30 oktober 2019: Bron: BMC - Journal for ImmunoTherapy of Cancer

Wanneer borstkankerpatienten met niet uitgezaaide borstkanker en een kleine tumor van omvang vooraf aan de operatie cryosurgery wordt toegepast (bevriezen van de tumor) plus 1x immuuntherapie met lage dosis ipilimumab dan blijkt deze combinatie vaak extra immuunreacties te bewerkstelligen , (o.a. te zien aan bepaalde bloedwaarden) en daarmee de kans op een recidief te verminderen. 

Dit blijkt uit een hele kleinschalige studie met inmiddels totaal 18 patienten met niet-uitgezaaide operabele borstkanker. Verdeeld over drie groepen van 6 patienten. Met cryosurgery alleen, of met ipilimumab erbij of alleen ipilimumab.

Maar misschien nog wel belangrijker is dat deze studie past in de studies die al eerder gedaan zijn met cryosurgery bij borstkanker. 

Hier respectievelijk de kleinschalige studie: Pre-operative immunotherapy with tumor cryoablation (cryo) plus ipilimumab (ipi) induces potentially favorable systemic and intratumoral immune effects in early stage breast cancer (ESBC) patients (abstract staat verderop in artikel)

De studie: Cryoablation In The Management Of Breast Cancer: Evidence To Date gepubliceerd afgelopen weken is gratis in te zien. Met ook interessante referentielijst.

Daarnaast is deze studie: Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers denk ik ook interessant. Want cryosurgery geeft vaak een immuuntherapeutisch effect doordat er dood tumorweefsel in het lichaam blijft zitten en het lichaam daarop reageert. Zo gaat dat ook met PDT - Foto Dynamische Therapie. 

Hier respectievelijk het abstract:

Pre-operative immunotherapy with tumor cryoablation (cryo) plus ipilimumab (ipi) induces potentially favorable systemic and intratumoral immune effects in early stage breast cancer (ESBC) patients

Article metrics

Background

In mice, cryo plus checkpoint blockade facilitates tumor antigen release, T-cell priming, and improved survival [1]. Here, we assess immune response in ESBC patients using biomarkers that have been attributed to clinical benefit following checkpoint blockade [25].

Methods

Women with ESBC were treated 7-10 days preceding mastectomy with either cryo (n=6), single-dose ipi at 10mg/kg (n=6), or cryo+ipi (n=6) [6]. From serial blood (baseline & 1-month post-mastectomy) and tumor (biopsy & mastectomy), fold-changes following cryo+ipi versus monotherapy were compared (Wilcoxon rank-sum) across the following measures: Ki67+ or ICOShi T-cells [2] and intratumoral T-effector/T-regulatory [3] cells by flow cytometry, plasma Th1/Th2 cytokines [4] (Meso Scale Discovery), and intratumoral T-cell expansion by immunohistochemistry [5] and T-cell receptor (TCR) deep sequencing (ImmunoSEQ) [5].

Results

Cryo+ipi generated greater increases in peripheral Ki67+CD4+ (p=0.05), Ki67+CD8+ (p=0.05), ICOShiCD4+ (p=0.005), and ICOShiCD8+ (p=0.005) cells. The intratumoral T-effector/regulatory ratio was higher following cryo+ipi, but only when Ki67-gated (p=.01). Cryo+ipi generated greater increases in IL-2 (p=.01), IFNγ (p=.06), and IL-5 (p=.09). Despite negligible intratumoral changes by immunohistochemistry, cryo+ipi generated more high-magnitude (~1000 amplicon) clonal expansions by TCR sequencing (medians: 52 v. 3 clones).

Conclusions

Cryo+ipi is associated with potentially favorable immunologic effects. Ki67-gating and TCR sequencing may identify intratumoral changes otherwise undetectable by flow or IHC.

When immunotherapy and cryoablation are combined sequentially, we would anticipate the patients’ immune response will be far more effective in eradicating the patient’s cancer compared to chemotherapy, radiation, immunotherapy, or surgical extirpation alone. Regardless, additional clinical investigations into this new therapeutic platform are certainly warranted.

