Zie ook in gerelateerde artikelen.

En zie ook onder preventie

7 augustus 2024: Bron: The Lancet

Wanneer de Amerikaanse bevolking 30 procent minder bewerkt vlees en minder rood vlees zou gaan eten dan zou dat binnen een tijdbestek van 10 jaar ook tot 30 procent minder gevallen van diabetes type 2, hart- en vaatziekten, darmkanker en overlijden aan alle oorzaken geven. 
Dat stellen onderzoekers van de universiteit van Edinburgh die aan de hand van de gegevens van 8665 volwassenen een simulatieonderzoek deden naar het eten van bewerkt vlees en onbewerkt rood vlees in hun voedingspatroon en die werden vergeleken en gesimuleerd wat dat voor effect zou hebben op de totale bevolking van 240 miljoen volwassen Amerikanen gerekend over tien jaar follow-up.

Uit het studierapport:

  • De onderzoekers schatten dat een vermindering van 30 procent in de inname van bewerkt vlees alleen al zou kunnen resulteren in 352.900; 92.500; en 53.300 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 16.700 minder sterfgevallen door alle oorzaken gedurende een periode van tien jaar.
  • Alleen al een vermindering van de inname van onbewerkt rood vlees met 30 procent zou kunnen leiden tot 732.600; 291.500; en 32.200 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 46.100 minder sterfgevallen door alle oorzaken.
  • Een vermindering van 30 procent in de inname van zowel bewerkt vlees als onbewerkt rood vlees zou kunnen resulteren in 1.073.400; 382.400; en 84.400 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 62.200 minder sterfgevallen door alle oorzaken gedurende een periode van tien jaar. 
Minder vlees in het dagelijkse voedingspatroon zou dus aanzienlijk kunnen bijdragen aan een gezondere bevolking. Maar dat is al vele malen aangetoond, zie ook in gerelateerde artikelen. 

En in deze grafiek uit het studieverslag gekopieerd. En in de referentielijst.

Table 1Input parameters
JustificationReference
Baseline risk of type 2 diabetes Provided age-specific risk prediction with three US cohorts: Coronary Artery Risk Development in Young Adults (participants aged 18–40 years), Atherosclerosis Risk in Communities (participants aged 45–64 years), and the Cardiovascular Health Study (participants aged 65 years or older). We used the simple model as all required variables were available in NHANES. AUROCs ranged from 0·72 (95% CI 0·69–0·76) for participants aged 25–30 years to 0·79 (0·76–0·83) for participants aged 35–40 years. Alva et al
Baseline risk of cardiovascular disease Provided sex-specific risk prediction with two US cohorts: the Framingham Heart Study and the Framingham Offspring Study. C statistic, analogous to AUROC, ranged from 0·763 (95% CI 0·746–0·780) in men to 0·793 (0·772–0·814) in women. All required variables were available in NHANES. D'Agostino et al
Baseline risk of colorectal cancer Provided sex-specific risk prediction with one US cohort: the Multi-Ethnic Cohort Study. C statistic was 0·681 (95% CI 0·669–0·694) in men and 0·679 (0·665–0·692) in women. All required variables, except family history of colorectal cancer, were available in NHANES. Wells et al
Association between processed meat and unprocessed red meat intake and type 2 diabetes Meta-analysis that provided dose–response curves separately for processed meat and unprocessed red meat from 25 cohort studies; 17 were included in the estimate for processed meat and unprocessed red meat. Each additional 100 g per day of red meat was associated with a relative risk of 1·31 (95% CI 1·19–1·45) of type 2 diabetes. Each additional 50 g per day of processed meat was associated with a relative risk of 1·46 (1·26–1·69) of type 2 diabetes. These estimates were similar to those from Gu et al,  who combined three US cohorts (ie, Nurses' Health Study, Nurses' Health Study II, and Health Professionals Follow-up Study); every one serving per day increment in red meat was associated with a hazard ratio of 1·28 (1·24–1·31) increased risk of type 2 diabetes. Every one serving per day increment of processed red meat was associated with a hazard ratio of 1·46 (1·40–1·53) increased risk of type 2 diabetes. The estimates were also similar to a meta-analysis by Shi et al  of 18 effect estimates from 16 studies, which found that each 50 g per day increment of processed red meat was associated with a hazard ratio of 1·44 (1·40–1·53) increased risk of type 2 diabetes. Yang et al;  Gu et al;  Shi et al
Association between processed meat and unprocessed red meat intake and cardiovascular disease Combined estimate from six US cohorts: Atherosclerosis Risk in Communities, Coronary Artery Risk Development in Young Adults, Cardiovascular Health Study, Framingham Heart Study, Framingham Offspring Study, and Multi-Ethnic Study of Atherosclerosis. For processed meat intake, hazard ratio for increased risk of cardiovascular disease for two vs zero servings per week was 1·07 (95% CI 1·04–1·11). For unprocessed red meat, hazard ratio for increased risk of cardiovascular disease for two vs zero servings per week was 1·03 (1·01–1·06). One serving was assumed to be equivalent to 30 g of processed meat in our micro-Simulation of the Health Impacts of Food Transformations. These estimates were similar to the meta-analysis by Shi et al  of 17 effect estimates from 14 studies, which found that each 50 g per day increment of processed red meat was associated with a hazard ratio of 1·26 (1·18–1·35) increased risk of cardiovascular disease. Zhong et al;  Shi et al
Association between processed meat and unprocessed red meat intake and colorectal cancer Meta-analysis that provided dose–response relative risk estimates for processed meat and red meat. Pooled relative risk for 50 g per day of processed meat intake was 1·22 (95% CI 1·12–1·33) on the basis of eight cohort studies, whereas pooled relative risk for 100 g per day of red meat was 1·16 (1·05–1·29) on the basis of nine cohort studies. These findings were consistent with Bouvard et al,  who found that each 50 g per day increment of processed meat increased the risk of colorectal cancer by a relative risk of 1·18 (1·10–1·28). Zhao et al;  International Agency for Research on Cancer
Mortality among people with type 2 diabetes Registry-based study of the Swedish National Diabetes Register that provided age-specific hazard ratios of all-cause mortality among people with type 2 diabetes. As this study was based outside the USA, we used hazard ratios from the simple model that were unadjusted for country of origin and education. Tancredi et al
Mortality among people with cardiovascular disease Age-adjusted and sex-adjusted all-cause mortality hazard ratios for people with a history of stroke and myocardial infarction from the Emerging Risk Factors collaboration. Mortality hazard ratio for people with a history of stroke was 2·1 (95% CI 2·0–2·2) and for people with a history of myocardial infarction was 2·0 (1·9–2·2). We used a sampling distribution based on the mean of these hazard ratios. Di Angelantonio et al
Mortality among people with colorectal cancer Fixed age-specific and sex-specific mortality probabilities based on colorectal cancer mortality statistics from the USA in 2017 and estimates of the prevalence of colorectal cancer in corresponding age and sex groups from the 2017–18 NHANES. Siegel et al
AUROC=area under the receiver-operating curve. NHANES=US National Health and Nutrition Examination Survey.

