27 juli 2012: aanvullend op onderstaande informatie over pentostatin - nipent, een middel dat gebruikt wordt bij bepaalde vormen van immuuntherapie en stamceltransplantaties, hebben we het abstract van deze studie toegevoegd:  Pentostatin Plus Cyclophosphamide Safely and Effectively Prevents Immunotoxin Immunogenicity in Murine Hosts

Voor lopende en afgesloten studies met pentostatin ga naar deze pagina van clinical trials.gov

mei 2002:

Pentostatin - Nipent lijkt effectief bij verschillende bloedkankersoorten, waaronder chronisch lymfatische leukemie, hairy cell leukemie en ook een bepaalde niet-agressieve vorm van non-Hodgkin. 

De producent van Nipent, geeft in een zelfgeschreven persbericht een opsomming van een aantal studieresultaten. Er staat nergens bij waar deze studies zijn gepubliceerd en gehouden wat wel een minpunt is voor de geloofwaardigheid, maar toch wil ik u deze informatie niet onthouden. 

Een langjarige follow-up studie zou Nipent als solomiddel bij 180 hairy cell leukemie patiënten een respons hebben gegeven van 98 procent. Respons betekent niet genezen, maar wel goede reactie op de behandeling en resultaten lijken toch indrukwekkend. In een andere studie zijn 13 patiënten met een bepaalde niet-agressieve vorm van non-Hodgkin en chronische lymfatische leukemie behandeld met een mix van Nipent, cyclophosfamide en Rituximab. Tien van de 11 evalueerbare patiënten toonden duidelijke tumorremissie door deze aanpak.

Een fase II studie met 62 patiënten met chronische Lymfatische leukemie werden behandeld met een mix van Nipent en Rituximab. Van de 54 evalueerbare patiënten toonden 33 procent een duidelijk remissie. In een fase I studie werden 23 patiënten met verschillende hemaetologische kwaadaardige aandoeningen behandeld met Nipent voor het voorkomen van het graft-versus-host syndroom ( Afstotingsverschijnselen bij stam- en/of beenmergtransplantatie). van de 20 evalueerbare patiënten toonden 12 er een complete remissie, bij drie gedeeltelijke remissie, bij drie wisselende respons en bij drie toonde de ziekte progressie ondanks de behandeling. Van de 15 patiënten met 'myelodysplastic syndrome' toonden 13 een volledige remissie en geen afstotingsverschijnselen na een mix van Nipent met lokale bestraling en lichttherapie. Ik zal proberen of ik wat meer gedetailleerde informatie over deze studies kan krijgen. Onder deze studie staan een paar vragen over Nipent gehaald van de website van Supergen Inc. 


-- Supergen Says Study Shows Nipent Effective --

DUBLIN, Calif. -(Dow Jones)- SuperGen Inc. (SUPG) said several studies showed its anticancer drug, Nipent, can treat a variety of hematological malignancies. Nipent is currently marketed by SuperGen for the treatment of hairy cell leukemia, a potentially fatal cancer of the blood and bone marrow that is characterized by a reduction in white blood cells, red blood cells and platelets.
In a press release Friday, the biopharmaceutical company said a long-term follow-up study of 180 hairy cell leukemia patients treated with Nipent between 1986 and 2000 resulted in a response rate of 98%.

In another study, 13 patients with indolent, or non-aggressive, non-Hodgkin's lymphoma and chronic lymphocytic leukemia were given a three-pronged therapy consisting of Nipent, cyclophosphamide and Rituximab. Ten of the 11 patients who
could be evaluated showed the tumor response sought by the study. A Phase II multicenter clinical trial involving 62 patients with chronic lymphocytic leukemia was conducted to assess how effective and safe it was to use a combined treatment of Nipent and Rituximab. Of the 54 evaluable patients, 33% achieved an objective response.

In a Phase I study, 23 patients with a variety of hematological malignancies were enrolled to assess Nipent as a treatment for steroid refractory acute graft-versus-host disease. Twenty patients were evaluable for response and they included 11 complete responses, three partial responses, three with mixed responses and three with progressive disease. Fifteen patients with myelodysplastic syndrome received a new preparative regimen consisting of Nipent, low-dose radiation and photophoresis treatments - where blood is exposed to ultraviolet light - prior to an allogeneic bone marrow transplant. Thirteen patients experienced full engraftment and subsequently, full remission.

Pentostatin Plus Cyclophosphamide Safely and Effectively Prevents Immunotoxin Immunogenicity in Murine Hosts

Clin Cancer Res. Author manuscript; available in PMC 2012 June 1.
Published in final edited form as:
PMCID: PMC3107891
NIHMSID: NIHMS290602

Pentostatin Plus Cyclophosphamide Safely and Effectively Prevents Immunotoxin Immunogenicity in Murine Hosts

Abstract

Purpose

The success of immunotoxin therapy of cancer is limited by host production of neutralizing antibodies, which are directed toward the Pseudomonas exotoxin A (PE) component. In this proof-of-principle study using a well-established murine model, we hypothesized that a newly developed immune depletion regimen consisting of pentostatin plus cyclophosphamide would abrogate anti-immunotoxin reactivity.

