4 december 2024: zie ook deze artikelen: https://kanker-actueel.nl/radium-223-samen-met-abiraterone-of-enzalutamine-geeft-langere-overall-overleving-dan-alleen-radium-223-of-alleen-andere-behandelingen-bij-uitgezaaide-vergevorderde-prostaatkanker.html

4 december 2024. Bron: 2024 Feb;51(3):805-819

Uit de eerste resultaten van een gecombineerde fase I/II studie bij zwaar voorbehandelde patiënten met gevorderde uitgezaaide hormoongevoelige borstkanker waarvoor verder geen behandelingsopties meer voorhanden waren geeft een behandeling met Lu-DOTAGA.FAPi dimer therapie uitstekende en hoopvolle resultaten. Zonder ernstige bijwerkingen van graad 3 of graad 4. Aldus het abstract van de studie.

Uit het abstract vertaald:

Van de totaal 16 deelnemende patiënten bereikte volgens de Visual Analog Scale-responscriteria:
  • 26,3% van de deelnemende patiënten een volledige respons, 15,7% had een gedeeltelijke respons, 42% vertoonde minimale respons, 11% had stabiele ziekte en 5% had geen respons.
  • Het klinische ziektecontrole percentage was veelbelovend, waarbij 95% van de patiënten een ziektecontrole bereikte. Het klinische objectieve responspercentage was 84%.
  • De mediane follow-upperiode was 14 maanden. Op het moment van analyse was de mediane algehele overleving 12 maanden en de mediane progressievrije overleving was 8,5 maanden.
  • Opvallend is dat er tijdens het onderzoek geen ernstige hematologische, nier- of levertoxiciteit, elektrolytstoornissen of bijwerkingen van graad 3 of 4 werden waargenomen.
Juli 2024 werd een studie met Radiomoleculaire theranostica met fibroblast-activeringsproteïneremmers en peptiden gepubliceerd met ook uitstekende hoopvolle resultaten. Zie abstract verderop in dit artikel.

Lu-DOTAGA.FAPi dimer therapie blijkt ook veilig en effectief te zijn bij gevorderde borstkankerpatiënten in een wat eerder stadium van hun ziekte en bij patiënten met uitgezaaide medullaire schildklierkanker.

Maar ook bij andere vormen van hormoon gerelateerde vormen van kanker laat een google search  via zoekwoord Lu-DOTAGA.FAPi dimer therapie zien. 

Hier achtereenvolgens een paar abstracten te beginnen met eerst genoemde studie met de 16 borstkankerpatiënten:





Lu-DOTAGA.FAPi dimer treatment demonstrated promising efficacy in patients with advanced breast cancer, as indicated by high disease control rates, favorable response outcomes, and acceptable safety profile.

Abstract

Purpose: The upregulation of fibroblast activation protein (FAP) expression has been observed in various cancers, including metastatic breast carcinoma, prompting research into small molecule inhibitors for both diagnostic and therapeutic purposes. While the diagnostic value of PET/CT imaging using 68 Ga- or 18F-labelled FAPi-monomers in breast cancer diagnosis is well-established, there is a significant need for therapeutic analogs. This retrospective study aimed to assess the safety and effectiveness of [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy in patients with advanced-stage breast cancer who had previously undergone [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans to confirm the expression of FAP.

Materials and methods: Between November 2020 and March 2023, a compassionate treatment approach was utilized to administer [177Lu]Lu-DOTAGA.FAPi dimer radionuclide therapy to heavily pretreated patients with advanced breast cancer. Nineteen patients (18 females, 1 male) with metastatic breast cancer participated in the study, with an average age of 44.6 ± 10.7 years. The therapy was administered at intervals of 8 to 12 weeks, and the median follow-up duration was 14 months. The primary objective of the study was to assess molecular response using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans, with response evaluation based on the PERCIST criteria. Secondary endpoints included overall survival (OS), progression-free survival (PFS), clinical response assessment, and safety evaluation using CTCAE v5.0 guidelines.