En zie ook deze grafiek uitgesplitst naar de vier genoemde ziektebeelden:

Figure thumbnail gr3


Figure 3Absolute percentages of prevented occurrences of each disease by annual household income, age, sex, and ethnicity after a 10-year 30% reduction in processed meat intake

Het volledige studierapport is gratis in te zien. Hier het abstract van de studie gepubliceerd in The Lancet Planetary Earth:

Estimated effects of reductions in processed meat consumption and unprocessed red meat consumption on occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the USA: a microsimulation study

Open AccessPublished:July, 2024DOI:https://doi.org/10.1016/S2542-5196(24)00118-9

Summary

Background

High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population.

Methods

We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015–16 and one conducted during 2017–18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis.

Findings

The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500–359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600–99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400–55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300–17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700–740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900–298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500–32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300–47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100–1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100–391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100–86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600–64 400) fewer all-cause deaths during the 10-year period.

Interpretation

Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption.

Funding

The Wellcome Trust.

Contributors

LST and LMJ acquired funding. JK and LMJ accessed and verified the underlying data and wrote the original draft of the paper. JK developed the simulation model and cleaned the underlying data, with inputs from PA and LMJ. PA and LST reviewed and edited the paper. All authors conceptualised the study, had full access to all the data in the study, and had final responsibility for the decision to submit for publication.

Data sharing

All code to run the micro-Simulation of the Health Impacts of Food Transformations is available at https://github.com/jsfken/mSHIFT. De-identified US National Health and Nutrition Examination Survey data are available at https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.

Declaration of interests

We declare no competing interests.

Acknowledgments

This study was funded by the Wellcome Trust (grant 216042/Z/19/Z). We thank Victor Zhong for useful discussions and providing relevant data and Brian Wells for providing details of the colorectal cancer risk equations. We also thank Andrew Freedman, Jennifer Marratt, Thomas Imperiale, Jane Driver, Michael Goodman, Mohammed Ali, Edward Gregg, Sarah Frank, Anna Grummon, Benjamin Allaire, and Anthony Wood for useful discussions.

