMed Google Scholar 

  47. Karlsson, C. L. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261 (2012).

    Article PubMed Google Scholar 

  48. Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108 (2013).

    Article CAS PubMed PubMed Central Google Scholar 

  49. Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    Article PubMed PubMed Central Google Scholar 

  50. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article CAS PubMed Google Scholar 

  51. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article CAS PubMed Google Scholar 

  52. Roshanravan, N. et al. A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Arch. Physiol. Biochem. https://doi.org/10.1080/13813455.2021.1871760 (2021).

    Article PubMed Google Scholar 

  53. Abuqwider, J. N., Mauriello, G. & Altamimi, M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms 9, 1098 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  54. Sheng, L. et al. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphilaFASEB J. 32, fj201800370R (2018).

    Article Google Scholar 

  55. Depommier, C. et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 11, 1231–1245 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  56. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article CAS PubMed Google Scholar 

  57. Choi, Y. et al. Effects of live and pasteurized forms of Akkermansia from the human gut on obesity and metabolic dysregulation. Microorganisms 9, 2039 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  58. Keshavarz Azizi Raftar, S. et al. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol. Spectr. 9, e0048421 (2021).

    Article PubMed Google Scholar 

  59. Ashrafian, F. et al. Comparative effects of alive and pasteurized Akkermansia muciniphila on normal diet-fed mice. Sci. Rep. 11, 17898 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  60. Hu, X. et al. Akkermansia muciniphila improves host defense against influenza virus infection. Front. Microbiol. 11, 586476 (2020).

    Article PubMed Google Scholar 

  61. Wang, L. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. Gut 69, 1988–1997 (2020).

    Article CAS PubMed Google Scholar 

  62. Lawenius, L. et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am. J. Physiol. Endocrinol. Metab. 318, E480–E491 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  63. Shen, J. et al. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 36, 1448–1456 (2016).

    Article CAS PubMed Google Scholar 

  64. Kim, S. et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl. Environ. Microbiol. 86, e03004-19 (2020).

    Article PubMed PubMed Central Google Scholar 

  65. Everard, A. et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 10, 457 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  66. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2018).

    Article PubMed Google Scholar 

  67. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation 133, 2434–2446 (2016).

    Article CAS PubMed Google Scholar 

  68. Fassatoui, M. et al. Gut microbiota imbalances in Tunisian participants with type 1 and type 2 diabetes mellitus. Biosci. Rep. 39, BSR20182348 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  69. Hansen, C. H. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 55, 2285–2294 (2012).

    Article CAS PubMed Google Scholar 

  70. Hanninen, A. et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut 67, 1445–1453 (2018).

    Article PubMed Google Scholar 

  71. Barcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article CAS PubMed Google Scholar 

  72. Bian, X. et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol. 10, 2259 (2019).

    Article PubMed PubMed Central Google Scholar 

  73. Liu, Q. et al. Akkermansia muciniphila exerts strain-specific effects on DSS-induced ulcerative colitis in mice. Front. Cell Infect. Microbiol. 11, 698914 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  74. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article CAS PubMed Google Scholar 

  75. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article CAS PubMed Google Scholar 

  76. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  77. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  78. Tremlett, H. et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur. J. Neurol. 23, 1308–1321 (2016).

    Article PubMed PubMed Central Google Scholar 

  79. Lin, C. H. et al. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 16, 129 (2019).

    Article Google Scholar 

  80. Zhang, F. et al. Altered gut microbiota in Parkinson’s disease patients/healthy spouses and its association with clinical features. Parkinsonism Relat. Disord. 81, 84–88 (2020).

    Article PubMed Google Scholar 

  81. Vallino, A. et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 7, e688 (2020).

    Article PubMed PubMed Central Google Scholar 

  82. Eckman, E. et al. Spinal fluid IgG antibodies from patients with demyelinating diseases bind multiple sclerosis-associated bacteria. J. Mol. Med. 99, 1399–1411 (2021).

    Article CAS PubMed Google Scholar 

  83. Liu, S. et al. Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphilaCell Host Microbe 26, 779–794.e8 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  84. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    Article CAS PubMed Google Scholar 

  85. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  86. Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain 143, 2474–2489 (2020).