Results: A total of 65 cycles were administered, with a mean cumulative activity of 19 ± 5.7 GBq (510 ± 154 mCi) ranging from 11 to 33.3 GBq (300 to 900 mCi) of [177Lu]Lu-DOTAGA.FAPi dimer. The number of cycles ranged from 2 to 6, with a median of 3 cycles. The treatment protocol consisted of different numbers of cycles administered to the patients: specifically, two cycles were given to five patients, three cycles to nine patients, four cycles to one patient, and six cycles to four patients. Most patients had invasive/infiltrative ductal carcinoma (94.7%), while a small percentage had invasive lobular carcinoma (5.3%). All patients had bone metastases, and five of them also had liver involvement, while seven had brain metastases. Response assessment using [68 Ga]Ga-DOTA.SA.FAPi PET/CT scans showed that 25% of the 16 patients evaluated had partial remission, while 37.5% exhibited disease progression. According to the VAS response criteria, 26.3% achieved complete response, 15.7% had partial response, 42% showed minimal response, 11% had stable disease, and 5% had no response. The clinical disease control rate was promising, with 95% of patients achieving disease control. The clinical objective response rate was 84%. The median follow-up period was 14 months. At the time of analysis, the median overall survival was 12 months, and the median progression-free survival was 8.5 months. Notably, no severe hematological, renal, or hepatic toxicities, electrolyte imbalances, or adverse events of grade 3 or 4 were observed during the study.

Conclusion: The findings suggest that [177Lu]Lu-DOTAGA.FAPi dimer therapy is well-tolerated, safe, and effective for treating end-stage metastatic breast cancer patients. [177Lu]Lu-DOTAGA.FAPi dimer treatment demonstrated promising efficacy in patients with advanced breast cancer, as indicated by high disease control rates, favorable response outcomes, and acceptable safety profile. Further research and longer follow-up are warranted to assess long-term outcomes and validate these findings.

Keywords: Fibroblast activation protein inhibitor; Metastatic breast cancer; Lu-DOTAGA.FAPi dimer therapy.

PubMed Disclaimer

Similar articles

Cited by

This review aims to showcase the promising outcomes and challenges in integrating FAP-targeted approaches into cancer management.

Radiomolecular Theranostics With Fibroblast-Activation-Protein Inhibitors and Peptides

https://doi.org/10.1053/j.semnuclmed.2024.05.010Get rights and content
The advancement of theranostics, which combines therapeutic and diagnostic capabilities in oncology, has significantly impacted cancer management. This review explores fibroblast activation protein (FAP) expression in the tumor microenvironment (TME) and its association with various malignancies, highlighting its potential as a theranostic marker for PET/CT imaging using FAP-targeted tracers and for FAP-targeted radiopharmaceutical therapy. We examine the development and clinical applications of FAP inhibitors (FAPIs) and peptides, providing insights into their diagnostic accuracy, initial therapeutic efficacy, and clinical impact across diverse cancer types, as well as the synthesis of novel FAP-targeted ligands. This review aims to showcase the promising outcomes and challenges in integrating FAP-targeted approaches into cancer management.

