Raadpleeg ook de lijst van niet-toxische ondersteuning bij prostaatkanker van arts-bioloog drs. Engelbert Valstar.

En als donateur kunt u ook korting krijgen bij verschillende bedrijven, waaronder bij MEDpro voor o.a. prostasol  een veel gebruikt natuurlijk middel bij prostaatkanker als alternatief voor hormoontherapie.

19 april 2024: zie ook dit artikel:  https://kanker-actueel.nl/urinetest-met-18-genen-ontdekt-beter-of-prostaatkanker-hooggradig-is-of-zal-worden-dan-de-2-genentest-via-psa-blijkt-uit-nieuwe-studie.html

18 mei 2021: Bron: CANCERS

Niet-invasieve markers uit een urinetest helpen bij de risicobeoordeling van prostaatkanker. Een model dat meting van een EN2-eiwitmarker combineert met waarden van 10 specifieke genen in urine, zou het maken van belastende onnodige biopsieën kunnen verminderen. En daardoor overbehandeling kunnen voorkomen en zouden  prostaatkankerbehandelingen specifieker en gerichter kunnen worden gegeven.

Shea P. Connell, van Norwich Medical School aan de Universiteit van East Anglia in het Verenigd Koninkrijk, en collega's ontwikkelden een multivariabel risicomodel (ExoGrail) voor de niet-invasieve detectie van prostaatkanker voorafgaand aan een biopsie dat informatie uit klinisch beschikbare parameters integreert, Engrailed- 2 (EN2) eiwitniveaus in de hele urine en gegevens van celvrij RNA in de urine; In de analyses werden 207 patiënten geïncludeerd.

Prostaatkanker is een ziekte die verantwoordelijk is voor een groot deel van alle sterfgevallen door kanker bij mannen, maar de kans is groot dat een patiënt eerder aan de ziekte zal overlijden dan aan de ziekte zelf. Daarom is er dringend behoefte aan verbeteringen in het diagnosticeren en voorspellen van uitkomsten voor prostaatkankerpatiënten om overdiagnose en overbehandeling te minimaliseren terwijl mannen met een agressieve ziekte op de juiste manier worden behandeld, vooral als dit kan worden gedaan zonder een invasieve biopsie te nemen.

Wetenschappers ontwikkelden een test die uit gegevens verkregen uit een urinemonster voorspelt of een patiënt prostaatkanker heeft en hoe agressief de ziekte is. Dit model combineert de meting van een eiwitmarker genaamd EN2 en de niveaus van 10 genen gemeten in urine en bewijst dat integratie van informatie uit meerdere, niet-invasieve biomarkerbronnen het potentieel heeft om vooraf aan een biopsie te beoordelen of patiënten met een klinisch vermoeden van prostaatkanker een biopt nodig hebben of niet. 

Het volledige studierapport is gratis in te zien. Hier het abstract van de studie:

Cancers 2021, 13(9), 2102; https://doi.org/10.3390/cancers13092102
Received: 15 February 2021 / Revised: 13 April 2021 / Accepted: 14 April 2021 / Published: 27 April 2021

Integration of Urinary EN2 Protein & Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy

Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, Norfolk NR4 7UY, UK
Faculty of Health and Medical Sciences, The University of Surrey, Guildford GU2 7XH, UK
School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
The Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
Author to whom correspondence should be addressed.
The Movember GAP1 Urine Biomarker Consortium: Bharati Bapat, Rob Bristow, Andreas Doll, Jeremy Clark, Colin Cooper, Hing Leung, Ian Mills, David Neal, Mireia Olivan, Hardev Pandha, Antoinette Perry, Chris Parker, Martin Sanda, Jack Schalken, Hayley Whitaker.
Academic Editor: Jonas Cicenas
Prostate cancer is a disease responsible for a large proportion of all male cancer deaths but there is a high chance that a patient will die with the disease rather than from. Therefore, there is a desperate need for improvements in diagnosing and predicting outcomes for prostate cancer patients to minimise overdiagnosis and overtreatment whilst appropriately treating men with aggressive disease, especially if this can be done without taking an invasive biopsy. In this work we develop a test that predicts whether a patient has prostate cancer and how aggressive the disease is from a urine sample. This model combines the measurement of a protein-marker called EN2 and the levels of 10 genes measured in urine and proves that integration of information from multiple, non-invasive biomarker sources has the potential to greatly improve how patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy.