    Article PubMed Google Scholar 

  87. Weis, S. et al. Association between Parkinson’s disease and the faecal eukaryotic microbiota. NPJ Parkinsons Dis. 7, 101 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  88. Murros, K. E., Huynh, V. A., Takala, T. M. & Saris, P. E. J. Desulfovibrio bacteria are associated with Parkinson’s disease. Front. Cell Infect. Microbiol. 11, 652617 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  89. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article PubMed PubMed Central Google Scholar 

  90. Ling, Z. et al. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease. Front. Cell Dev. Biol. 8, 634069 (2020).

    Article PubMed Google Scholar 

  91. Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 12 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  92. Yang, Y. et al. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphilaNeuropsychopharmacology 44, 2054–2064 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  93. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the Ketogenic diet. Cell 173, 1728–1741.e13 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  94. Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

    Article CAS PubMed Google Scholar 

  95. Kennedy, L. B. & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin. 70, 86–104 (2020).

    Article PubMed Google Scholar 

  96. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article CAS PubMed Google Scholar 

  97. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article CAS PubMed Google Scholar 

  98. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  99. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  100. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article CAS PubMed Google Scholar 

  101. Chelakkot, C. et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50, e450 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  102. Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428 (2010).

    Article CAS PubMed Google Scholar 

  103. Rajilic-Stojanovic, M., Shanahan, F., Guarner, F. & de Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488 (2013).

    Article PubMed Google Scholar 

  104. Kang, C. S. et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE 8, e76520 (2013).

    Article CAS PubMed PubMed Central Google Scholar 

  105. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  106. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    Article CAS PubMed Google Scholar 

  107. Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).

    Article CAS PubMed Google Scholar 

  108. van der Lugt, B. et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice. Immun. Ageing 16, 6 (2019).

    Article PubMed PubMed Central Google Scholar 

  109. Bodogai, M. et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 10, eaat4271 (2018).

    Article PubMed PubMed Central Google Scholar 

  110. Cerro, E. D. et al. Daily ingestion of Akkermansia mucciniphila for one month promotes healthy aging and increases lifespan in old female mice. Biogerontology 23, 35–52 (2021).

    Article PubMed Google Scholar 

  111. Hagi, T. & Belzer, C. The interaction of Akkermansia muciniphila with host-derived substances, bacteria and diets. Appl. Microbiol. Biotechnol. 105, 4833–4841 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  112. Sakai, T. et al. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J. Nutr. Sci. Vitaminol. 59, 144–147 (2013).

    Article CAS PubMed Google Scholar 

  113. Peng, G. C. & Hsu, C. H. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr. Allergy Immunol. 16, 433–438 (2005).

    Article PubMed Google Scholar 

  114. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  115. Perraudeau, F. et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 8, e001319 (2020).

    Article PubMed PubMed Central Google Scholar 

  116. Druart, C. et al. Toxicological safety evaluation of pasteurized Akkermansia muciniphilaJ. Appl. Toxicol. 41, 276–290 (2021).

    Article CAS PubMed Google Scholar 

  117. EFSA Panel on Nutrition, Novel Foodds and Food Allergens (NDA)et al. Safety of pasteurised Akkermansia muciniphila as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 19, e06780 (2021).

    Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04797442 (2021).

  119. Pinto, F. C. S., Silva, A. A. M. & Souza, S. L. Repercussions of intermittent fasting on the intestinal microbiota community and body composition: a systematic review. Nutr. Rev. 80, 613–628 (2022).

    Article PubMed Google Scholar 

  120. Lukovac, S. et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5, e01438-14 (2014).

    Article PubMed PubMed Central Google Scholar 

  121. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article CAS PubMed PubMed Central Google Scholar 

  122. Wang, J. et al. The outer membrane protein Amuc_1100 of Akkermansia muciniphila promotes intestinal 5-HT biosynthesis and extracellular availability through TLR2 signalling. Food Funct. 12, 3597–3610 (2021).

    Article PubMed Google Scholar 

  123. Yoon, H. S. et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 6, 563–573 (2021).

    Article CAS PubMed Google Scholar 

  124. Meng, X., Zhang, J., Wu, H., Yu, D. & Fang, X. Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. Int. J. Mol. Sci. 21, 3385 (2020).

    Article CAS PubMed Central Google Scholar 

  125. Qian, K. et al. A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota. Food Funct. 13, 2216–2227 (2022).

    Article CAS PubMed Google Scholar 

  126. Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004 (2017).

    Article PubMed PubMed Central Google Scholar 

  127. Depommier, C. et al. Beneficial Effects of Akkermansia muciniphila are not associated with major changes in the circulating endocannabinoidome but linked to higher mono-palmitoyl-glycerol levels as new PPARalpha agonists. Cells 10, 185 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  128. Depommier, C. et al. Serum metabolite profiling yields insights into health promoting effect of A. muciniphila in human volunteers with a metabolic syndrome. Gut Microbes 13, 1994270 (2021).

    Article PubMed PubMed Central Google Scholar 

  129. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  130. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article PubMed Google Scholar 

  131. Viola, M. F. & Boeckxstaens, G. Niche-specific functional heterogeneity of intestinal resident macrophages. Gut 70, 1383–1395 (2021).