Experimental Design

BALB/c hosts were injected weekly with recombinant immunotoxin (RIT) SS1P, which is an anti-mesothelin Fv antibody fragment genetically fused to a 38 kDa portion of PE, and has been evaluated in clinical trials. Experimental cohorts received induction chemotherapy consisting of pentostatin (P) plus cyclophosphamide (C) prior to initial RIT exposure; some cohorts received further maintenance PC therapy of varying intensity just prior to each weekly RIT challenge. Cohorts were monitored for T, B, and myeloid cell depletion and for total anti-SS1P antibody (Ab) formation.

Results

Controls uniformly developed anti-SS1P Ab after the third RIT exposure. Induction PC therapy reduced the frequency of hosts with anti-SS1P Ab. Abrogation of antibody generation was improved by maintenance PC therapy: nearly 100% of recipients of intensive PC maintenance were free of anti-SS1P Ab after 9 weekly RIT doses. The most effective PC regimen yielded the greatest degree of host B cell depletion, moderate T cell depletion, and minimal myeloid cell depletion.

Conclusions

Induction and maintenance PC chemotherapy safely prevented anti-immunotoxin antibody formation with uniform efficacy. These data suggest that immunotoxin therapy might be used in combination with pentostatin plus cyclophosphamide chemotherapy to improve the targeted therapy of cancer.