The objective is to develop a multivariable risk model for the non-invasive detection of prostate cancer prior to biopsy by integrating information from clinically available parameters, Engrailed-2 (EN2) whole-urine protein levels and data from urinary cell-free RNA. Post-digital-rectal examination urine samples collected as part of the Movember Global Action Plan 1 study which has been analysed for both cell-free-RNA and EN2 protein levels were chosen to be integrated with clinical parameters (n = 207). A previously described robust feature selection framework incorporating bootstrap resampling and permutation was applied to the data to generate an optimal feature set for use in Random Forest models for prediction. The fully integrated model was named ExoGrail, and the out-of-bag predictions were used to evaluate the diagnostic potential of the risk model. ExoGrail risk (range 0–1) was able to determine the outcome of an initial trans-rectal ultrasound guided (TRUS) biopsy more accurately than clinical standards of care, predicting the presence of any cancer with an area under the receiver operator curve (AUC) = 0.89 (95% confidence interval(CI): 0.85–0.94), and discriminating more aggressive Gleason ≥ 3 + 4 disease returning an AUC = 0.84 (95% CI: 0.78–0.89). The likelihood of more aggressive disease being detected significantly increased as ExoGrail risk score increased (Odds Ratio (OR) = 2.21 per 0.1 ExoGrail increase, 95% CI: 1.91–2.59). Decision curve analysis of the net benefit of ExoGrail showed the potential to reduce the numbers of unnecessary biopsies by 35% when compared to current standards of care. Integration of information from multiple, non-invasive biomarker sources has the potential to greatly improve how patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy.