Referentielijst

    1. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123 . - PubMed PMC
    1. Ravikanth M, Soujanya P, Manjunath K, Saraswathi TR, Ramachandran CR. Heterogenecity of fibroblasts. J Oral Maxillofac Pathol. 2011;15:247–50. https://doi.org/10.4103/0973-029X.84516 . - PubMed PMC
    1. Rønnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for Myofibroblast Generation in Breast Neoplasia. Lab Investig. 1993;68:696–707. - PubMed
    1. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv Wound Care. 2013;2:215–24.
    1. Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers (Basel). 2021;13:2053. https://doi.org/10.3390/cancers13092053 . - PubMed
    1. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel). 2015;7:2443–58. https://doi.org/10.3390/cancers7040902 . - PubMed
    1. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1:482–97. - PubMed PMC
    1. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991;45:319–26. https://doi.org/10.1002/jcb.240450403 . - PubMed
    1. Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N, et al. Feedback activation of basic fibroblast growth factor signaling via the Wnt/β-catenin pathway in skin fibroblasts. Front Pharmacol. 2017;8:32. https://doi.org/10.3389/fphar.2017.00032 . - PubMed PMC
    1. Liu S, Xu S, Blumbach K, Eastwood M, Denton CP, Eckes B, Krieg T, Abraham DJ, Leask A. Expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. J Cell Sci. 2010;123:3674–82. https://doi.org/10.1242/jcs.070672 . - PubMed
    1. Foster DS, Jones RE, Ransom RC, Longaker MT, Norton JA. The evolving relationship of wound healing and tumor stroma. JCI Insight. 2018;3. https://doi.org/10.1172/jci.insight.99911 .
    1. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6. https://doi.org/10.4161/cbt.5.12.3354 . - PubMed
    1. McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol. 2007;39:666–71. https://doi.org/10.1016/j.biocel.2006.11.005 . - PubMed
    1. Dvorak HF. Tumors: wounds that do not heal. N Engl J Med. 1986;315:1650–9. https://doi.org/10.1056/NEJM198612253152606 . - PubMed
    1. Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics - Clin Appl. 2014;8:454–63. https://doi.org/10.1002/prca.201300095 . - PubMed
    1. O’Brien P, O’Connor BF. Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta - Proteins Proteomics. 2008;1784:1130–45. https://doi.org/10.1016/j.bbapap.2008.01.006 .
    1. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87:7235–9. https://doi.org/10.1073/pnas.87.18.7235 . - PubMed PMC
    1. Puré E. The road to integrative cancer therapies: emergence of a tumor-associated fibroblast protease as a potential therapeutic target in cancer. Expert Opin Ther Targets. 2009;13:967–73. https://doi.org/10.1517/14728220903103841 . - PubMed
    1. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A. 1994;91:5657–61. https://doi.org/10.1073/pnas.91.12.5657 . - PubMed PMC
    1. Jansen K, Heirbaut L, Verkerk R, Cheng JD, Joossens J, Cos P, Maes L, Lambeir AM, De Meester I, Augustyns K, Van der Veken P. Extended structure-activity relationship and pharmacokinetic investigation of (4-Quinolinoyl)Glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J Med Chem. 2014;57:3053–74. https://doi.org/10.1021/jm500031w . - PubMed
    1. Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. New frontiers in cancer imaging and therapy based on radiolabeled fibroblast activation protein inhibitors: a rational review and current progress. Pharmaceuticals. 2021;14:1023. https://doi.org/10.3390/ph14101023 . - PubMed PMC
