30 juni 2012: Het volledige studierapport van Vitamin D, sunlight and prostate cancer risk is gratis in te zien op de website van het NCBI. Onderaan referentielijst toegevoegd van studies gerelateerd aan dit onderwerp.
December 2008: Bron: Pubmed.
Hier de abstracten van enkele studies (ook een overzichtstudie van gerandomiserde studies, die onderzochten wat en hoe hoog en op wat voor manier de vitamine D gehaltes in bloed in de winter kunnen worden beïnlvoed door bv. suppletie. Vooral hormoon gerelateerde vormen van kanker zoals prostaatkanker, en borstkanker lijken hierdoor te worden beïnvloed. Voor leken die goed engels begrijpen is hier een video te zien met een lezing van dr. Mercola over de rol van vitamine D voor onze gezondheid en ook als preventie van kanker.
1: Am J Clin Nutr. 2008 Dec;88(6):1528-34.
Efficacy of food fortification on serum 25-hydroxyvitamin D concentrations: systematic review.
O'Donnell S, 
Cranney A, 
Horsley T, 
Weiler HA, 
Atkinson SA, 
Hanley DA, 
Ooi DS, 
Ward L, 
Barrowman N, 
Fang M, 
Sampson M, 
Tsertsvadze A, 
Yazdi F.
 
Clinical Epidemiology Program, Ottawa Health Research Institute, Ottawa, Canada.
BACKGROUND: Many residents of the United States and Canada depend on dietary sources of vitamin D to help maintain vitamin D status. Because few natural food sources contain vitamin D, fortified foods may be required. OBJECTIVE: We aimed to determine the effects of vitamin D-fortified foods on serum 25-hydroxyvitamin D [25(OH)D] concentrations.
DESIGN: We searched MEDLINE (1966 to June Week 3 2006), Embase, CINAHL, AMED, Biological Abstracts, and the Cochrane Central Register of Controlled Trials for randomized controlled trials (RCTs) comparing vitamin D-fortified foods with a control and reporting serum 25(OH)D concentrations. Two reviewers independently determined study eligibility, assessed trial quality, and extracted relevant data. Disagreements were resolved by consensus. Meta-analyses of absolute mean change in 25(OH)D were conducted by using a random-effects model, with evaluation of heterogeneity.
RESULTS: Nine RCTs (n = 889 subjects) were included, of which 8 consistently showed a significant beneficial effect of food fortification on 25(OH)D concentrations. Although 7 RCTs (n = 585 subjects) potentially were meta-analyzable, we were unable to combine the overall results because of significant heterogeneity. The individual treatment effects ranged from 14.5 (95% CIs: 10.6, 18.4) nmol/L to 34.5 (17.64, 51.36) nmol/L (3.4-25 microg vitamin D/d). Subgroup analyses showed a reduction in heterogeneity and significant treatment effect when 4 trials that used milk as the fortified food source were combined. CONCLUSION: Most trials were small in size and inadequately reported allocation concealment, but results showed that vitamin D-fortified foods improved vitamin D status in adults.
PMID: 19064512 [PubMed - in process]
 
1: Am J Clin Nutr. 2008 Dec;88(6):1535-42.
 
 
Estimation of the dietary requirement for vitamin D in healthy adults.
Cashman KD, 
Hill TR, 
Lucey AJ, 
Taylor N, 
Seamans KM, 
Muldowney S, 
Fitzgerald AP, 
Flynn A, 
Barnes MS, 
Horigan G, 
Bonham MP, 
Duffy EM, 
Strain JJ, 
Wallace JM, 
Kiely M.
 
Department of Food and Nutritional Sciences, University College, Cork, Ireland. k.cashman@ucc.ie
BACKGROUND: Knowledge gaps have contributed to considerable variation among international dietary recommendations for vitamin D.
OBJECTIVE: We aimed to establish the distribution of dietary vitamin D required to maintain serum 25-hydroxyvitamin D [25(OH)D] concentrations above several proposed cutoffs (ie, 25, 37.5, 50, and 80 nmol/L) during wintertime after adjustment for the effect of summer sunshine exposure and diet. DESIGN: A randomized, placebo-controlled, double-blind 22-wk intervention study was conducted in men and women aged 20-40 y (n = 238) by using different supplemental doses (0, 5, 10, and 15 microg/d) of vitamin D(3) throughout the winter. Serum 25(OH)D concentrations were measured by using enzyme-linked immunoassay at baseline (October 2006) and endpoint (March 2007).
RESULTS: There were clear dose-related increments (P < 0.0001) in serum 25(OH)D with increasing supplemental vitamin D(3). The slope of the relation between vitamin D intake and serum 25(OH)D was 1.96 nmol x L(-1) x microg(-1) intake. The vitamin D intake that maintained serum 25(OH)D concentrations of >25 nmol/L in 97.5% of the sample was 8.7 microg/d. This intake ranged from 7.2 microg/d in those who enjoyed sunshine exposure, 8.8 microg/d in those who sometimes had sun exposure, and 12.3 microg/d in those who avoided sunshine. Vitamin D intakes required to maintain serum 25(OH)D concentrations of >37.5, >50, and >80 nmol/L in 97.5% of the sample were 19.9, 28.0, and 41.1 microg/d, respectively. CONCLUSION: The range of vitamin D intakes required to ensure maintenance of wintertime vitamin D status [as defined by incremental cutoffs of serum 25(OH)D] in the vast majority (>97.5%) of 20-40-y-old adults, considering a variety of sun exposure preferences, is between 7.2 and 41.1 microg/d.
PMID: 19064513 [PubMed - in process]
 
11 november 2004: Bron: Pubmed 
 
 Bepaalde vormen van vitamine D zorgen voor inkapseling/doden van prostaatkankercellen in dierproeven. Al in 1996 toonden laboratoriumstudies aan dat vitamine D. in vitro kankercellen van prostaat, leukemie en borst doodde zonder enige bijwerkingen. Excuses maar we zijn geen medisch deskundige en kunnen niet precies aangeven welke vormen van vitamine D. hier zijn gebruikt, maar uw arts kan dat ongetwijfeld wel. Hier twee studies met meest recente bovenaan gepubliceerd. Deze studies komen uit Pubmed-Medline, waar nog meer studies aangeven dat bepaalde vormen van vitamine D. effectief werken in een behandeling van kanker. 
 
 Anticancer Res. 2003 Jan-Feb;23(1A):283-9.
 
 Ability of potent vitamin D3 analogs to inhibit growth of prostate cancer cells in vivo.
 Vegesna V, O'Kelly J, Said J, Uskokovic M, Binderup L, Koeffle HP. Cedars-Sinai Medical Center/UCLA School of Medicine, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
 ,br> BACKGROUND: Studies have identified analogs of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], which in vitro are 10- to 3,000-fold more active than 1,25(OH)2D3. We compared in vivo the anti-cancer activity of three potent vitamin D3 analogs and 1,25(OH)2D3 at near to each of their maximal tolerated dose (MTD).
 