Supplementary Material

References

  1. 1.
    • US National Center for Health Statistics
    Leading causes of death.
    https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
    Date: 2022
    Date accessed: June 12, 2024
  2. 2.
    • Micha R 
    • Wallace SK 
    • Mozaffarian D
    Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis.
    Circulation. 2010; 1212271-2283
  3. 3.
    • Zhong VW 
    • Van Horn L 
    • Greenland P 
    • et al.
    Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality.
    JAMA Intern Med. 2020; 180503-512
  4. 4.
    • Bechthold A 
    • Boeing H 
    • Schwedhelm C 
    • et al.
    Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose—response meta-analysis of prospective studies.
    Crit Rev Food Sci Nutr. 2019; 591071-1090
  5. 5.
    • Shi W 
    • Huang X 
    • Schooling CM 
    • Zhao JV
    Red meat consumption, cardiovascular diseases, and diabetes: a systematic review and meta-analysis.
    Eur Heart J. 2023; 442626-2635
  6. 6.
    • Pan A 
    • Sun Q 
    • Bernstein AM 
    • et al.
    Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.
    Am J Clin Nutr. 2011; 941088-1096
  7. 7.
    • Yang X 
    • Li Y 
    • Wang C 
    • et al.
    Meat and fish intake and type 2 diabetes: dose—response meta-analysis of prospective cohort studies.
    Diabetes Metab. 2020; 46345-352
  8. 8.
    • Gu X 
    • Drouin-Chartier J-P 
    • Sacks FM 
    • Hu FB 
    • Rosner B 
    • Willett WC
    Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males.
    Am J Clin Nutr. 2023; 1181153-1163
  9. 9.
    • International Agency for Research on Cancer
    IARC monographs on the evaluation of carcinogenic risks to humans volume 114—red meat and processed meat.
  10. 10.
    • Zhao Z 
    • Feng Q 
    • Yin Z 
    • et al.
    Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis.
    Oncotarget. 2017; 883306-83314
  11. 11.
    • Fang X 
    • An P 
    • Wang H 
    • et al.
    Dietary intake of heme iron and risk of cardiovascular disease: a dose—response meta-analysis of prospective cohort studies.
    Nutr Metab Cardiovasc Dis. 2015; 2524-35
  12. 12.
    • Feskens EJ 
    • Sluik D 
    • van Woudenbergh GJ
    Meat consumption, diabetes, and its complications.
    Curr Diab Rep. 2013; 13298-306
  13. 13.
    • Crowe W 
    • Elliott CT 
    • Green BD
    A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer.
    Nutrients. 2019; 112673
  14. 14.
    • Bao W 
    • Rong Y 
    • Rong S 
    • Liu L
    Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis.
    BMC Med. 2012; 10119
  15. 15.
    • Martínez Góngora V 
    • Matthes KL 
    • Castaño PR 
    • Linseisen J 
    • Rohrmann S
    Dietary heterocyclic amine intake and colorectal adenoma risk: a systematic review and meta-analysis.
    Cancer Epidemiol Biomarkers Prev. 2019; 2899-109
  16. 16.
    • Zeng L 
    • Ruan M 
    • Liu J 
    • et al.
    Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999–2016.
    J Acad Nutr Diet. 2019; 1191085-1098
  17. 17.
    • O'Connor LE 
    • Paddon-Jones D 
    • Wright AJ 
    • Campbell WW
    A Mediterranean-style eating pattern with lean, unprocessed red meat has cardiometabolic benefits for adults who are overweight or obese in a randomized, crossover, controlled feeding trial.
    Am J Clin Nutr. 2018; 10833-40
  18. 18.
    • Maki KC 
    • Wilcox ML 
    • Dicklin MR 
    • et al.
    Substituting lean beef for carbohydrate in a healthy dietary pattern does not adversely affect the cardiometabolic risk factor profile in men and women at risk for type 2 diabetes.
    J Nutr. 2020; 1501824-1833
  19. 19.
    • Guasch-Ferré M 
    • Satija A 
    • Blondin SA 
    • et al.
    Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors.
    Circulation. 2019; 1391828-1845
  20. 20.
    • Lescinsky H 
    • Afshin A 
    • Ashbaugh C 
    • et al.
    Health effects associated with consumption of unprocessed red meat: a burden of proof study.
    Nat Med. 2022; 282075-2082
  21. 21.
    • Zeraatkar D 
    • Johnston BC 
    • Bartoszko J 
    • et al.
    Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes: a systematic review of randomized trials.
    Ann Intern Med. 2019; 171721-731
  22. 22.
    • Assaf AR 
    • Beresford SAA 
    • Risica PM 
    • et al.
    Low-fat dietary pattern intervention and health-related quality of life: the Women's Health Initiative randomized controlled dietary modification trial.
    J Acad Nutr Diet. 2016; 116259-271
  23. 23.
    • de Lorgeril M 
    • Salen P 
    • Martin JL 
    • Monjaud I 
    • Delaye J 
    • Mamelle N
    Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study.
    Circulation. 1999; 99779-785
  24. 24.
    • Dyer O
    Controversial red meat study adds correction over undisclosed industry funding.
    BMJ. 2020; 368m111
  25. 25.
    • Mertens E 
    • Genbrugge E 
    • Ocira J 
    • Peñalvo JL
    Microsimulation modeling in food policy: a scoping review of methodological aspects.
    Adv Nutr. 2022; 13621-632
  26. 26.
    • Broeks MJ 
    • Biesbroek S 
    • Over EAB 
    • et al.
    A social cost–benefit analysis of meat taxation and a fruit and vegetables subsidy for a healthy and sustainable food consumption in the Netherlands.
    BMC Public Health. 2020; 20643
  27. 27.
    • Pitt A 
    • Bendavid E
    Effect of meat price on race and gender disparities in obesity, mortality and quality of life in the US: a model-based analysis.
    PLoS One. 2017; 12e0168710
  28. 28.
    • Kim DD 
    • Wilde PE 
    • Michaud DS 
    • et al.
    Cost effectiveness of nutrition policies on processed meat: implications for cancer burden in the US.
    Am J Prev Med. 2019; 57e143-e152
  29. 29.
    • Emmert-Fees KMF 
    • Karl FM 
    • von Philipsborn P 
    • Rehfuess EA 
    • Laxy M
    Simulation modeling for the economic evaluation of population-based dietary policies: a systematic scoping review.
    Adv Nutr. 2021; 121957-1995
  30. 30.
    • Wilson N 
    • Nghiem N 
    • Eyles H 
    • et al.
    Modeling health gains and cost savings for ten dietary salt reduction targets.
    Nutr J. 2016; 1544
  31. 31.
    • Scarborough P 
    • Allender S 
    • Clarke D 
    • Wickramasinghe K 
    • Rayner M
    Modelling the health impact of environmentally sustainable dietary scenarios in the UK.
    Eur J Clin Nutr. 2012; 66710-715
  32. 32.
    • Zec S 
    • Minto C 
    • Agostoni C 
    • et al.
    Communicating risk regarding food consumption: the case of processed meat.
    Nutrients. 2019; 11400
  33. 33.
    • Hallström E 
    • Gee Q 
    • Scarborough P 
    • Cleveland DA
    A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems.
    Clim Change. 2017; 142199-212
  34. 34.
    • US Centres for Disease Control and Prevention
    NHANES questionnaires, datasets, and related documentation.
    https://wwwn.cdc.gov/nchs/nhanes/default.aspx
    Date accessed: June 11, 2024
  35. 35.
    • Steinfeldt L 
    • Anand J 
    • Murayi T
    Food reporting patterns in the USDA automated multiple-pass method.
    Procedia Food Sci. 2013; 2145-156
  36. 36.
    • US Department of Agriculture
    FPED overview.
  37. 37.
    • D'Agostino Sr, RB 
    • Vasan RS 
    • Pencina MJ 
    • et al.
    General cardiovascular risk profile for use in primary care: the Framingham Heart Study.
    Circulation. 2008; 117743-753
  38. 38.
    • Alva ML 
    • Hoerger TJ 
    • Zhang P 
    • Gregg EW
    Identifying risk for type 2 diabetes in different age cohorts: does one size fit all?.
    BMJ Open Diabetes Res Care. 2017; 5e000447
  39. 39.
    • Wells BJ 
    • Kattan MW 
    • Cooper GS 
    • Jackson L 
    • Koroukian S
    Colorectal cancer predicted risk online (CRC-PRO) calculator using data from the multi-ethnic cohort study.
    J Am Board Fam Med. 2014; 2742-55
  40. 40.
    • Bouvard V 
    • Loomis D 
    • Guyton KZ 
    • et al.
    Carcinogenicity of consumption of red and processed meat.
    Lancet Oncol. 2015; 161599-1600
  41. 41.
    • Tancredi M 
    • Rosengren A 
    • Svensson AM 
    • et al.
    Excess mortality among persons with type 2 diabetes.
    N Engl J Med. 2015; 3731720-1732
  42. 42.