REVIEW ARTICLE

Front. Oncol., 28 March 2018 | https://doi.org/10.3389/fonc.2018.00085

Immunotherapy Plus Cryotherapy: Potential Augmented Abscopal Effect for Advanced Cancers

imageJoe Abdo1imageDavid L. Cornell1,2imageSumeet K. Mittal1,3 and imageDevendra K. Agrawal1*
  • 1Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, United States
  • 2Department of Surgery, CHI Health Creighton University Medical Center, Omaha, NE, United States
  • 3Dignity Health, Norton Thoracic Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States

Since the 1920s the gold standard for treating cancer has been surgery, which is typically preceded or followed with chemotherapy and/or radiation, a process that perhaps contributes to the destruction of a patient’s immune defense system. Cryosurgery ablation of a solid tumor is mechanistically similar to a vaccination where hundreds of unique antigens from a heterogeneous population of tumor cells derived from the invading cancer are released. However, releasing tumor-derived self-antigens into circulation may not be sufficient enough to overcome the checkpoint escape mechanisms some cancers have evolved to avoid immune responses. The potentiated immune response caused by blocking tumor checkpoints designed to prevent programmed cell death may be the optimal treatment method for the immune system to recognize these new circulating cryoablated self-antigens. Preclinical and clinical evidence exists for the complementary roles for Cytotoxic T-lymphocyte-associated protein (CTLA-4) and PD-1 antagonists in regulating adaptive immunity, demonstrating that combination immunotherapy followed by cryosurgery provides a more targeted immune response to distant lesions, a phenomenon known as the abscopal effect. We propose that when the host’s immune system has been “primed” with combined anti-CTLA-4 and anti-PD-1 adjuvants prior to cryosurgery, the preserved cryoablated tumor antigens will be presented and processed by the host’s immune system resulting in a robust cytotoxic CD8+ T-cell response. Based on recent investigations and well-described biochemical mechanisms presented herein, a polyvalent autoinoculation of many tumor-specific antigens, derived from a heterogeneous population of tumor cancer cells, would present to an unhindered yet pre-sensitized immune system yielding a superior advantage in locating, recognizing, and destroying tumor cells throughout the body.

This review article has the aim to clarify the current evidence supporting cryoablation of breast cancer, and discuss the future perspectives, including those arising from the new studies on immunological effects related to cryoablation.

. 2019; 11: 283–292.
Published online 2019 Oct 10. doi: 10.2147/BCTT.S197406
PMCID: PMC6791835
PMID: 31632134

Cryoablation In The Management Of Breast Cancer: Evidence To Date

Associated Data

Data Citations

Abstract

Cryoablation has been successfully used to treat various type of solid tumors, including breast carcinomas. This ablation method has the advantage of being a minimally invasive procedure useful in various clinical situations, including early breast cancer and metastatic breast cancer, when co-morbidities preclude the use of surgical treatment. However, due to the small sample size of the available studies, reliable and definitive conclusions on the usefulness of cryoablation in patients with breast cancer could not be drawn. In fact, many aspects necessitate to be elucidated, regarding technical issues, indications, efficacy, imaging follow-up, and possible advantages over other percutaneous ablative methods. This review article has the aim to clarify the current evidence supporting cryoablation of breast cancer, and discuss the future perspectives, including those arising from the new studies on immunological effects related to cryoablation.