 MATERIALS AND METHODS: Human LNCaP prostate cancer xenografts were grown in nude mice and the animals were treated with intraperitoneal injections of either diluant; 1,25(OH)2D3; 1,25-Dihydroxy-20epi-22-oxa-24,26,27-trisho-mocholecalciferol (KH 1060); 1,25-Dihydroxy-22E,24E-diene-24,26,27-trishomocholecalciferol (EB 1039); and 1,25-Dihydroxy-16-ene-24-oxo-19-norcholecalciferol (RO 26-9114). Tumor sizes were measured weekly and tumor weights were measured at autopsy on the 12th week.
 
 RESULTS: Each of the analogs equally and markedly inhibited growth of the prostate cancer xenografts. The 1,25(OH)2D3 initially inhibited growth but, by the time of sacrifice, the tumors were nearly the same size as diluant controls. The histological examination of the tumors showed that the analogs produced tumor necrosis and microcalcification. None of the mice developed hypercalcemia, which is the major toxicity of vitamin D3 compounds.
 
 CONCLUSION: The MTD of the analogs varied by 400-fold but each had similar efficacy suggesting that, when choosing a vitamin D analog for clinical study, overall efficacy without toxicity is more important than the total amount of the compound that can be administered. In summary, we have identified three vitamin D analogs that show marked potency in vivo to inhibit growth of human prostate cancer xenografts; each had no detectable toxicity. This study should help lay the foundation for clinical studies.
 
 PMID: 12680225 [PubMed - indexed for MEDLINE] 
 
 Hier het abstract van de in vitro studie uit 1998
 
 Cancer Res. 1998 Aug 1;58(15):3370-5.
 
 19-nor-26,27-bishomo-vitamin D3 analogs: a unique class of potent inhibitors of proliferation of prostate, breast, and hematopoietic cancer cells.
 
 Kubota T, Koshizuka K, Koike M, Uskokovic M, Miyoshi I, Koeffler HP. Division of Hematology/Oncology, Cedars-Sinai Research Institute, University of California at Los Angeles School of Medicine, 90048, USA.
 
 Vitamin D3 [1,25-dihydroxyvitamin-D3 (1,25(OH)2D3)] modulates the proliferation and differentiation of many cell types. Analogs of 1,25(OH)2D3 that have greater potency may become adjuvant therapy for breast and prostate cancers, myelodysplastic syndrome, acute myelogenous leukemia in remission and other cell types, especially in the setting of low disease burden. A new class of analogs of 1,25(OH)2D3 has been synthesized that has a novel 19-nor motif, as well as incorporating many structural elements previously shown to increase potency. These analogs were examined for their effects on prostate cancer cell lines (PC-3, LNCaP, and DU 145), a human breast cell line (MCF-7), and an acute myeloid leukemia cell line (HL-60). Dose-response clonogenic studies showed that each of these analogs had more potent antiproliferative activities against the cancer cells than 1,25(OH)2D3, and 1,25-(OH)2-16,23Z-diene-26,27-bishomo-19-nor-D3 (Ro 27-2014) was the most potent analog [10-fold increased activity compared to 1,25(OH)2D3]. Further studies were performed using Ro 27-2014. Pulse-exposure studies showed that a 5-day pulse-exposure to Ro 27-2014 (10(-7) M) in liquid culture was adequate to achieve a 50% inhibition of MCF-7 clonal growth in soft agar in the absence of the analog, suggesting that the growth inhibition mediated by the analog was irreversible. Cell cycle analyses using MCF-7 cells showed that Ro 27-2014 (10(-7) M for 4 days) induced a significant increase in the number of cells in G0-G1 (72.8+/-8.9% versus 49.9+/-3.5% in control cells), with a concomitant decrease in the percent of cells in S phase (13.1+/-6.2% versus 35.8+/-3.5% in control cells). The chief toxicity of vitamin D3 compounds is hypercalcemia, and therefore, we examined calcemic activity of Ro 27-2014 in mice and found it not to induce hypercalcemia at doses of 0.05 microg i.p. three times per week. In contrast, the same dose of a 19-nor vitamin D3 compound with 6 fluorines on the side chain (1,25-(OH)2-16-ene-23-yne-26,27-F6-19-nor-D3), although also having potent anticancer activity, caused severe hypercalcemia (18 mg/dl). In summary, 19-nor vitamin D3 compounds with desaturation and lengthening of their side chains result in a series of compounds with a good therapeutic index, having potent anticancer activity and low toxicity.
 