4. Discussion

Discriminating disease status in patients before a diagnostic biopsy with higher accuracy than current standards could bring about a sizeable change in treatment pathways and reduce the number of men sent forward for ultimately unnecessary biopsy. Given that up to 75% of patients are negative for prostate cancer when presenting with serum PSA levels ≥ 4 ng/mL [5,43,44], a concentration of research efforts has been made to address this problem. To date, several biomarker panels have been successfully developed to non-invasively detect prostate cancer using urine samples, Gleason ≥ 3 + 4 disease with superior accuracy to current clinically implemented methods, including the PUR model developed by ourselves [20,21,45,46]. However, as only a single aspect of urine, assay method or biological process are assessed by these examples, the heterogeneity of prostate cancer may not be entirely accounted for [47], requiring an approach to be taken that provides a more holistic insight into disease status.
Recent analyses, including those presented here, have demonstrated the added value of integrating multiple prognostic biomarkers within the process of fitting risk models for determining patient risk upon an initial biopsy [23,48]. Urine clearly contains a wealth of useful information concerning the disease status of the prostate through the quantification of cf-RNA transcripts, circulating and cell-free DNA, hypermethylation of DNA, and protein biomarker levels [19,46,49,50,51,52].
Our results show that an improved multivariable risk prediction model can be developed from the careful consideration of information from multiple different urine fractions in men suspected to have prostate cancer. Urinary levels of EN2 protein were quantified by ELISA, whilst the transcript levels of 167 cell-free mRNAs were quantified using NanoString technology. The final model integrating information from those assays with serum PSA levels was deemed ExoGrail. Markers selected for the model include well-known genes associated with prostate cancer and proven in other diagnostic tests, such as PCA3 [45], HOXC6 [20], and the TMPRSS2/ERG gene fusion [53]. An interaction between urinary EN2 protein levels and quantified transcripts of SLC12A1 was observed, further demonstrating the benefit of considering information from multiple biological sources (Figure S4).
ExoGrail was able to accurately predict the presence of significant (Gs ≥ 7) prostate cancer on biopsy with an AUC of 0.89, comparing favourably to other published tests (AUCs for Gs ≥ 7: PUR = 0.77 [46], ExoMeth = 0.89 [23], ExoDX Prostate IntelliScore = 0.77 [21], SelectMDX = 0.78 [20], epiCaPture Gs ≥ 4 + 3 AUC = 0.73 [49]). Furthermore, ExoGrail resulted in accurate predictions even when serum PSA levels alone proved inaccurate; patients with a raised PSA but negative biopsy result possessed ExoGrail scores significantly different from both clinically benign patients and those with low-grade Gleason 6 disease, whilst still able to discriminate between more clinically significant Gleason ≥ 7 cancers (Figure 4). The adoption of ExoGrail into current clinical pathways for reducing unnecessary biopsies was considered, showing the potential for up to 32% of patients to safely forgo an invasive biopsy without incurring excessive risk (Figure 6).
ExoGrail was developed with the explicit goal of being robust to potential overfitting and bias, using strong internal validation methods in bootstrap resampling and out-of-bag predictions. Nonetheless, ExoGrail was developed in a relatively small dataset and so requires external validation in an independent cohort before it can be considered for use as a clinical risk model. To this end, we are currently collecting samples from multiple sites in the UK, EU and Canada using an updated ‘At-Home’ Collection system [54]. The At-Home collection system enables biomarker analysis to be performed on urine samples provided by patients at home, which they send in the post to a centralised laboratory. This collection and analysis system will sidestep the need for a visit to the clinic and lead to a postal screening system for prostate cancer diagnosis and prognosis. In this study, we will also assess the potential utility of supplementing MP-MRI with ExoGrail, as MP-MRI can misrepresent disease status, even with rigorous controls in place [6]. The NanoString expression analysis system used in the ExoGrail signature is a rapid and cost-effective analysis system that is also used in the FDA-approved Prosigna Pam50 test for breast cancer aggressiveness [55], making ExoGrail well-positioned for implementation for patient benefit.

5. Conclusions

ExoGrail was able to accurately predict the presence of significant (Gs ≥ 7) prostate cancer on biopsy and showed the potential for an important number of patients to safely forgo an invasive biopsy. If validated in future studies, ExoGrail has the potential to positively impact the clinical experience of patients being investigated for prostate cancer that ultimately have no disease or indolent prostate cancer.

6. Patents

A patent application has been filed by the authors for the present work and work related to this.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/cancers13092102/s1, Figure S1: Boruta analysis of variables available for the training of the SoC model, Figure S2: Boruta analysis of variables available for the training of the Engrailed model, Figure S3: Boruta analysis of variables available for the training of the ExoRNA model, Figure S4: Partial dependency plots detailing the marginal effects and interactions of SLC12A1 and urinary EN2 on predicted ExoGrail Risk Score, Figure S5: Risk score distributions of the trained models including the EN2 and PSA model, Figure S6: Density plots detailing risk score distributions generated from four trained models. Table S1: List of all features available for selection as input variables for each model prior to bootstrapped Boruta feature selection, Table S2: AUC of all trained models, including a combination of EN2 and PSA, for detecting outcomes of an initial biopsy for varying clinically significant thresholds. Supplementary Methods.

Author Contributions

S.P.C. and D.S.B drafted the manuscript and conceived, designed, and performed the statistical analyses. H.P. and R.M. (Richard Morgan) were involved in sample collection and ELISA analyses at their respective institutes. J.C. and R.M. were involved in sample collection and NanoString analyses, as well as the development of clinical methodologies. D.S.B., J.C., R.M. (Robert Mills), H.P., and C.S.C. had joint and equal contributions to senior authorship and were contributors in writing the manuscript. C.S.C., J.C., H.P. and D.S.B. provided the original idea for this study. All authors have read and agreed to the published version of the manuscript. All authors critiqued the manuscript for intellectual content.