References

1. Cazzato RL, Garnon J, Ramamurthy N, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic fieldMed Oncol. 2016;33:140. doi:10.1007/s12032-016-0848-3 [PubMed] [CrossRef[]
2. Pusceddu C, Melis L, Ballicu N, et al. Percutaneous microwave ablation under CT guidance for hepatocellular carcinoma: a single institutional experienceJ Gastrointest Cancer. 2018;49(3):295–301. doi:10.1007/s12029-017-9951-8 [PubMed] [CrossRef[]
3. Mahnken AH, König AM, Figiel JH. Current Technique and Application of Percutaneous CryotherapyRofo. 2018;190:836–846. doi:10.1055/a-0598-5134 [PubMed] [CrossRef[]
4. Pusceddu C, Melis L, Sotgia B, Guerzoni D, Porcu A, Fancellu A. Usefulness of percutaneous microwave ablation for large non-small cell lung cancer: apreliminary reportOncol Lett. 2019;18:659–666. doi:10.3892/ol.2019.10375 [PMC free article] [PubMed] [CrossRef[]
5. Zhao Z, Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: a systematic reviewEur J Surg Oncol. 2010;36:1149–1155. doi:10.1016/j.ejso.2010.09.012 [PubMed] [CrossRef[]
6. Machida Y, Shimauchi A, Igarashi T, Fukuma E. MRI findings after cryoablation of primary breast cancer without surgical resectionAcad Radiol. 2019;26:744–751. doi:10.1016/j.acra.2018.07.012 [PubMed] [CrossRef[]
7. Mauri G, Sconfienza LM, Pescatori LC, et al. Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: A systematic review and meta-analysisEur Radiol. 2017;27(8):3199–3210. doi:10.1007/s00330-016-4668-9 [PubMed] [CrossRef[]
8. Lanza E, Palussiere J, Buy X, et al. Percutaneous image-guided cryoablation of breast cancer: a systematic reviewJ Vasc Interv Radiol. 2015;26:1652–1657. doi:10.1016/j.jvir.2015.07.020 [PubMed] [CrossRef[]
9. Nguyen T, Hattery E, Khatri VP. Radiofrequency ablation and breast cancer: a reviewGland Surg. 2014;3:128–135. doi:10.3978/j.issn.2227-684X.2014.03.05 [PMC free article] [PubMed] [CrossRef[]
10. Rui J, Tatsutani KN, Dahiya R, Rubinsky B. Effect of thermal variables on human breast cancer in cryosurgeryBreast Cancer Res Treat. 1999;53:185–192. doi:10.1023/A:1006182618414 [PubMed] [CrossRef[]
11. Pusceddu C, Melis L, Sotgia B, Fancellu A, Meloni GB. Computed tomography-guided cryoablation of local recurrence after primary resection of pancreatic adenocarcinomaClin Pract. 2015;5:741. doi:10.4081/cp.2015.741 [PMC free article] [PubMed] [CrossRef[]
12. Pusceddu C, Sotgia B, Amucano G, et al. Breast cryoablation in patients with bone metastatic breast cancerJ Vasc Interv Radiol. 2014;25:1225–1232. doi:10.1016/j.jvir.2014.05.001 [PubMed] [CrossRef[]
13. Chu KF, Dupuy DE. Thermal ablation of tumors: biological mechanisms and advances in therapyNat Rev Cancer. 2014;14:199–208. doi:10.1038/nrc3672 [PubMed] [CrossRef[]
14. Tafra L, Smith SJ, Woodward JE, Fernandez KL, Sawyer KT, Grenko RT. Pilot trial of cryoprobe-assisted breast-conserving surgery for small ultrasound-visible cancersAnn Surg Oncol. 2003;10:1018–1024. doi:10.1245/aso.2003.04.002 [PubMed] [CrossRef[]
15. Tarkowski R, Rzaca M. Cryosurgery in the treatment of women with breast cancer—a reviewGland Surg. 2014;3:88–89. doi:10.3978/j.issn.2227-684X.2014.03.04 [PMC free article] [PubMed] [CrossRef[]
16. Morin J, Traore A, Dionne G, et al. Magnetic resonance guided percutaneous cryosurgery of breast carcinoma: technique and early clinical resultsCan J Surg. 2004;47:347–351. [PMC free article] [PubMed[]
17. Pusztaszeri M, Vlastos G, Kinkel K, et al. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablationCryobiology. 2007;55:44–51. doi:10.1016/j.cryobiol.2007.05.002 [PubMed] [CrossRef[]
18. Littrup PJ, Jallad B, Chandiwala-Mody P, D’Agostini M, Adam BA, Bouwman D. Cryotherapy for breast cancer: a feasibility study without excisionJ Vasc Interv Radiol. 2009;20:1329–1341. doi:10.1016/j.jvir.2009.06.029 [PMC free article] [PubMed] [CrossRef[]