 PMID: 9699668 [PubMed - indexed for MEDLINE]
Vitamin D, sunlight and prostate cancer risk
References
1. Lipscomb J. Estimating the cost of cancer care in the  United States: a work very much in progress. Journal of the National Cancer Institute. 2008;100(9):607–610. [PubMed] 
2. Bostwick DG, Burke HB, Djakiew D, et al. Human prostate  cancer risk factors. Cancer. 2004;101(supplement 10):2371–2490. [PubMed] 
3. Klein  EA. Chemoprevention of prostate cancer. Annual  Review of Medicine. 2006;57:49–63.
4. Lowe  JF, Frazee LA. Update on prostate cancer chemoprevention. Pharmacotherapy. 2006;26(3):353–359. [PubMed] 
5. Lippman SM, Lee JJ. Reducing the “risk”of  chemoprevention: defining and targeting high risk—2005 AACR cancer research and  prevention foundation award lecture. Cancer  Research. 2006;66(6):2893–2903. [PubMed] 
6. Shukla  S, Gupta S. Dietary agents in the chemoprevention of prostate cancer.  Nutrition and Cancer. 2005;53(1):18–32. [PubMed] 
7. Thompson IM, Tangen CM, Goodman PJ, Lucia MS, Klein EA.  Chemoprevention of prostate cancer. Journal of  Urology. 2009;182(2):499–508. [PubMed] 
8. Kennel  KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to  treat. Mayo Clinic Proceedings. 2010;85(8):752–757. [PMC free article] [PubMed] 
9. Ross  AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes  for calcium and vitamin D from the institute of medicine: what clinicians need  to know. The Journal of Clinical Endocrinology  & Metabolism. 2011;96(1):53–58. [PMC free  article] [PubMed] 
10. Holick MF. Vitamin D and sunlight: strategies for cancer  prevention and other health benefits. Clinical  Journal of the American Society of Nephrology. 2008;3(5):1548–1554. [PubMed] 
11. Toner CD, Davis CD, Milner JA. The vitamin D and cancer  conundrum: aiming at a moving target. Journal  of the American Dietetic Association. 2010;110(10):1492–1500. [PubMed] 
12. Holick MF, Smith E, Pincus S. Skin as the site of vitamin  D synthesis and target tissue for 1,25-dihydroxyvitamin D3: use of calcitriol  (1,25-dihydroxyvitamin D3) for treatment of psoriasis. Archives of Dermatology. 1987;123(12):1677–1683. [PubMed] 
13. Norman AW. Sunlight, season, skin pigmentation, vitamin  D, and 25-hydroxyvitamin D: integral components of the vitamin D endocrine  system. American Journal of Clinical  Nutrition. 1998;67(6):1108–1110. [PubMed] 
14. Glossmann HH. Origin of 7-dehydrocholesterol (provitamin  D) in the skin. Journal of Investigative  Dermatology. 2010;130(8):2139–2141. [PubMed] 
15. Ingraham BA, Bragdon B, Nohe A. Molecular basis of the  potential of vitamin D to prevent cancer. Current Medical Research and Opinion. 2008;24(1):139–149. [PubMed] 
16. Gupta D, Lammersfeld CA, Trukova K, Lis CG. Vitamin D and  prostate cancer risk: a review of the epidemiological literature. Prostate Cancer and Prostatic Diseases. 2009;12(3):215–226. [PubMed] 
17. McCullough ML, Bostick RM, Mayo TL. Vitamin D gene  pathway polymorphisms and risk of colorectal, breast, and prostate cancer.  Annual Review of Nutrition. 2009;29:111–132.
18. Mucci LA, Spiegelman D. Vitamin D and prostate cancer  risk—a less sunny outlook? Journal of the  National Cancer Institute. 2008;100(11):759–761. [PubMed] 
19. Jones G. Pharmacokinetics of vitamin D toxicity.  American Journal of Clinical Nutrition. 2008;88(2):582S–586S. [PubMed] 
20. Talwar SA, Aloia JF, Pollack S, Yeh JK. Dose response to  vitamin D supplementation among postmenopausal African American women.  American Journal of Clinical Nutrition. 2007;86(6):1657–1662. [PMC free article] [PubMed] 
21. Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ.  Human serum 25-hydroxycholecalciferol response to extended oral dosing with  cholecalciferol. American Journal of Clinical  Nutrition. 2003;77(1):204–210. [PubMed] 
22. Aloia JF, Patel M, DiMaano R, et al. Vitamin D intake to  attain a desired serum 25-hydroxyvitamin D concentration. American Journal of Clinical Nutrition. 2008;87(6):1952–1958. [PubMed] 
23. Cashman KD, Hill TR, Lucey AJ, et al. Estimation of the  dietary requirement for vitamin D in healthy adults. American Journal of Clinical Nutrition. 2008;88(6):1535–1542. [PubMed] 
24. Trang HM, Cole DE, Rubin LA, Pierratos A, Siu S, Vieth R.  Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently  than does vitamin D2. American Journal of  Clinical Nutrition. 1998;68(4):854–858. [PubMed] 
25. Armas LAG, Hollis BW, Heaney RP. Vitamin D2 is much less  effective than vitamin D3 in humans. Journal  of Clinical Endocrinology & Metabolism. 2004;89(11):5387–5391. [PubMed] 
26. Holick MF, Biancuzzo RM, Chen TC, et al. Vitamin D2 is as  effective as vitamin D3 in maintaining circulating concentrations of  25-hydroxyvitamin D. Journal of Clinical  Endocrinology and Metabolism. 2008;93(3):677–681. [PMC free  article] [PubMed] 
27. Looker AC. Do body fat and exercise modulate vitamin D  status? Nutrition Reviews. 2007;65(8):S124–S126. [PubMed] 
28. Yanoff LB, Parikh SJ, Spitalnik A, et al. The prevalence  of hypovitaminosis D and secondary hyperparathyroidism in obese black Americans.  Clinical Endocrinology. 2006;64(5):523–529. [PMC free  article] [PubMed] 
29. Chennaiah S, Vijayalakshmi V, Suresh C. Effect of the  supplementation of dietary rich phytoestrogens in altering the vitamin D levels  in diet induced osteoporotic rat model. The  Journal of Steroid Biochemistry and Molecular Biology. 2010;21(1-2):268–272. [PubMed] 
30. Cross HS, Kallay E. Regulation of the colonic vitamin D  system for prevention of tumor progression: an update. Future Oncology. 2009;5(4):493–507. [PubMed] 
31. Hossein-nezhad A, Mirzaei K, Maghbooli Z, Najmafshar A,  Larijani B. The influence of folic acid supplementation on maternal and fetal  bone turnover. Journal of Bone and Mineral  Metabolism. 2010;29(2):186–192. [PubMed] 
32. Cross HS, Nittke T, Peterlik M. Modulation of vitamin D  synthesis and catabolism in colorectal mucosa: a new target for cancer  preventio. Anticancer Research. 2009;29(9):3705–3712. [PubMed] 
33. Chen TC. 25-hydroxyvitamin D-1 alpha-hydroxylase  (CYP27B1) is a new class of tumor suppressor in the prostate. Anticancer Research. 2008;28(4A):2015–2017. [PubMed] 
34. Whitlatch LW, Young MV, Schwartz GG, et al.  25-hydroxyvitamin D-1alpha-hydroxylase activity is diminished in human prostate  cancer cells and is enhanced by gene transfer. The Journal of Steroid Biochemistry and Molecular  Biology. 2002;81(2):135–140. [PubMed] 
35. Rungby J, Mortensen L, Jakobsen K, Brock A, Mosekilde L.  Distribution of hydroxylated vitamin D metabolites [25OHD3 and  1,25(OH)2D3] in domestic pigs: evidence that  1,25(OH)2D3] is stored outside the blood circulation?  Comparative Biochemistry and Physiology. 1993;104(3):483–484. [PubMed] 
36. Konety BR, Somogyi G, Atan A, Muindi J, Chancellor MB,  Getzenberg RH. Evaluation of intraprostatic metabolism of 1,25-dihydroxyvitamin  D3 (calcitriol) using a microdialysis technique. Urology. 2002;59(6):947–952. [PubMed] 
37. Lou YR, Qiao S, Talonpoika R, Syvälä H, Tuohimaa P. The  role of vitamin D3 metabolism in prostate cancer. The Journal of Steroid Biochemistry and Molecular  Biology. 2004;92(4):317–325. [PubMed] 
38. Chen TC, Wang L, Whitlatch LW, Flanagan JN, Holick MF.  Prostatic 25-hydroxyvitamin D-1alpha-hydroxylase and its implication in prostate  cancer. Journal of Cellular Biochemistry. 2003;88(2):315–322. [PubMed] 