    1. Yu H, Yang J, Li Y, Jiao S. The expression of fibroblast activation protein-alpha in primary breast cancer is associated with poor prognosis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31:370–4. - PubMed
    1. Hua X, Yu L, Huang X, Liao Z, Xian Q. Expression and role of fibroblast activation protein-alpha in microinvasive breast carcinoma. Diagn Pathol. 2011;6:111. https://doi.org/10.1186/1746-1596-6-111 . - PubMed PMC
    1. Goodman JD, Rozypal TL, Kelly T. Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin Exp Metastasis. 2003;20:459–70. https://doi.org/10.1023/a:1025493605850 . - PubMed
    1. Tchou J, Zhang PJ, Bi Y, Satija C, Marjumdar R, Stephen TL, Lo A, Chen H, Mies C, June CH, Conejo-Garcia J, Puré E. Fibroblast activation protein expression by stromal cells and tumor-associated macrophages in human breast cancer. Hum Pathol. 2013;44:2549–57. https://doi.org/10.1016/j.humpath.2013.06.016 . - PubMed
    1. Huang Y, Simms AE, Mazur A, Wang S, León NR, Jones B, Aziz N, Kelly T. Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis. 2011;28:567–79. https://doi.org/10.1007/s10585-011-9392-x . - PubMed
    1. Xin L, Gao J, Zheng Z, Chen Y, Lv S, Zhao Z, Yu C, Yang X, Zhang R. Fibroblast activation protein-a as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front Oncol. 2021;11: 648187. https://doi.org/10.3389/fonc.2021.648187 . - PubMed PMC
    1. Manafi-Farid R, Masoumi F, Divband G, Saidi B, Ataeinia B, Hertel F, Schweighofer-Zwink G, Morgenroth A, Beheshti M. Targeted palliative radionuclide therapy for metastatic bone pain. J Clin Med. 2020;9:2622. https://doi.org/10.3390/jcm9082622 . - PubMed PMC
    1. Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA, Kaplan İ, Erdur E, Yıldırım MS, Çakabay B. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med. 2021;35:744–52. https://doi.org/10.1007/s12149-021-01616-5 . - PubMed
    1. Elboga U, Sahin E, Kus T, Cayirli YB, Aktas G, Uzun E, Cinkir HY, Teker F, Sever ON, Aytekin A, Yilmaz L, Aytekin A, Cimen U, Mumcu V, Kilbas B, Çelen YZ. Superiority of 68Ga-FAPI PET/CT scan in detecting additional lesions compared to 18FDG PET/CT scan in breast cancer. Ann Nucl Med. 2021;35(12):1321–31. https://doi.org/10.1007/s12149-021-01672-x . - PubMed
    1. Ballal S, Yadav MP, Roesch F, Wakade N, Raju S, Sheokand P, Mishra P, Moon ES, Tripathi M, Martin M, Bal C. Head-to-head comparison between [68Ga]Ga-DOTA.SA.FAPi and [18F]F-FDG PET/CT imaging in patients with breast cancer. Pharmaceuticals. 2023;16:521. https://doi.org/10.3390/ph16040521 . - PubMed PMC
    1. Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S, Bal C. First-in-human results on the biodistribution, pharmacokinetics, and dosimetry of [177Lu]Lu-DOTA.SA.FAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2. Pharmaceuticals (Basel). 2021;14(12):1212. https://doi.org/10.3390/ph14121212 . - PubMed
    1. Ballal S, Yadav MP, Moon ES, Roesch F, Kumari S, Agarwal S, Tripathi M, Sahoo RK, Mangu BS, Tupalli A, Bal C. Novel fibroblast activation protein inhibitor-based targeted theranostics for radioiodine-refractory differentiated thyroid cancer patients: a pilot study. Thyroid. 2022;32(1):65–77. https://doi.org/10.1089/thy.2021.0412 . - PubMed
    1. Ballal S, Yadav MP, Moon ES, Rösch F, ArunRaj ST, Agarwal S, Tripathi M, Sahoo RK, Bal C. First-in-Human Experience With 177Lu-DOTAGA.(SA.FAPi)2 Therapy in an uncommon case of aggressive medullary thyroid carcinoma clinically mimicking as anaplastic thyroid cancer. Clin Nucl Med. 2022;47:e444–5. https://doi.org/10.1097/RLU.0000000000004164 . - PubMed