This research was funded by Movember Foundation GAP1 Urine Biomarker project, The Masonic Charitable Foundation, The Bob Champion Cancer Trust, the King family, The Andy Ripley Memorial Fund and the Stephen Hargrave Trust.

Institutional Review Board Statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and approval was granted for the collection and processing of samples by the Ethics Committees at the East of England REC.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

All data and code required to reproduce these analyses can be found at https://github.com/UEA-Cancer-Genetics-Lab/ExoGrail_paper.


The research presented in this paper was carried out on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia.

Conflicts of Interest

A patent application has been filed by the authors for the present work and work related to this. There are no other conflicts of interest to disclose.


  1. Cancer Research UK Prostate Cancer Incidence Statistics. 2019. Available online: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer/incidence (accessed on 29 June 2019).
  2. Loeb, S.; Bjurlin, M.A.; Nicholson, J.; Tammela, T.L.; Penson, D.F.; Carter, H.B.; Carroll, P.; Etzioni, R. Overdiagnosis and Overtreatment of Prostate Cancer. Eur. Urol. 201465, 1046–1055. [Google Scholar] [CrossRef]
  3. Sanda, M.G.; Cadeddu, J.A.; Kirkby, E.; Chen, R.C.; Crispino, T.; Fontanarosa, J.; Freedland, S.J.; Greene, K.; Klotz, L.H.; Makarov, D.V.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO/SUO Guideline. Part I: Risk Stratification, Shared Decision Making, and Care Options. J. Urol. 2018199, 683–690. [Google Scholar] [CrossRef]
  4. Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; De Santis, M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of Relapsing, Metastatic, and Castration-Resistant Prostate Cancer. Eur. Urol. 201771, 630–642. [Google Scholar] [CrossRef]
  5. National Institute for Health and Care Excellence. Prostate Cancer: Diagnosis and Management (Update); NICE: London, UK, 2015. [Google Scholar]
  6. Ahmed, H.U.; Bosaily, A.E.-S.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017389, 815–822. [Google Scholar] [CrossRef]
  7. Pepe, P.; Pennisi, M. Gleason score stratification according to age at diagnosis in 1028 men. Współczesna Onkol. 201519, 471–473. [Google Scholar] [CrossRef]
  8. Sonn, G.A.; Fan, R.E.; Ghanouni, P.; Wang, N.N.; Brooks, J.D.; Loening, A.M.; Daniel, B.L.; To’O, K.J.; Thong, A.E.; Leppert, J.T. Prostate Magnetic Resonance Imaging Interpretation Varies Substantially Across Radiologists. Eur. Urol. Focus 20195, 592–599. [Google Scholar] [CrossRef] [PubMed]
  9. Walz, J. The “PROMIS” of Magnetic Resonance Imaging Cost Effectiveness in Prostate Cancer Diagnosis? Eur. Urol. 201873, 31–32. [Google Scholar] [CrossRef] [PubMed]
  10. Moschini, M.; Spahn, M.; Mattei, A.; Cheville, J.; Karnes, R.J. Incorporation of tissue-based genomic biomarkers into localized prostate cancer clinics. BMC Med. 201614, 67. [Google Scholar] [CrossRef] [PubMed]
  11. Luca, B.-A.; Brewer, D.S.; Edwards, D.R.; Edwards, S.; Whitaker, H.C.; Merson, S.; Dennis, N.; Cooper, R.A.; Hazell, S.; Warren, A.Y.; et al. DESNT: A Poor Prognosis Category of Human Prostate Cancer. Eur. Urol. Focus 20184, 842–850. [Google Scholar] [CrossRef]