39. Ma JF, Nonn L, Campbell MJ, Hewison M, Feldman D, Peehl  DM. Mechanisms of decreased Vitamin D 1alpha-hydroxylase activity in prostate  cancer cells. Molecular and Cellular  Endocrinology. 2004;221(1-2):67–74. [PubMed] 
40. Khorchide M, Lechner D, Cross HS. Epigenetic regulation  of vitamin D hydroxylase expression and activity in normal and malignant human  prostate cells. The Journal of Steroid  Biochemistry and Molecular Biology. 2005;93(2-5):167–172. [PubMed] 
41. Wang L, Persons KS, Jamieson D, et al. Prostate  25-hydroxyvitamin D-1alpha-hydroxylase is up-regulated by suberoylanilide  hydroxamic acid (SAHA), a histone deacetylase inhibitor. Anticancer Research. 2008;28(4A):2009–2013. [PubMed] 
42. Lou YR, Laaksi I, Syvälä H, et al. 25-hydroxyvitamin D3  is an active hormone in human primary prostatic stromal cells. The FASEB journal. 2004;18(2):332–334. [PubMed] 
43. Skowronski RJ, Peehl DM, Feldman D. Vitamin D and  prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human  prostate cancer cell lines. Endocrinology. 1993;132(5):1952–1960. [PubMed] 
44. Miller GJ, Stapleton GE, Hedlund TE, Moffatt KA. Vitamin  D receptor expression, 24-hydroxylase activity, and inhibition of growth by  1alpha,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines.  Clinical Cancer Research. 1995;1(9):997–1003. [PubMed] 
45. Luo W, Karpf AR, Deeb KK, et al. Epigenetic mechanisms of  promigratory chemokine CXCL14 regulation in human prostate cancer cells.  Cancer Research. 2010;70(14):5953–5962. [PMC free  article] [PubMed] 
46. Roff A, Wilson RT. A novel SNP in a vitamin D response  element of the CYP24A1 promoter reduces protein binding, transactivation, and  gene expression. The Journal of Steroid  Biochemistry and Molecular Biology. 2008;112(1–3):47–54. [PMC free  article] [PubMed] 
47. Muindi JR, Nganga A, Engler KL, Coignet LJ, Johnson CS,  Trump DL. CYP24 splicing variants are associated with different patterns of  constitutive and calcitriol-inducible CYP24 activity in human prostate cancer  cell lines. The Journal of Steroid  Biochemistry and Molecular Biology. 2007;103(3–5):334–337. [PubMed] 
48. Lou YR, Tuohimaa P. Androgen enhances the  antiproliferative activity of vitamin D3 by suppressing 24-hydroxylase  expression in LNCaP cells. The Journal of  Steroid Biochemistry and Molecular Biology. 2006;99(1):44–49. [PubMed] 
49. Lou YR, Nazarova N, Talonpoika R, et al.  5alpha-dihydrotestosterone inhibits 1alpha,25-dihydroxyvitamin D3-induced  expression of CYP24 in human prostate cancer cells. Prostate. 2005;63(3):222–230. [PubMed] 
50. Lou YR, Miettinen S, Kagechika H, Gronemeyer H, Tuohimaa  P. Retinoic acid via RARalpha inhibits the expression of 24-hydroxylase in human  prostate stromal cells. Biochemical and  Biophysical Research Communications. 2005;338(4):1973–1981. [PubMed] 
51. Farhan H, Wähälä K, Cross HS. Genistein inhibits vitamin  D hydroxylases CYP24 and CYP27B1 expression in prostate cells. The Journal of Steroid Biochemistry and Molecular  Biology. 2003;84(4):423–429. [PubMed] 
52. Swami S, Krishnan AV, Peehl DM, Feldman D. Genistein  potentiates the growth inhibitory effects of 1,25-dihydroxyvitamin D3 in DU145  human prostate cancer cells: role of the direct inhibition of CYP24 enzyme  activity. Molecular and Cellular  Endocrinology. 2005;241(1-2):49–61. [PubMed] 
53. Muindi JR, WD Yu, Ma Y, et al. CYP24A1 inhibition  enhances the antitumor activity of calcitriol. Endocrinology. 2010;151(9):4301–4312. [PMC free  article] [PubMed] 
54. Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of  vitamin D in cancer prevention and treatment. Endocrinology and Metabolism Clinics of North  America. 2010;39(2):401–418. [PubMed] 
55. Pike JW, Meyer MB. The vitamin D receptor: new paradigms  for the regulation of gene expression by 1,25-dihydroxyvitamin D3.  Endocrinology and Metabolism Clinics of North  America. 2010;39(2):255–269. [PMC free article] [PubMed] 
56. Mizwicki MT, Norman AW. The vitamin D sterol-vitamin D  receptor ensemble model offers unique insights into both genomic and  rapid-response signaling. Science  Signaling. 2009;2(75):p.  re4.
57. Zhang Z, Kovalenko P, Cui M, Desmet M, Clinton SK, Fleet  JC. Constitutive activation of the mitogen-activated protein kinase pathway  impairs vitamin D signaling in human prostate epithelial cells. Journal of Cellular Physiology. 2010;224(2):433–442. [PMC free  article] [PubMed] 
58. Koszewski NJ, Herberth J, Malluche HH. Retinoic acid  receptor gamma 2 interactions with vitamin D response elements. The Journal of Steroid Biochemistry and Molecular  Biology. 2010;120(4-5):200–207. [PubMed] 
59. Murthy S, Agoulnik IU, Weigel NL. Androgen receptor  signaling and vitamin D receptor action in prostate cancer cells. Prostate. 2005;64(4):362–372. [PubMed] 
60. Mordan-McCombs S, Brown T, Wang WL, Gaupel AC, Welsh J,  Tenniswood M. Tumor progression in the LPB-Tag transgenic model of prostate  cancer is altered by vitamin D receptor and serum testosterone status.  The Journal of Steroid Biochemistry and  Molecular Biology. 2010;121(1-2):368–371. [PubMed] 
61. Zanello LP, Norman AW. Rapid modulation of osteoblast ion  channel responses by 1alpha,25(OH)2-vitamin D3 requires  the presence of a functional vitamin D nuclear receptor. Proceedings of the National Academy of Sciences of the  United States of America. 2004;101(6):1589–1594. [PMC free  article] [PubMed] 
62. Crescioli C, Maggi M, Vannelli GB, et al. Effect of a  vitamin D3 analogue on keratinocyte growth factor-induced cell proliferation in  benign prostate hyperplasia. Journal of  Clinical Endocrinology and Metabolism. 2000;85(7):2576–2583. [PubMed] 
63. Hedlund TE, Moffatt KA, Miller GJ. Stable expression of  the nuclear vitamin D receptor in the human prostatic carcinoma cell line JCA-1:  evidence that the antiproliferative effects of 1 alpha, 25-dihydroxyvitamin D3  are mediated exclusively through the genomic signaling pathway. Endocrinology. 1996;137(5):1554–1561. [PubMed] 
64. Pedrozo HA, Schwartz Z, Rimes S, et al. Physiological  importance of the 1,25(OH)2D3membrane receptor and  evidence for a membrane receptor specific for  24,25(OH)2D3. Journal of  Bone and Mineral Research. 1999;14(6):856–867. [PubMed] 
65. Nemere I, Farach-Carson MC, Rohe B, et al. Ribozyme  knockdown functionally links a 1,25(OH)2D3 membrane  binding protein (1,25D3-MARRS) and phosphate uptake in intestinal  cells. Proceedings of the National Academy of  Sciences of the United States of America. 2004;101(19):7392–7397. [PMC free  article] [PubMed] 
66. Karlsson S, Olausson J, Lundh D, et al. Vitamin D and  prostate cancer: the role of membrane initiated signaling pathways in prostate  cancer progression. The Journal of Steroid  Biochemistry and Molecular Biology. 2010;121(1-2):413–416. [PubMed] 
67. Krishnan AV, Feldman D. Molecular pathways mediating the  anti-inflammatory effects of calcitriol: implications for prostate cancer  chemoprevention and treatment. Endocrine-Related Cancer. 2010;17(1):R19–R38. [PubMed] 
68. Gocek E, Studzinski GP. Vitamin D and differentiation in  cancer signaling differentiation. Critical  Reviews in Clinical Laboratory Sciences. 2009;46(4):190–209. [PMC free  article] [PubMed] 
69. Rohan JN, Weigel NL. 1α,25-dihydroxyvitamin  D3 reduces c-Myc expression, inhibiting proliferation and causing  G1 accumulation in C4-2 prostate cancer cells. Endocrinology. 2009;150(5):2046–2054. [PMC free  article] [PubMed] 