19. Chandra D, Jahangir A, Cornelis F, et al. Cryoablation and Meriva have strong therapeutic effect on triple-negative breast cancerOncoimmunology. 2015;5:e1049802. doi:10.1080/2162402X.2015.1049802 [PMC free article] [PubMed] [CrossRef[]
20. Pusceddu C, Melis L, Ballicu N, et al. Cryoablation of primary breast cancer in patients with metastatic disease: considerations arising from a single-centre data analysisBiomed Res Int. 2017;2017:3839012. doi:10.1155/2017/3839012 [PMC free article] [PubMed] [CrossRef[]
21. Fleming MM, Holbrook AI, Newell MS. Update on image-guided percutaneous ablation of breast cancerAJR. 2017;208:267–274. doi:10.2214/AJR.16.16984 [PubMed] [CrossRef[]
22. Fancellu A, Sanna V, Sedda ML, et al. Benefits of organized mammographic screening programs in women aged 50 to 69 years: a surgical perspectiveClin Breast Cancer. 2019. doi:10.1016/j.clbc.2019.04.013 [PubMed] [CrossRef[]
23. Fancellu A, Sanna V, Cottu P, et al. Mastectomy patterns, but not rates, are changing in the treatment of early breast cancer. Experience of a single European institution on 2315 consecutive patientsBreast. 2018;39:1–7. doi:10.1016/j.breast.2018.02.003 [PubMed] [CrossRef[]
24. Fancellu A, Cottu P, Feo CF, et al. Sentinel node biopsy in early breast cancer: lessons learned from more than 1000 cases at a single institutionTumori. 2012;98:413–420. doi:10.1700/1146.12633 [PubMed] [CrossRef[]
25. Gambardella C, Clarizia G, Patrone R, et al. Advanced hemostasis in axillary lymph node dissection for locally advanced breast cancer: new technology devices compared in the prevention of seroma formationBMC Surg. 2019;18(Suppl 1):125. doi:10.1186/s12893-018-0454-8 [PubMed] [CrossRef[]
26. Niu L, Wu B, Xu K. Cryosurgery for breast fibroadenomasGland Surg. 2012;1:128–131. doi:10.3978/j.issn.2227-684X.2012.08.02 [PMC free article] [PubMed] [CrossRef[]
27. Kaufman CS, Littrup PJ, Freeman-Gibb LA, et al. Office-based cryoablation of breast fibroadenomas with long-term follow-upBreast J. 2005;11:344–350. doi:10.1111/j.1075-122X.2005.21700.x [PubMed] [CrossRef[]
28. Littrup PJ, Freeman-Gibb L, Andea A, et al. Cryotherapy for breast fibroadenomasRadiology. 2005;234:63–72. doi:10.1148/radiol.2341030931 [PubMed] [CrossRef[]
29. Paepke S, Metz S, Brea Salvago A, Ohlinger R. Benign breast tumours - diagnosis and managementBreast Care (Basel). 2018;13:403–412. doi:10.1159/000495919 [PMC free article] [PubMed] [CrossRef[]
30. Sabel MS, Kaufman CS, Whitworth P, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trialAnn Surg Oncol. 2004;11:542–549. doi:10.1245/ASO.2004.08.003 [PubMed] [CrossRef[]
31. Poplack SP, Levine GM, Henry L, et al. A pilot study of ultrasound-guided cryoablation of invasive ductal carcinomas up to 15 mm with MRI follow-up and subsequent surgical resectionAJR Am J Roentgenol. 2015;204:1100–1108. doi:10.2214/AJR.13.12325 [PMC free article] [PubMed] [CrossRef[]
32. Simmons RM, Ballman KV, Cox C, et al.; ACOSOG investigators. A Phase II Trial Exploring the Success of Cryoablation Therapy in the Treatment of Invasive Breast Carcinoma: results from ACOSOG (Alliance) Z1072Ann Surg Oncol. 2016;23:2438–2445. doi:10.1245/s10434-016-5275-3 [PMC free article] [PubMed] [CrossRef[]
33. Gajda MR, Mireskandari M, Baltzer PA, et al. Breast pathology after cryotherapy. Histological regression of breast cancer after cryotherapyPol J Pathol. 2014;65:20–28. doi:10.5114/pjp.2014.42665 [PubMed] [CrossRef[]
34. Manenti G, Scarano AL, Pistolese CA, et al. Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapyBreast Care (Basel). 2013;8:356–360. doi:10.1159/000355707 [PMC free article] [PubMed] [CrossRef[]