    Article CAS PubMed Google Scholar 

  132. Tranah, T. H., Edwards, L. A., Schnabl, B. & Shawcross, D. L. Targeting the gut-liver-immune axis to treat cirrhosis. Gut 70, 982–994 (2021).

    Article CAS PubMed Google Scholar 

  133. Kuczma, M. P. et al. Self and microbiota-derived epitopes induce CD4+ T cell anergy and conversion into CD4+Foxp3+ regulatory cells. Mucosal Immunol. 14, 443–454 (2021).

    Article CAS PubMed Google Scholar 

  134. O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article PubMed Google Scholar 

  135. Bui, T. P. N. & de Vos, W. M. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best. Pract. Res. Clin. Endocrinol. Metab. 35, 101504 (2021).

    Article CAS PubMed Google Scholar 

  136. El Hage, R., Hernandez-Sanabria, E. & Van de Wiele, T. Emerging trends in “smart probiotics”: functional consideration for the development of novel health and industrial applications. Front. Microbiol. 8, 1889 (2017).

    Article PubMed PubMed Central Google Scholar 

  137. Udayappan, S. et al. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2, 16009 (2016).

    Article PubMed PubMed Central Google Scholar 

  138. Koopen, A. et al. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut https://doi.org/10.1136/gutjnl-2020-323297 (2021).

    Article PubMed Google Scholar 

  139. Seegers, J. et al. Toxicological safety evaluation of live Anaerobutyricum soehngenii strain CH106. J. Appl. Toxicol. 42, 244–257 (2021).

    Article PubMed PubMed Central Google Scholar 

  140. Cordaillat-Simmons, M., Rouanet, A. & Pot, B. Live biotherapeutic products: the importance of a defined regulatory framework. Exp. Mol. Med. 52, 1397–1406 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  141. Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).

    Article CAS PubMed PubMed Central Google Scholar 

  142. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article CAS PubMed PubMed Central Google Scholar 

  143. Martin, R. et al. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis. 20, 417–430 (2014).

    Article PubMed Google Scholar 

  144. Quevrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article CAS PubMed Google Scholar 

  145. Lenoir, M. et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes 12, 1–16 (2020).

    Article PubMed Google Scholar 

  146. Mazier, W. et al. A new strain of Christensenella minuta as a potential biotherapy for obesity and associated metabolic diseases. Cells 10, 823 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  147. Gilijamse, P. W. et al. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 6, 16 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  148. Allison, M. J., Dawson, K. A., Mayberry, W. R. & Foss, J. G. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141, 1–7 (1985).

    Article CAS PubMed Google Scholar 

  149. Milliner, D., Hoppe, B. & Groothoff, J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 46, 313–323 (2018).

    Article CAS PubMed Google Scholar 

  150. Hoppe, B. et al. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr. Nephrol. 32, 781–790 (2017).

    Article PubMed Google Scholar 

Download references

Acknowledgements

P.D.C. is research director and A.E. is research associate at FRS-FNRS (Fonds de la Recherche Scientifique) and are recipients of grants from FNRS (Projet de Recherche PDR-convention: FNRS T.0030.21, CDR-convention: J.0027.22, FRFS-WELBIO: WELBIO-CR-2022A-02, WELBIO-CR-2019C-02R, WELBIO-CR-2019S-03, WELBIO-CR-2019S-03R, EOS: program no. 30770923 and program no. 40007505). W.M.dV. was supported by the SIAM Gravitation Grant [024.002.002] of the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C., A.E. and W.M.dV. are inventors on patent applications dealing with the use of Akkermansia muciniphila and its components in the treatment of metabolic disorders. P.D.C. and W.M.dV. are co-founders of A-Mansia biotech. M.D. is an employee at Danone Nutricia Research. P.D.C. is co-founder of Enterosys. W.M.dV. is co-founder of Caelus Health and named inventor on patents on the use of Eubacterium hallii. C.D. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Glenn Gibson, Dennish Sandris Nielsen and Jonathan Schertzer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P.D., Depommier, C., Derrien, M. et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 19, 625–637 (2022). https://doi.org/10.1038/s41575-022-00631-9

Download citation

  • Accepted

  • Published

  • Issue Date

  • DOIhttps://doi.org/10.1038/s41575-022-00631-9


Plaats een reactie ...

Reageer op "Akkermansia muciniphila, een probiotica bacterie, blijkt de effectiviteit van immuuntherapie bij kankerpatienten sterk te verbeteren, blijkt uit meerdere studies"


Gerelateerde artikelen