70. Toropainen S, Väisänen S, Heikkinen S, Carlberg C. The  down-regulation of the human MYC gene by the nuclear hormone  1alpha,25-dihydroxyvitamin D3 is associated with cycling of corepressors and  histone deacetylases. Journal of Molecular  Biology. 2010;400(3):284–294. [PubMed] 
71. Ikeda N, Uemura H, Ishiguro H, et al. Combination  treatment with 1alpha,25-dihydroxyvitamin D3 and 9-cis-retinoic acid directly  inhibits human telomerase reverse transcriptase transcription in prostate cancer  cells. Molecular Cancer Therapeutics. 2003;2(8):739–746. [PubMed] 
72. Blutt SE, Mcdonnell TJ, Polek TC, Weigel NL.  Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of  Bcl-2. Endocrinology. 2000;141(1):10–17. [PubMed] 
73. Sung V, Feldman D. 1,25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration. Molecular and Cellular Endocrinology. 2000;164(1-2):133–143. [PubMed] 
74. Yang ES, Burnstein KL. Vitamin D inhibits G1 to S  progression in LNCaP prostate cancer cells through p27Kip1 stabilization and  Cdk2 mislocalization to the cytoplasm. Journal  of Biological Chemistry. 2003;278(47):46862–46868. [PubMed] 
75. Jensen SS, Madsen MW, Lukas J, Binderup L, Bartek J.  Inhibitory effects of 1α,25-dihydroxyvitamin D3 on the  G1-S phase-controlling machinery. Molecular Endocrinology. 2001;15(8):1370–1380. [PubMed] 
76. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP.  Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937.  Genes and Development. 1996;10(2):142–153. [PubMed] 
77. Blutt SE, Allegretto EA, Pike JW, Weigel NL.  1,25-dihydroxyvitamin D3and 9-cis-acid act synergistically  to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in  G1. Endocrinology. 1997;138(4):1491–1497. [PubMed] 
78. Campbell MJ, Elstner E, Holden S, Uskokovic M, Koeffler  HP. Inhibition of proliferation of prostate cancer cells by a  19-nor-hexafluoride vitamin D3 analogue involves the induction of  p21waf1, p27kip1 and E-cadherin. Journal of  Molecular Endocrinology. 1997;19(1):15–27. [PubMed] 
79. Flores O, Burnstein KL. GADD45gamma: a new vitamin  D-regulated gene that is antiproliferative in prostate cancer cells. Endocrinology. 2010;151(10):4654–4664. [PMC free  article] [PubMed] 
80. Bao BY, Yeh SD, Lee YF. 1alpha,25-dihydroxyvitamin  D3 inhibits prostate cancer cell invasion via modulation of selective  proteases. Carcinogenesis. 2006;27(1):32–42. [PubMed] 
81. Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin-6  regulation of prostate cancer cell growth. Journal of Cellular Biochemistry. 2005;95(3):497–505. [PubMed] 
82. Wegiel B, Bjartell A, Culig Z, Persson JL. Interleukin-6  activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer  cell survival. International Journal of  Cancer. 2008;122(7):1521–1529.
83. Araki S, Omori Y, Lyn D, et al. Interleukin-8 is a  molecular determinant of androgen independence and progression in prostate  cancer. Cancer Research. 2007;67(14):6854–6862. [PubMed] 
84. Vasto S, Carruba G, Candore G, Italiano E, Di Bona D,  Caruso C. Inflammation and prostate cancer. Future Oncology. 2008;4(5):637–645. [PubMed] 
85. Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE.  1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and  in vivo. Circulation Research. 2000;87(3):214–220. [PubMed] 
86. Nonn L, Peng L, Feldman D, Peehl DM. Inhibition of p38 by  vitamin D reduces interleukin-6 production in normal prostate cells via  mitogen-activated protein kinase phosphatase 5: implications for prostate cancer  prevention by vitamin D. Cancer Research. 2006;66(8):4516–4524. [PubMed] 
87. Bao BY, Yao J, Lee YF. 1alpha, 25-dihydroxyvitamin  D3 suppresses interleukin-8-mediated prostate cancer cell  angiogenesis. Carcinogenesis. 2006;27(9):1883–1893. [PubMed] 
88. Xu Y, Fang F, Clair DK, et al. Suppression of  RelB-mediated manganese superoxide dismutase expression reveals a primary  mechanism for radiosensitization effect of 1alpha,25-dihydroxyvitamin D3 in  prostate cancer cells. Molecular Cancer  Therapeutics. 2007;6(7):2048–2056. [PMC free article] [PubMed] 
89. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y,  Mabjeesh NJ. 1α,25-dihydroxyvitamin D3 (Calcitriol) inhibits  hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human  cancer cells. Molecular Cancer  Therapeutics. 2007;6(4):1433–1439. [PubMed] 
90. Chung I, Han G, Seshadri M, et al. Role of vitamin D  receptor in the antiproliferative effects of calcitriol in tumor-derived  endothelial cells and tumor angiogenesis in vivo. Cancer Research. 2009;69(3):967–975. [PMC free  article] [PubMed] 
91. Moreno J, Krishnan AV, Swami S, Nonn L, Peehl DM, Feldman  D. Regulation of prostaglandin metabolism by calcitriol attenuates growth  stimulation in prostate cancer cell. Cancer  Research. 2005;65(17):7917–7925. [PubMed] 
92. Krishnan AV, Moreno J, Nonn L, et al. Novel pathways that  contribute to the anti-proliferative and chemopreventive activities of  calcitriol in prostate cancer. The Journal of  Steroid Biochemistry and Molecular Biology. 2007;103(3–5):694–702. [PubMed] 
93. Krishnan AV, Srinivas S, Feldman D, et al. Inhibition of  prostaglandin synthesis and actions contributes to the beneficial effects of  calcitriol in prostate cancer. Dermato-Endocrinology. 2009;1(1):7–11. [PMC free article] [PubMed] 
94. Rhee Hvander, Coebergh JW, Vries ED. Sunlight, vitamin D  and the prevention of cancer: a systematic review of epidemiological studies.  European Journal of Cancer Prevention. 2009;18:458–475.
95. John EM, Koo J, Schwartz GG. Sun exposure and prostate  cancer risk: evidence for a protective effect of early-life exposure.  Cancer Epidemiology Biomarkers and  Prevention. 2007;16(6):1283–1286.
96. Hanchette CL, Schwartz GG. Geographic patterns of  prostate cancer mortality. evidence for a protective effect of ultraviolet  radiation. Cancer. 1992;70(12):2861–2869. [PubMed] 
97. Schwartz GG, Hanchette CL. UV, latitude, and spatial  trends in prostate cancer mortality: all sunlight is not the same (United  States) Cancer Causes and Control. 2006;17(8):1091–1101. [PubMed] 
98. Grant WB. An estimate of premature cancer mortality in  the U.S. due to inadequate doses of solar ultraviolet-B radiation. Cancer. 2002;94(6):1867–1875. [PubMed] 
99. Luscombe CJ, Fryer AA, French ME, et al. Exposure to  ultraviolet radiation: association with susceptibility and age at presentation  with prostate cancer. The Lancet. 2001;358(9282):641–642.
100. John EM, Dreon DM, Koo J, et al. Residential sunlight  exposure is associated with a decreased risk of prostate cancer. Journal of Steroid Biochemistry & Molecular  Biology. 2004;89-90(1–5):549–552. [PubMed] 
101. Bodiwala D, Luscombe CJ, French ME, et al. Susceptibility  to prostate cancer: studies on interactions between UVR exposure and skin type.  Carcinogenesis. 2003;24(4):711–717. [PubMed] 
102. Lagunova Z, Porojnicu AC, Dahlback A, Berg JP, Beer TM,  Moan J. Prostate cancer survival is dependent on season of diagnosis.  Prostate. 2007;67(12):1362–1370. [PubMed] 
103. Robsahm TE, Tretli S, Dahlback A, Moan J. Vitamin D3 from  sunlight may improve the prognosis of breast-, colon- and prostate cancer  (Norway) Cancer Causes and Control. 2004;15(2):149–158. [PubMed] 