  12. Knezevic, D.; Goddard, A.D.; Natraj, N.; Cherbavaz, D.B.; Clark-Langone, K.M.; Snable, J.; Watson, D.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; et al. Analytical validation of the Oncotype DX prostate cancer assay—A clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genom. 201314, 690. [Google Scholar] [CrossRef] [PubMed]
  13. Cuzick, J.; Berney, D.M.; Fisher, G.J.; Mesher, D.; Moller, H.; Reid, J.; Perry, M.B.A.; Park, J.; Younus, A.; on behalf of the Transatlantic Prostate Group; et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 2012106, 1095–1099. [Google Scholar] [CrossRef]
  14. Luca, B.-A.; Moulton, V.; Ellis, C.; Edwards, D.R.; Campbell, C.; Cooper, R.A.; Clark, J.; Brewer, D.S.; Cooper, C.S. A novel stratification framework for predicting outcome in patients with prostate cancer. Br. J. Cancer 2020122, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
  15. Cooperberg, M.R.; Davicioni, E.; Crisan, A.; Jenkins, R.B.; Ghadessi, M.; Karnes, R.J. Combined Value of Validated Clinical and Genomic Risk Stratification Tools for Predicting Prostate Cancer Mortality in a High-risk Prostatectomy Cohort. Eur. Urol. 201567, 326–333. [Google Scholar] [CrossRef] [PubMed]
  16. Eklund, M.; Nordström, T.; Aly, M.; Adolfsson, J.; Wiklund, P.; Brandberg, Y.; Thompson, J.; Wiklund, F.; Lindberg, J.; Presti, J.C.; et al. The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. Eur. Urol. Focus 20184, 707–710. [Google Scholar] [CrossRef] [PubMed]
  17. Tosoian, J.J.; Carter, H.B.; Lepor, A.; Loeb, S. Active surveillance for prostate cancer: Current evidence and contemporary state of practice. Nat. Rev. Urol. 201613, 205–215. [Google Scholar] [CrossRef] [PubMed]
  18. Frick, J.; Aulitzky, W. Physiology of the prostate. Infection 199119 (Suppl. 3), S115–S118. [Google Scholar] [CrossRef] [PubMed]
  19. Morgan, R.; Boxall, A.; Bhatt, A.; Bailey, M.; Hindley, R.; Langley, S.; Whitaker, H.C.; Neal, D.E.; Ismail, M.; Whitaker, H.; et al. Engrailed-2 (EN2): A Tumor Specific Urinary Biomarker for the Early Diagnosis of Prostate Cancer. Clin. Cancer Res. 201117, 1090–1098. [Google Scholar] [CrossRef]
  20. Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.; et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score. Eur. Urol. 201670, 740–748. [Google Scholar] [CrossRef] [PubMed]
  21. McKiernan, J.; Donovan, M.J.; O’Neill, V.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 20162, 882–889. [Google Scholar] [CrossRef] [PubMed]
  22. Haese, A.; Trooskens, G.; Steyaert, S.; Hessels, D.; Brawer, M.; Vlaeminck-Guillem, V.; Ruffion, A.; Tilki, D.; Schalken, J.; Groskopf, J.; et al. Multicenter Optimization and Validation of a 2-Gene mRNA Urine Test for Detection of Clinically Significant Prostate Cancer before Initial Prostate Biopsy. J. Urol. 2019202, 256–263. [Google Scholar] [CrossRef]
  23. Connell, S.P.; O’Reilly, E.; Tuzova, A.; Webb, M.; Hurst, R.; Mills, R.; Zhao, F.; Bapat, B.; Cooper, C.S.; Perry, A.S.; et al. Development of a multivariable risk model integrating urinary cell DNA methylation and cell-free RNA data for the detection of significant prostate cancer. Prostate 202080, 547–558. [Google Scholar] [CrossRef] [PubMed]