References

1. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6:559–65. [PubMed]
2. Kreitman RJ, Squires DR, Stetler-Stevenson M, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol. 2005;23:6719–29. [PubMed]
3. Kreitman RJ, Stetler-Stevenson M, Margulies I, et al. Phase II trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with hairy cell leukemia. J Clin Oncol. 2009;27:2983–90. [PMC free article] [PubMed]
4. Argani P, Iacobuzio-Donahue C, Ryu B, et al. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE) Clin Cancer Res. 2001;7:3862–8. [PubMed]
5. Chang K, Pai LH, Pass H, et al. Monoclonal antibody K1 reacts with epithelial mesothelioma but not with lung adenocarcinoma. Am J Surg Pathol. 1992;16:259–68. [PubMed]
6. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93:136–40. [PMC free article] [PubMed]
7. Chang K, Pastan I, Willingham MC. Frequent expression of the tumor antigen CAK1 in squamous-cell carcinomas. Int J Cancer. 1992;51:548–54. [PubMed]
8. Ho M, Bera TK, Willingham MC, et al. Mesothelin expression in human lung cancer. Clin Cancer Res. 2007;13:1571–5. [PubMed]
9. Kreitman RJ, Hassan R, Fitzgerald DJ, Pastan I. Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P. Clin Cancer Res. 2009;15:5274–9. [PMC free article] [PubMed]
10. Hassan R, Bullock S, Premkumar A, et al. Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers. Clin Cancer Res. 2007;13:5144–9. [PubMed]
11. Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88. [PubMed]
12. Posey JA, Khazaeli MB, Bookman MA, et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res. 2002;8:3092–9. [PubMed]
13. Hansen JK, Weldon JE, Xiang L, Beers R, Onda M, Pastan I. A recombinant immunotoxin targeting CD22 with low immunogenicity, low nonspecific toxicity, and high antitumor activity in mice. J Immunother. 2010;33:297–304. [PubMed]
14. Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Ther. 2009;9:1872–83. [PMC free article] [PubMed]
15. Onda M. Reducing the immunogenicity of protein therapeutics. Curr Drug Targets. 2009;10:131–9. [PubMed]
16. Nagata S, Pastan I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv Drug Deliv Rev. 2009;61:977–85. [PMC free article] [PubMed]
17. Onda M, Beers R, Xiang L, Nagata S, Wang QC, Pastan I. An immunotoxin with greatly reduced immunogenicity by identification and removal of B cell epitopes. Proc Natl Acad Sci U S A. 2008;105:11311–6. [PMC free article] [PubMed]
18. Gao J, Kou G, Wang H, et al. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity. Breast Cancer Res Treat. 2009;115:29–41. [PubMed]
19. Onda M, Nagata S, FitzGerald DJ, et al. Characterization of the B cell epitopes associated with a truncated form of Pseudomonas exotoxin (PE38) used to make immunotoxins for the treatment of cancer patients. J Immunol. 2006;177:8822–34. [PubMed]
20. Hershfield MS, Buckley RH, Greenberg ML, et al. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med. 1987;316:589–96. [PubMed]
21. Yeung VP, Chang J, Miller J, Barnett C, Stickler M, Harding FA. Elimination of an immunodominant CD4+ T cell epitope in human IFN-beta does not result in an in vivo response directed at the subdominant epitope. J Immunol. 2004;172:6658–65. [PubMed]
22. Arruda VR, Favaro P, Finn JD. Strategies to modulate immune responses: a new frontier for gene therapy. Mol Ther. 2009;17:1492–503. [PMC free article] [PubMed]
23. Hassan R, Williams-Gould J, Watson T, Pai-Scherf L, Pastan I. Pretreatment with rituximab does not inhibit the human immune response against the immunogenic protein LMB-1. Clin Cancer Res. 2004;10:16–8. [PubMed]
24. Mariotti J, Taylor J, Massey PR, et al. The Pentostatin Plus Cyclophosphamide (PC) Non-myeloablative Regimen Induces Durable Host T Cell Functional Deficits and Prevents Murine Marrow Allograft Rejection. Biology of Blood and Marrow Transplantation. 2011 (in press); YBBMT-D-10–00254.
25. Vallera DA, Taylor PA, Sprent J, Blazar BR. The role of host T cell subsets in bone marrow rejection directed to isolated major histocompatibility complex class I versus class II differences of bm1 and bm12 mutant mice. Transplantation. 1994;57:249–56. [PubMed]
26. Mariotti J, Foley J, Ryan K, et al. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway. Blood. 2008;112:4765–75. [PMC free article] [PubMed]
27. Taylor PA, Ehrhardt MJ, Roforth MM, et al. Preformed antibody, not primed T cells, is the initial and major barrier to bone marrow engraftment in allosensitized recipients. Blood. 2007;109:1307–15. [PMC free article] [PubMed]
28. Giralt S, Khouri I, Champlin R. Non myeloablative “mini transplants” Cancer Treat Res. 1999;101:97–108. [PubMed]
29. Georges GE, Storb R. Review of “minitransplantation”: nonmyeloablative allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2003;77:3–14. [PubMed]
30. Hardy NM, Hakim F, Steinberg SM, et al. Host T cells affect donor T cell engraftment and graft-versus-host disease after reduced-intensity hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13:1022–30. [PMC free article] [PubMed]
31. Pavletic SZ, Bociek RG, Foran JM, et al. Lymphodepleting effects and safety of pentostatin for nonmyeloablative allogeneic stem-cell transplantation. Transplantation. 2003;76:877–81. [PubMed]
32. Miller KB, Roberts TF, Chan G, et al. A novel reduced intensity regimen for allogeneic hematopoietic stem cell transplantation associated with a reduced incidence of graft-versus-host disease. Bone Marrow Transplant. 2004;33:881–9. [PubMed]
33. Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972;2:1067–9. [PubMed]
34. Mitchell BS, Mejias E, Daddona PE, Kelley WN. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978;75:5011–4. [PMC free article] [PubMed]
35. Bolanos-Meade J, Jacobsohn DA, Margolis J, et al. Pentostatin in steroid-refractory acute graft-versus-host disease. J Clin Oncol. 2005;23:2661–8. [PubMed]
36. Spiers AS, Parekh SJ, Bishop MB. Hairy-cell leukemia: induction of complete remission with pentostatin (2'-deoxycoformycin) J Clin Oncol. 1984;2:1336–42. [PubMed]
37. Weiss MA, Maslak PG, Jurcic JG, et al. Pentostatin and cyclophosphamide: an effective new regimen in previously treated patients with chronic lymphocytic leukemia. J Clin Oncol. 2003;21:1278–84. [PubMed]
38. Chowdhury PS, Viner JL, Beers R, Pastan I. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc Natl Acad Sci U S A. 1998;95:669–74. [PMC free article] [PubMed]
39. Onda M, Willingham M, Nagata S, et al. New monoclonal antibodies to mesothelin useful for immunohistochemistry, fluorescence-activated cell sorting, Western blotting, and ELISA. Clin Cancer Res. 2005;11:5840–6. [PubMed]
40. Mackall CL, Granger L, Sheard MA, Cepeda R, Gress RE. T-cell regeneration after bone marrow transplantation: differential CD45 isoform expression on thymic-derived versus thymic-independent progeny. Blood. 1993;82:2585–94. [PubMed]
41. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. Faseb J. 2008;22:659–61. [PubMed]
42. Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med. 2001;345:241–7. [PubMed]
43. Hassan R, Broaddus VC, Wilson S, Liewehr DJ, Zhang J. Anti-mesothelin immunotoxin SS1P in combination with gemcitabine results in increased activity against mesothelin-expressing tumor xenografts. Clin Cancer Res. 2007;13:7166–71. [PubMed]
44. Filpula D, Yang K, Basu A, et al. Releasable PEGylation of mesothelin targeted immunotoxin SS1P achieves single dosage complete regression of a human carcinoma in mice. Bioconjug Chem. 2007;18:773–84. [PubMed]
45. Hakim FT, Gress RE. Reconstitution of the lymphocyte compartment after lymphocyte depletion: a key issue in clinical immunology. Eur J Immunol. 2005;35:3099–102. [PubMed]
46. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol. 1993;11:331–60. [PubMed]
47. Don AS, Zheng XF. Recent clinical trials of mTOR-targeted cancer therapies. Rev Recent Clin Trials. 6:24–35. [PubMed]

Plaats een reactie ...

Reageer op "Pentostatin - Nipent lijkt effectief middel om afstoting tegen te gaan bij immuuntherapie en stamceltransplanties bij verschillende vormen van kanker waaronder lymfklierkanker en leukemie"


Gerelateerde artikelen