104. Colli JL, Colli A. International comparisons of prostate  cancer mortality rates with dietary practices and sunlight levels. Urologic Oncology. 2006;24(3):184–194. [PubMed] 
105. Ben-Shlomo Y, Evans S, Ibrahim F, et al. The risk of  prostate cancer amongst black men in the United Kingdom: the process cohort  study. European Urology. 2008;53(1):99–105. [PubMed] 
106. Bodiwala D, Luscombe CJ, French ME, et al. Polymorphisms  in the vitamin D receptor gene, ultraviolet radiation, and susceptibility to  prostate cancer. Environmental and Molecular  Mutagenesis. 2004;43(2):121–127. [PubMed] 
107. Moon S, Holley S, Bodiwala D, et al. Associations between  G/A1229, A/G3944, T/C30875, C/T48200 and C/T65013 genotypes and haplotypes in  the vitamin D receptor gene, ultraviolet radiation and susceptibility to  prostate cancer. Annals of Human  Genetics. 2006;70:226–236. [PubMed] 
108. Luscombe CJ, French ME, Liu S, et al. Outcome in prostate  cancer associations with skin type and polymorphism in pigmentation-related  genes. Carcinogenesis. 2001;22(9):1343–1347. [PubMed] 
109. Rukin N, Blagojevic M, Luscombe CJ, et al. Associations  between timing of exposure to ultraviolet radiation, T-stage and survival in  prostate cancer. Cancer Detection and  Prevention Journal. 2007;31(6):443–449.
110. Colli JL, Grant WB. Solar ultraviolet B radiation  compared with prostate cancer incidence and mortality rates in United States.  Urology. 2008;71(3):531–535. [PubMed] 
111. de Vries E, Soerjomataram I, Houterman S, et al.  Decreased risk of prostate cancer after skin cancer diagnosis: a protective role  of ultraviolet radiation? American Journal of  Epidemiology. 2007;165(8):966–972. [PubMed] 
112. Rukin NJ, Zeegers MP, Ramachandran S, et al. A comparison  of sunlight exposure in men with prostate cancer and basal cell carcinoma.  British Journal of Cancer. 2007;96(3):523–528. [PMC free article] [PubMed] 
113. Tuohimaa P, Pukkala E, Scélo G, et al. Does solar  exposure, as indicated by the non-melanoma skin cancers, protect from solid  cancers: vitamin D as a possible explanation. European Journal of Cancer. 2007;43(11):1701–1712. [PubMed] 
114. Levi F, Randimbison L, Te VC, Conconi MM, La Vecchia C.  Risk of prostate, breast and colorectal cancer after skin cancer diagnosis.  International Journal of Cancer. 2008;123(12):2899–2901.
115. Gilbert R, Metcalfe C, Oliver SE, et al. Life course sun  exposure and risk of prostate cancer: population-based nested case-control study  and meta-analysis. International Journal of  Cancer. 2009;125(6):1414–1423.
116. Grant WB. Geographic variation of prostate cancer  mortality rates in the United States: implications for prostate cancer risk  related to vitamin D. International Journal of  Cancer. 2004;111(3):470–471.
117. Waltz P, Chodick G. International comparisons of prostate  cancer mortality rates with dietary practices and sunlight levels. Urologic Oncology. 2007;25(1):p. 85.
118. Waltz P, Chodick G. Assessment of ecological regression  in the study of colon, breast, ovary, non-Hodgkin’s lymphoma, or prostate cancer  and residential UV. European Journal of Cancer  Prevention. 2008;17(3):279–286. [PubMed] 
119. Corder EH, Guess HA, Hulka BS, et al. Vitamin D and  prostate cancer: a prediagnostic study with stored sera. Cancer Epidemiology Biomarkers and Prevention. 1993;2(5):467–472.
120. Ahonen MH, Tenkanen L, Teppo L, Hakama M, Tuohimaa P.  Prostate cancer risk and prediagnostic serum 25-hydroxyvitamin D levels  (Finland) Cancer Causes and Control. 2000;11(9):847–852. [PubMed] 
121. Li H, Stampfer MJ, Hollis JB, et al. A prospective study  of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate  cancer. PLoS Medicine. 2007;4(3, article e103)
122. Tretli S, Hernes E, Berg JP, Hestvik UE, Robsahm TE.  Association between serum 25(OH)D and death from prostate cancer. British Journal of Cancer. 2009;100(3):450–454. [PMC free  article] [PubMed] 
123. Braun MM, Helzlsouer KJ, Hollis BW, Comstock GW. Prostate  cancer and prediagnostic levels of serum vitamin D metabolites (Maryland, United  States) Cancer Causes and Control. 1995;6(3):235–239. [PubMed] 
124. Gann PH, Ma J, Hennekens CH, et al. Circulating vitamin D  metabolites in relation to subsequent development of prostate cancer.  Cancer Epidemiology, Biomarkers &  Prevention. 1996;5(2):121–126.
125. Nomura AM, Stemmermann GN, Lee J, et al. Serum vitamin D  metabolite levels and the subsequent development of prostate cancer (Hawaii,  United States) Cancer Causes and Control. 1998;9(4):425–432. [PubMed] 
126. Platz EA, Leitzmann MF, Hollis BW, Willett WC,  Giovannucci E. Plasma 1,25-dihydroxy- and 25-hydroxyvitamin D and subsequent  risk of prostate cancer. Cancer Causes and  Control. 2004;15(3):255–265. [PubMed] 
127. Gandini S, Boniol M, Haukka J, et al. Meta-analysis of  observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast  and prostate cancer and colorectal adenoma. International Journal of Cancer. 2011;128(6):1414–1424.
128. Barnett CM, Nielson CM, Shannon J, et al. Serum 25-OH  vitamin D levels and risk of developing prostate cancer in older men.  Cancer Causes and Control. 2010;21(8):1297–1303. [PMC free article] [PubMed] 
129. Travis RC, Crowe FL, Allen NE, et al. Serum vitamin D and  risk of prostate cancer in a case-control analysis nested within the European  prospective investigation into cancer and nutrition (EPIC) American Journal of Epidemiology. 2009;169(10):1223–1232. [PMC free  article] [PubMed] 
130. Ahn J, Peters U, Albanes D, et al. Serum vitamin D  concentration and prostate cancer risk: a nested case-control study. Journal of the National Cancer Institute . 2008;100(11):796–804. [PubMed] 
131. Tuohimaa P, Tenkanen L, Ahonen M, et al. Both high and  low levels of blood vitamin D are associated with a higher prostate cancer risk:  a longitudinal, nested case-control study in the nordic countries. International Journal of Cancer. 2004;108(1):104–108.
132. Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Hollis BW,  Giovannucci E. Vitamin D receptor (VDR) gene polymorphisms and haplotypes,  interactions with plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and  prostate cancer risk. Prostate. 2007;67(9):911–923. [PubMed] 
133. Ma J, Stampfer MJ, Gann PH, et al. Vitamin D receptor  polymorphisms, circulating vitamin D metabolites, and risk of prostate cancer in  United States physicians. Cancer Epidemiology  Biomarkers and Prevention. 1998;7(5):385–390.
134. Park SY, Murphy SP, Wilkens LR, Stram DO, Henderson BE,  Kolonel LN. Calcium, vitamin D, and dairy product intake and prostate cancer  risk: the multiethnic cohort study. American  Journal of Epidemiology. 2007;166(11):1259–1269. [PubMed] 
135. Kristal AR, Arnold KB, Neuhouser ML, et al. Diet,  supplement use, and prostate cancer risk: results from the prostate cancer  prevention trial. American Journal of  Epidemiology. 2010;172(5):566–577. [PMC free article] [PubMed] 
136. Huncharek M, Muscat J, Kupelnick B. Dairy products,  dietary calcium and vitamin D intake as risk factors for prostate cancer: a  meta-analysis of 26,769 cases from 45 observational studies. Nutrition and Cancer. 2008;60(4):421–441. [PubMed] 
137. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HAP, Van  Leeuwen JPTM. Genetics and biology of vitamin D receptor polymorphisms.  Gene. 2004;338(2):143–156. [PubMed] 