    1. Ballal S, Yadav MP, Kramer V, Moon ES, Roesch F, Tripathi M, Mallick S, ArunRaj ST, Bal C. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging. 2021;48:942–4. https://doi.org/10.1007/s00259-020-04990-w . - PubMed
    1. Moon ES, Ballal S, Yadav MP, Bal C, Van Rymenant Y, Stephan S, Bracke A, Van der Veken P, De Meester I, Roesch F. Fibroblast activation protein (FAP) targeting homodimeric FAP inhibitor radiotheranostics: a step to improve tumor uptake and retention time. Am J Nucl Med Mol Imaging. 2021;11:476–91. - PubMed PMC
    1. Martin M, Ballal S, Yadav MP, Bal C, Van Rymenant Y, De Loose J, Verhulst E, De Meester I, Van Der Veken P, Roesch F. Novel generation of fap inhibitor-based homodimers for improved application in radiotheranostics. Cancers. 2023;15:1889. https://doi.org/10.3390/cancers15061889 . - PubMed PMC
    1. Moon ES, Elvas F, Vliegen G, et al. Targeting fibroblast activation protein (FAP): next generation PET radiotracers using squaramide coupled bifunctional DOTA and DATA5m chelators. EJNMMI Radiopharm Chem. 2020;5:19. https://doi.org/10.1186/s41181-020-00102-z . - PubMed PMC
    1. Common Terminology Criteria for Adverse Events (CTCAE) v5.0 Publish Date: November 27, 2017.
    1. O JH, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 10. Radiology. 2016;280:576–84. https://doi.org/10.1148/radiol.2016142043 . - PubMed
    1. McCaffery M, Pasero C. Pain: clinical manual. 2nd ed. St Louis: Mosby; 1999.
    1. Kolesnikov-Gauthier H, Lemoine N, Tresch-Bruneel E, et al. Efficacy and safety of 153Sm-EDTMP as treatment of painful bone metastasis: a large single-center study. Support Care Cancer. 2018;26:751–8. https://doi.org/10.1007/s00520-017-3885-3 . - PubMed
    1. Yadav MP, Ballal S, Meckel M, et al. Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results. EJNMMI Res. 2020;10:130. https://doi.org/10.1186/s13550-020-00709-y . - PubMed PMC
    1. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:3.
    1. Thorek DLJ, Ku AT, Mitsiades N, Veach D, Watson PA, Metha D, et al. Harnessing androgen receptor pathway activation for targeted alpha particle radioimmunotherapy of breast cancer. Clin Cancer Res. 2019;25:881–91. - PubMed
    1. Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, Santos-Cuevas C, Meléndez-Alafort L, Trujillo-Nolasco M, et al. 177Lu-Bombesin-PLGA (paclitaxel): a targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C Mater Biol Appl. 2019;105: 110043. - PubMed
    1. Kasten BB, Oliver PG, Kim H, Fan J, Ferrone S, Zinn KR, Buchsbaum DJ. 212Pb-labeled antibody 225. 28 targeted to chondroitin sulfate proteoglycan 4 for triple-negative breast cancer therapy in mouse models. Int J Mol Sci. 2018;19:925. - PubMed PMC
    1. Costa RP, Tripoli V, Princiotta A, Murabito A, Licari M, Piazza D, Verderame F, Pinto A. Therapeutic effect of 223Ra in the management of breast cancer bone metastases. Clin Ter. 2019;170:e1–3. - PubMed
    1. Juzeniene A, Bernoulli J, Suominen M, Halleen J, Larsen RH. Antitumor activity of novel bone-seeking, α-emitting 224Ra-solution in a breast cancer skeletal metastases model. Anticancer Res. 2018;38:1947–55. - PubMed
    1. Cai Z, Yook S, Lu Y, Bergstrom D, Winnik MA, Pignol JP, Reilly RM. Local radiation treatment of HER2-positive breast cancer using trastuzumab-modified gold nanoparticles labeled with 177Lu. Pharm Res. 2017;34:579–90. - PubMed