  24. Morgan, R. Engrailed: Complexity and economy of a multi-functional transcription factor. FEBS Lett. 2006580, 2531–2533. [Google Scholar] [CrossRef]
  25. Punia, N.; Primon, M.; Simpson, G.R.; Pandha, H.S.; Morgan, R. Membrane insertion and secretion of the Engrailed-2 (EN2) transcription factor by prostate cancer cells may induce antiviral activity in the stroma. Sci. Rep. 20199, 5138. [Google Scholar] [CrossRef] [PubMed]
  26. Pandha, H.; Sorensen, K.D.; Orntoft, T.F.; Langley, S.; Hoyer, S.; Borre, M.; Morgan, R. Urinary engrailed-2 (EN2) levels predict tumour volume in men undergoing radical prostatectomy for prostate cancer. BJU Int. 2012110, E287–E292. [Google Scholar] [CrossRef] [PubMed]
  27. Elamin, A.A.; Klunkelfuß, S.; Kämpfer, S.; Oehlmann, W.; Stehr, M.; Smith, C.; Simpson, G.R.; Morgan, R.; Pandha, H.; Singh, M. A Specific Blood Signature Reveals Higher Levels of S100A12: A Potential Bladder Cancer Diagnostic Biomarker Along with Urinary Engrailed-2 Protein Detection. Front. Oncol. 20209, 1484. [Google Scholar] [CrossRef]
  28. Stark, J.R.; Perner, S.; Stampfer, M.J.; Sinnott, J.A.; Finn, S.; Eisenstein, A.S.; Ma, J.; Fiorentino, M.; Kurth, T.; Loda, M.; et al. Gleason Score and Lethal Prostate Cancer: Does 3 + 4 = 4 + 3? J. Clin. Oncol. 200927, 3459–3464. [Google Scholar] [CrossRef]
  29. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Eur. Urol. 201567, 1142–1151. [Google Scholar] [CrossRef]
  30. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
  31. UEA Cancer Genetic GitHub Repository. Available online: https://github.com/UEA-Cancer-Genetics-Lab/ExoGrail (accessed on 21 April 2021).
  32. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 20033, 1157–1182. [Google Scholar]
  33. Kursa, M.B.; Rudnicki, W.R. Feature Selection with theBorutaPackage. J. Stat. Softw. 201036, 1–13. [Google Scholar] [CrossRef]
  34. Breiman, L. Random Forests. Mach. Learn. 200145, 5–32. [Google Scholar] [CrossRef]
  35. Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 20022, 18–22. [Google Scholar]
  36. Robin, X.A.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Muller, M.J. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 201112, 77. [Google Scholar] [CrossRef] [PubMed]
  37. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
  38. Greenwell, B.M. Pdp: An r Package for Constructing Partial Dependence Plots. R J. 20179, 421–436. [Google Scholar] [CrossRef]
  39. Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 201916, 565–566. [Google Scholar] [CrossRef] [PubMed]
  40. Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Mak. 200626, 565–574. [Google Scholar] [CrossRef] [PubMed]
  41. Brown, M. rmda: Risk Model Decision Analysis; Fred Hutchinson Cancer Research Center: Seattle, WA, USA, 2018. [Google Scholar]
  42. Kerr, K.F.; Brown, M.D.; Zhu, K.; Janes, H. Assessing the Clinical Impact of Risk Prediction Models with Decision Curves: Guidance for Correct Interpretation and Appropriate Use. J. Clin. Oncol. 201634, 2534–2540. [Google Scholar] [CrossRef]