138. Gennari L, De Paola V, Merlotti D, Martini G, Nuti R.  Steroid hormone receptor gene polymorphisms and osteoporosis: a pharmacogenomic  review. Expert Opinion on  Pharmacotherapy. 2007;8(5):537–553. [PubMed] 
139. Whitfield GK, Remus LS, Jurutka PW, et al. Functionally  relevant polymorphisms in the human nuclear vitamin D receptor gene. Molecular and Cellular Endocrinology. 2001;177(1-2):145–159. [PubMed] 
140. Orton SM, Morris AP, Herrera BM, et al. Evidence for  genetic regulation of vitamin D status in twins with multiple sclerosis.  American Journal of Clinical Nutrition. 2008;88(2):441–447. [PMC free article] [PubMed] 
141. Arai H, Miyamoto KI, Yoshida M, et al. The polymorphism  in the caudal-related homeodomain protein Cdx-2 binding element in the human  vitamin D receptor gene. Journal of Bone and  Mineral Research. 2001;16(7):1256–1264. [PubMed] 
142. Durrin LK, Haile RW, Ingles SA, Coetzee GA. Vitamin D  receptor 3’-untranslated region polymorphisms: lack of effect on mRNA stability.  Biochimica et Biophysica Acta. 1999;1453(3):311–320. [PubMed] 
143. Carling T, Rastad J, Akerström G, Westin G. Vitamin D  receptor (VDR) and parathyroid hormone messenger ribonucleic acid levels  correspond to polymorphic VDR alleles in human parathyroid tumors. Journal of Clinical Endocrinology and Metabolism. 1998;83(7):2255–2259. [PubMed] 
144. Verbeek W, Gombart AF, Shiohara M, et al. Vitamin D  receptor: no evidence for allele-specific mRNA stability in cells which are  heterozygous for the Taq I restriction enzyme polymorphism. Biochemical and Biophysical Research Communications. 1997;238(1):77–80. [PubMed] 
145. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone  density from vitamin D receptor alleles. Nature. 1994;387(6628):p. 106.
146. Taylor JA, Hirvonen A, Watson M, Pittman G, Mohler JL,  Bell DA. Association of prostate cancer with vitamin D receptor gene  polymorphism. Cancer Research. 1996;56(18):4108–4110. [PubMed] 
147. Ingles SA, Ross RK, Yu MC, et al. Association of prostate  cancer risk with genetic polymorphisms in vitamin D receptor and androgen  receptor. Journal of the National Cancer  Institute. 1997;89(2):166–170. [PubMed] 
148. Habuchi T, Suzuki T, Sasaki R, et al. Association of  vitamin D receptor gene polymorphism with prostate cancer and benign prostatic  hyperplasia in a Japanese population. Cancer  Research. 2000;60(2):305–308. [PubMed] 
149. Suzuki K, Matsui H, Ohtake N, et al. Vitamin D receptor  gene polymorphism in familial prostate cancer in a Japanese population.  International Journal of Urology. 2003;10(5):261–266. [PubMed] 
150. Ntais C, Polycarpou A, Ioannidis JP. Vitamin D receptor  gene polymorphisms and risk of prostate cancer: a meta-analysis. Cancer Epidemiology Biomarkers and Prevention. 2003;12(12):1395–1402.
151. Oakley-Girvan I, Feldman D, Eccleshall TR, et al. Risk of  early-onset prostate cancer in relation to germ line polymorphisms of the  vitamin D receptor. Cancer Epidemiology  Biomarkers and Prevention. 2004;13(8):1325–1330.
152. Maistro S, Snitcovsky I, Sarkis AS, da Silva IA, Brentani  MM. Vitamin D receptor polymorphisms and prostate cancer risk in Brazilian men.  International Journal of Biological  Markers. 2004;19(3):245–249. [PubMed] 
153. Cheteri MB, Stanford JL, Friedrichsen DM, et al. Vitamin  D receptor gene polymorphisms and prostate cancer risk. Prostate. 2004;59(4):409–418. [PubMed] 
154. Huang SP, Chou YH, Wayne Chang WS, et al. Association  between vitamin D receptor polymorphisms and prostate cancer risk in a Taiwanese  population. Cancer Letters. 2004;207(1):69–77. [PubMed] 
155. Williams H, Powell IJ, Land SJ, et al. Vitamin D receptor  gene polymorphisms and disease free survival after radical prostatectomy.  Prostate. 2004;61(3):267–275. [PubMed] 
156. John EM, Schwartz GG, Koo J, et al. Sun exposure, vitamin  D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Research. 2005;65(12):5470–5479. [PubMed] 
157. Mishra DK, Bid HK, Srivastava DS, Mandhani A, Mittal RD.  Association of vitamin D receptor gene polymorphism and risk of prostate cancer  in India. Urologia Internationalis. 2005;74(4):315–318. [PubMed] 
158. Hayes VM, Severi G, Padilla EJ, et al. Genetic variants  in the vitamin D receptor gene and prostate cancer risk. Cancer Epidemiology Biomarkers and Prevention. 2005;14(4):997–999.
159. Kidd LC, Paltoo DN, Wang S, et al. Sequence variation  within the 5’ regulatory regions of the vitamin D binding protein and receptor  genes and prostate cancer risk. Prostate. 2005;64(3):272–282. [PubMed] 
160. Berndt SI, Dodson JL, Huang WY, Nicodemus KK. Systematic  review of vitamin D receptor gene polymorphisms and prostate cancer risk.  Journal of Urology. 2006;175(5):1613–1623. [PubMed] 
161. Holick CN, Stanford JL, Kwon EM, et al. Comprehensive  association analysis of the vitamin D pathway genes, VDR, CYP27B1, and CYP24A1,  in prostate cancer. Cancer Epidemiology,  Biomarkers & Prevention. 2007;16(10):1990–1999.
162. Li H, Stampfer MJ, Hollis JB, et al. A prospective study  of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate  cancer. PLoS Medicine. 2007;4(3, article e103)
163. Rukin NJ, Luscombe C, Moon S, et al. Prostate cancer  susceptibility is mediated by interactions between exposure to ultraviolet  radiation and polymorphisms in the 5’ haplotype block of the vitamin D receptor  gene. Cancer Letters. 2007;247(2):328–335. [PubMed] 
164. Onen IH, Ekmekci A, Eroglu M, et al. Association of  genetic polymorphisms in vitamin D receptor gene and susceptibility to sporadic  prostate cance. Experimental Biology and  Medicine. 2008;233(12):1608–1614. [PubMed] 
165. Torkko KC, van Bokhoven A, Mai P, et al. VDR and SRD5A2  polymorphisms combine to increase risk for prostate cancer in both non-hispanic  white and hispanic white men. Clinical Cancer  Research. 2008;14(10):3223–3229. [PubMed] 
166. Ahn J, Albanes D, Berndt SI, et al. Vitamin D-related  genes, serum vitamin D concentrations and prostate cancer risk. Carcinogenesis. 2009;30(5):769–776. [PMC free  article] [PubMed] 
167. Chen L, Smith GD, Evans DM, et al. Genetic variants in  the vitamin d receptor are associated with advanced prostate cancer at  diagnosis: findings from the prostate testing for cancer and treatment study and  a systematic review. Cancer Epidemiology,  Biomarkers & Prevention. 2009;18(11):2874–2881.
168. Raimondi S, Johansson H, Maisonneuve P, Gandini S. Review  and meta-analysis on vitamin D receptor polymorphisms and cancer risk.  Carcinogenesis. 2009;30(7):1170–1180. [PubMed] 
169. Yin M, Wei S, Wei Q. Vitamin D receptor genetic  polymorphisms and prostate cancer risk: a meta-analysis of 36 published studies.  International Journal of Clinical and  Experimental Medicine. 2009;2(2):159–175. [PMC free  article] [PubMed] 
170. Holt SK, Kwon EM, Peters U, Ostrander EA, Stanford JL.  Vitamin D pathway gene variants and prostate cancer risk. Cancer Epidemiology Biomarkers and Prevention. 2009;18(6):1929–1933.
171. Bai Y, Yu Y, Yu B, et al. Association of vitamin D  receptor polymorphisms with the risk of prostate cancer in the Han population of  Southern China. BMC Medical Genetics. 2009;10, article  125
172. Risio M, Venesio T, Kolomoets E, et al. Genetic  polymorphisms of CYP17A1, vitamin D receptor and androgen receptor in Italian  heredo-familial and sporadic prostate cancers. Cancer  Epidemiology. In press.
 