    1. Cai Z, Chattopadhyay N, Yang K, Kwon YL, Yook S, Pignol JP, Reilly RM. 111In-labeled trastuzumab-modified gold nanoparticles are cytotoxic in vitro to HER2-positive breast cancer cells and arrest tumor growth in vivo in athymic mice after intratumoral injection. Nucl Med Biol. 2016;43:818–26. - PubMed
    1. D’Huyvetter M, Vos J, Caveliers V, Vaneycken I, Heemskerk J, Duhoux FP, Fontaine C, Vanhoeij M, Windhorst AD, Aa FV, Hendrikse NH, Eersels JLE, Everaert H, Gykiere P, Devoogdt N, Raes G, Lahoutte T, Keyaerts M. Phase I trial of 131I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J Nucl Med. 2021;62:1097–105. https://doi.org/10.2967/jnumed.120.255679 . - PubMed
    1. Feng Y, Meshaw R, McDougald D, Zhou Z, Zhao XG, Jannetti SA, Reiman RE, Pippen E, Marjoram R, Schaal JL, Vaidyanathan G, Zalutsky MR. Evaluation of an 131I-labeled HER2-specific single domain antibody fragment for the radiopharmaceutical therapy of HER2-expressing cancers. Sci Rep. 2022;12:3020. https://doi.org/10.1038/s41598-022-07006-9 . - PubMed PMC
    1. Zhao L, Gong J, Qi Q, Liu C, Su H, Xing Y, Zhao J. 131I-labeled anti-HER2 nanobody for targeted radionuclide therapy of HER2-positive breast cancer. Int J Nanomed. 2023;18:1915–25. https://doi.org/10.2147/IJN.S399322 .
    1. Rathke H, Fuxius S, Giesel FL, Lindner T, Debus J, Haberkorn U, Kratochwil C. Two tumors, one target: preliminary experience with 90Y-FAPI therapy in a patient with metastasized breast and colorectal cancer. Clin Nucl Med. 2021;46:842–4. https://doi.org/10.1097/RLU.0000000000003842 . - PubMed
    1. Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, Osterkamp F, Hoehne A, Reineke U, Smerling C, Kulkarni HR. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results. J Nucl Med. 2022;63:415–23. https://doi.org/10.2967/jnumed.120.259192 . - PubMed PMC
    1. Carcano FM, Gaui MD, Branco LP. Third-line chemotherapy in metastatic breast cancer: a retrospective institutional assessment about clinical outcomes. J Clin Oncol. 27(15_suppl). https://doi.org/10.1200/jco.2009.27.15_suppl.e17538 .
    1. Planchat E, Abrial C, Thivat E, Mouret-Reynier MA, Kwiatkowski F, Pomel C, Wang-Lopez Q, Chollet P, Nabholtz JM, Durando X. Late lines of treatment benefit survival in metastatic breast cancer in current practice? Breast. 2011;20:574–8. https://doi.org/10.1016/j.breast.2011.07.010 . - PubMed
    1. Bonotto M, Gerratana L, Poletto E, Driol P, Giangreco M, Russo S, Minisini AM, Andreetta C, Mansutti M, Pisa FE, Fasola G, Puglisi F. Measures of outcome in metastatic breast cancer: insights from a real-world scenario. Oncologist. 2014;19:608–15. - PubMed PMC
    1. Rugo HS, Roche H, Thomas E, Chung HC, Lerzo GL, Vasyutin I, Patel A, Vahdat L. Efficacy and safety of ixabepilone and capecitabine in patients with advanced triple-negative breast cancer: a pooled analysis from two large phase II, randomized clinical trials. Clin Breast Cancer. 2018;18:489–97. - PubMed

Plaats een reactie ...

Reageer op "177Lu-FAP-2286 geeft uitstekende resultaten bij zwaar voorbehandelde patienten met vergevorderde uitgezaaide hormoongevoelige borstkanker waar verder geen behandelingsopties meer voorhanden waren"


Gerelateerde artikelen
 

Gerelateerde artikelen

Studiepublicaties van niet-toxische >> ESMO 2023: aanbevolen abstracten >> ASCO 2024: aanbevolen abstracten >> 177Lu-FAP-2286 geeft uitstekende >> Algemeen: Borstkanker korte >> Arimidex - anastrozole informatie >> Arimidex: 2 jaar aromataseremmers >> Artemisinin - Armesia: informatie >> Avastin in combinatie met >> Bestraling bij borstkanker: >>