35. Cazzato RL, de Lara CT, Buy X, et al. Single-centre experience with percutaneous cryoablation of breast cancer in 23 consecutive non-surgical patientsCardiovasc Intervent Radiol. 2015;38:1237–1243. doi:10.1007/s00270-015-1181-5 [PubMed] [CrossRef[]
36. Cryoablation of Small Breast Tumors in Early Stage Breast Cancer (FROST). Available from: https://clinicaltrials.gov/ct2/show/NCT01992250. Accessed July 20, 2019.
37. Cryoablation of Low Risk Small Breast Cancer- Ice3 Trial. Available from: https://clinicaltrials.gov/ct2/show/NCT02200705. Accessed July 20, 2019.
38. Pfleiderer SO, Marx C, Camara O, Gajda M, Kaiser WA. Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancersInvest Radiol. 2005;40:472–477. doi:10.1097/01.rli.0000166935.56971.ff [PubMed] [CrossRef[]
39. Beji H, Pilleul F, Picard R, et al. Percutaneous cryoablation of breast tumors in patients with stable metastatic breast cancer: safety, feasibility and efficacyBr J Radiol. 2018;91(1083):20170500. doi:10.1259/bjr.20170500 [PMC free article] [PubMed] [CrossRef[]
40. Fancellu A, Soro D, Castiglia P, et al. Usefulness of magnetic resonance in patients with invasive cancer eligible for breast conservation: a comparative studyClin Breast Cancer. 2014;14:114–121. doi:10.1016/j.clbc.2013.10.002 [PubMed] [CrossRef[]
41. Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N. Meta-analysis of the effect of preoperative breast MRI on the surgical management of ducal carcinoma in situBr J Surg. 2015;102:883–893. doi:10.1002/bjs.9797 [PubMed] [CrossRef[]
42. Pediconi F, Marzocca F, Cavallo Marincola B, Napoli A. MRI-guided treatment in the breastJ Magn Reson Imaging. 2018;48:1479–1488. doi:10.1002/jmri.26282 [PubMed] [CrossRef[]
43. Sabel MS, Nehs MA, Su GK, et al. Immunologic response to cryoablation of breast cancerBreast Cancer Res Treat. 2005;90:97–104. doi:10.1007/s10549-004-3289-1 [PubMed] [CrossRef[]
44. Abdo J, Cornell DL, Mittal SK, Agrawal DK. Immunotherapy plus cryotherapy: potential augmented abscopal effect for advanced cancersFront Oncol. 2018;8:85. doi:10.3389/fonc.2018.00085 [PMC free article] [PubMed] [CrossRef[]
45. Keisari Y. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablationFront Biosci. 2017;22:310–347. doi:10.2741/4487 [PubMed] [CrossRef[]
46. Sidana A. Cancer immunotherapy using tumor cryoablationImmunotherapy. 2014;6:85–93. doi:10.2217/imt.13.151 [PubMed] [CrossRef[]
47. McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early stage breast cancer with comprehensive immune profilingClin Cancer Res. 2016;22:5729–5737. doi:10.1158/1078-0432.CCR-16-0190 [PMC free article] [PubMed] [CrossRef[]
48. Liang S, Niu L, Xu K, et al. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancerMol Immunol. 2017;92:45–53. doi:10.1016/j.molimm.2017.10.003 [PubMed] [CrossRef[]
49. Ye P, Yin H, Gu X, et al. Improved synergetic therapy efficiency of cryoablation and nanoparticles for MCF-7 breast cancerNanomedicine (Lond). 2018;13:1889–1903. doi:10.2217/nnm-2018-0168 [PubMed] [CrossRef[]

Articles from Breast Cancer : Targets and Therapy are provided here courtesy of Dove Press


Plaats een reactie ...

Reageer op "Cryosurgery plus 1x ipilimumab vooraf aan operatie van operabele borstkanker stimuleert immuunreactie en geeft betere therapeutische resultaten copy 1"


Gerelateerde artikelen
 

Gerelateerde artikelen

SIRA, een RFA elektrochirurgisch >> Radio Frequency Ablation (RFA) >> Borstsparende operatie van >> Cryosurgery plus 1x ipilimumab >> Eerst operatie van borst voor >> Weghalen van levertumoren >> Alleen schildwachtklier verwijderen >> Beste borstkankeroperatie >> Borstsparende operatie plus >> CPM - contralaterale profylactische >>