         				
						kanker, vitamine D
						
						
                Gerelateerde artikelen
							
																	
- Hoge dosis vitamine D aanvullend op standaard chemo bij patienten met onbehandelde uitgezaaide darmkanker geeft klein voordeel in vergelijking met aanvullend normale dosis vitamine D copy 1
- Vitamine D - calcifediol is belangrijk voor onze gezondheid en immuunsysteem blijkt uit nieuwe studiepublicaties.
- Vitamine D-suppletie met of zonder omega 3-vetzuren, verminderde op 5 jaar auto-immuunziekten met 22 procent, terwijl omega 3-vetzuursuppletie met of zonder vitamine D het aantal auto-immuunziekten met 15 procent verminderde copy 1
- Vitamine D: Kostenpost of kans voor preventie? Dr. ir. R. Graaff schrijft het Zorginstituut een brief over het besluit Vitamine D niet meer te vergoeden.
- Vitamine D-suppletie reguleert postoperatieve bloedwaarden van PD-L1 bij patiënten met spijsverteringskanker en verbetert sterk de overall overleving van patienten met de hoogste PD-L1 waarden
- Hoge dosis vitamine D toediening zorgt voor minder sterfte in ziekenhuis bij ernstig zieke mensen en 15 procent verschil op overljidenscijfers na 6 maanden
- Hoge vitamine D waarden - 25-hydroxyvitamin D - geven veel grotere kans op overleving (35 to 50 procent) en ziektevrije tijd voor kankerpatienten met vele vormen van kanker.
- Vitamine D tekort bij ouderen lijkt een rol te spelen in het ontstaan van Alzheimer
- Zonlicht - (vitamine D) beschermt tegen vele soorten kanker (25% tot 40%) waaronder lymfklierkanker (non-Hodgkin) en zelfs niet melanome huidkankers.
- Vitamine D tekort bij kinderen met overgewicht en obesitas schrikbarend hoog in Amerika, vooral bij latino en zwarte kinderen
- Vitamine D3 plus calcium aanvullend op aromatase remmers zoals femara - letrozole bij borstkanker (stadium I, II en III) vermindert significant botafbraak, gewrichtspijnen en vermoeidheid
- Vitamine D en zonlicht: het overleven van kanker is afhankelijk van in welk seizoen de diagnose plaats heeft en vooral van zonlicht, blijkt uit zeer grote studie onder 1 miljoen kankerpatienten. De aanmaak van vitamine D. heeft daar veel mee te maken.
- Vitamine D als voedingssupplement en en uit voeding binnengekregen blijkt het risico op het ontwikkelen van borstkanker te verkleinen, aldus twee studies onder grote aantallen vrouwen. Artikel geplaatst 1 mei 2010
- Vitamine D tekort lijkt ook autisme bij kinderen en jongeren te veroorzaken. Veel of weinig zonlicht en speelplaatsen geven verschil van 50 procent kans op autisme
- Vitamine D en de rol ervan in preventie van kanker en voorkomen van recidief van kanker. Een overzicht van studies van de laatste jaren
- Vitamine D maar ook het seizoen van diagnose hebben grote invloed op bepaalde vormen van kanker, prostaatkanker - borstkanker . en ziekteverloop
- Vitamine D.:  een permanent te laag gehalte van vitamine D zou de kans op overlijden met verschillende oorzaken met  26 procent vergroten aldus langjarige prospectieve studie onder 13,.000 gezonde mensen.
- Vitamine D (uit zonlicht, vis of tabletje) versterkt botdichtheid (BMD) en verbetert daarmee beduidend de werking van bisfosfonaten bij postmenopausale vrouwen en vitamine D. versterkt botdichtheid bij meisjes en jonge vrouwen,
- Artikelen met Vitamine-D - Calcifediol in de hoofdrol: overzicht van artikelen en studies
 
Plaats een reactie ...
Reageer op "Vitamine D maar ook het seizoen van diagnose hebben grote invloed op bepaalde vormen van kanker, prostaatkanker - borstkanker . en ziekteverloop"