    • Di Angelantonio E 
    • Kaptoge S 
    • Wormser D 
    • et al.
    Association of cardiometabolic multimorbidity with mortality.
    JAMA. 2015; 31452-60
  43. 43.
    • Siegel RL 
    • Miller KD 
    • Fedewa SA 
    • et al.
    Colorectal cancer statistics, 2017.
    CA Cancer J Clin. 2017; 67177-193
  44. 44.
    • Arias E 
    • Xu J
    United States life tables, 2018.
    Natl Vital Stat Rep. 2020; 691-45
  45. 45.
    • Kochanek KD 
    • Murphy SL 
    • Xu J 
    • Arias E
    Deaths: final data for 2017.
    Natl Vital Stat Rep. 2019; 681-77
  46. 46.
    • Taillie LS 
    • Bercholz M 
    • Prestemon CE 
    • et al.
    Impact of taxes and warning labels on red meat purchases among US consumers: a randomized controlled trial.
    PLoS Med. 2023; 20e1004284
  47. 47.
    • Willett W 
    • Rockström J 
    • Loken B 
    • et al.
    Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems.
    Lancet. 2019; 393447-492
  48. 48.
    • Climate Change Committee
    Sixth Carbon Budget.
    https://www.theccc.org.uk/publication/sixth-carbon-budget/
    Date: 2020
    Date accessed: June 12, 2024
  49. 49.
    • Colchero MA 
    • Rivera-Dommarco J 
    • Popkin BM 
    • Ng SW
    In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax.
    Health Aff (Millwood). 2017; 36564-571
  50. 50.
    • WHO
    Red and processed meat in the context of health and the environment: many shades of red and green: information brief.
    https://www.who.int/publications-detail-redirect/9789240074828
    Date: 2023
    Date accessed: June 12, 2024
  51. 51.
    • Mozaffarian D 
    • Liu J 
    • Sy S 
    • et al.
    Cost-effectiveness of financial incentives and disincentives for improving food purchases and health through the US Supplemental Nutrition Assistance Program (SNAP): a microsimulation study.
    PLoS Med. 2018; 15e1002661
  52. 52.
    • Zhao S 
    • Wang L 
    • Hu W 
    • Zheng Y
    Meet the meatless: demand for new generation plant-based meat alternatives.
    Appl Econ Perspect Policy. 2023; 454-21
  53. 53.
    • Crimarco A 
    • Springfield S 
    • Petlura C 
    • et al.
    A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT).
    Am J Clin Nutr. 2020; 1121188-1199
  54. 54.
    • Crimarco A 
    • Landry MJ 
    • Carter MM 
    • Gardner CD
    Assessing the effects of alternative plant-based meats v animal meats on biomarkers of inflammation: a secondary analysis of the SWAP-MEAT randomized crossover trial.
    J Nutr Sci. 2022; 11e82
  55. 55.
    • Jefferds MED 
    • Mei Z 
    • Addo Y 
    • et al.
    Iron deficiency in the United States: limitations in guidelines, data, and monitoring of disparities.
    Am J Public Health. 2022; 112S826-S835
  56. 56.
    • Sun H 
    • Weaver CM
    Decreased iron intake parallels rising iron deficiency anemia and related mortality rates in the US population.
    J Nutr. 2021; 1511947-1955
  57. 57.
    • Leonard UM 
    • Leydon CL 
    • Arranz E 
    • Kiely ME
    Impact of consuming an environmentally protective diet on micronutrients: a systematic literature review.
    Am J Clin Nutr. 2024; 119927-948
  58. 58.
    • Dietary Guidelines for Americans
    Dietary Guidelines for Americans, 2020–2025 and online materials.
  59. 59.
    • Wang L 
    • Cohen JF 
    • Maroney M 
    • et al.
    Evaluation of health and economic effects of United States school meal standards consistent with the 2020-2025 dietary guidelines for Americans.
    Am J Clin Nutr. 2023; 118605-613

Plaats een reactie ...

Reageer op "Minder bewerkt vlees en puur rood vlees eten zou 30 procent minder gevallen van diabetes type 2, hart- en vaatziekten, darmkanker en sterfgevallen door alle oorzaken veroorzaken"


Gerelateerde artikelen
 

Gerelateerde artikelen

Minder bewerkt vlees en puur >> Vlees en bewerkt vlees, hoe >> Moerman revisited: hoogmoed >> Elke dag rood vlees geeft >> WHO plaatst eten van bewerkt >> Rood vlees eten vergroot aanzienlijk >> Meisjes die in hun adolescentietijd >> Rood vlees en bewerkt vlees >> Rood vlees en bewerkt vlees >> Rood vlees wel degelijk risico >>