  43. Martin, R.M.; Donovan, J.L.; Turner, E.L.; Metcalfe, C.; Young, G.J.; Walsh, E.I.; Lane, J.A.; Noble, S.; Oliver, S.E.; Evans, S.; et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP randomized clinical trial. JAMA 2018319, 883–895. [Google Scholar] [CrossRef]
  44. Lane, J.A.; Donovan, J.L.; Davis, M.; Walsh, E.; Dedman, D.; Down, L.; Turner, E.L.; Mason, M.D.; Metcalfe, C.; Peters, T.J.; et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: Study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. Lancet Oncol. 201415, 1109–1118. [Google Scholar] [CrossRef]
  45. Hessels, D.; Gunnewiek, J.M.K.; van Oort, I.; Karthaus, H.F.; van Leenders, G.J.; van Balken, B.; Kiemeney, L.A.; Witjes, J.; Schalken, J.A. DD3PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer. Eur. Urol. 200344, 8–16. [Google Scholar] [CrossRef]
  46. Connell, S.P.; Yazbek-Hanna, M.; McCarthy, F.; Hurst, R.; Webb, M.; Curley, H.; Walker, H.; Mills, R.; Ball, R.Y.; Sanda, M.G.; et al. A four-group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU Int. 2019124, 609–620. [Google Scholar] [CrossRef]
  47. Ciccarese, C.; Massari, F.; Iacovelli, R.; Fiorentino, M.; Montironi, R.; Di Nunno, V.; Giunchi, F.; Brunelli, M.; Tortora, G. Prostate cancer heterogeneity: Discovering novel molecular targets for therapy. Cancer Treat. Rev. 201754, 68–73. [Google Scholar] [CrossRef]
  48. Strand, S.H.; Bavafaye-Haghighi, E.; Kristensen, H.; Rasmussen, A.K.; Hoyer, S.; Borre, M.; Mouritzen, P.; Besenbacher, S.; Orntoft, T.F.; Sorensen, K.D. A novel combined miRNA and methylation marker panel (miMe) for prediction of prostate cancer outcome after radical prostatectomy. Int. J. Cancer 2019145, 3445–3452. [Google Scholar] [CrossRef]
  49. O’Reilly, E.; Tuzova, A.V.; Walsh, A.L.; Russell, N.M.; O’Brien, O.; Kelly, S.; Ni Dhomhnallain, O.; DeBarra, L.; Dale, C.M.; Brugman, R.; et al. epiCaPture: A Urine DNA Methylation Test for Early Detection of Aggressive Prostate Cancer. JCO Precis. Oncol. 20192019, 1–18. [Google Scholar] [CrossRef]
  50. Zhao, F.; Olkhov-Mitsel, E.; Kamdar, S.; Jeyapala, R.; Garcia, J.; Hurst, R.; Hanna, M.Y.; Mills, R.; Tuzova, A.V.; O’Reilly, E.; et al. A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer. Clin. Epigenet. 201810, 147. [Google Scholar] [CrossRef]
  51. Xia, Y.; Huang, C.-C.; Dittmar, R.; Du, M.; Wang, Y.; Liu, H.; Shenoy, N.; Wang, L.; Kohli, M. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget 20167, 35818–35831. [Google Scholar] [CrossRef]
  52. Killick, E.; Morgan, R.; Launchbury, F.; Bancroft, E.; Page, E.; Castro, E.; Kote-Jarai, Z.; Aprikian, A.; Blanco, I.; Clowes, V.; et al. Role of Engrailed-2 (EN2) as a prostate cancer detection biomarker in genetically high risk men. Sci. Rep. 20133, 2059. [Google Scholar] [CrossRef]
  53. Tomlins, S.A.; Day, J.R.; Lonigro, R.J.; Hovelson, D.H.; Siddiqui, J.; Kunju, L.P.; Dunn, R.L.; Meyer, S.; Hodge, P.; Groskopf, J.; et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur. Urol. 201670, 45–53. [Google Scholar] [CrossRef] [PubMed]
  54. Webb, M.; Manley, K.; Olivan, M.; Guldvik, I.; Palczynska, M.; Hurst, R.; Connell, S.P.; Mills, I.G.; Brewer, D.S.; Mills, R.; et al. Methodology for the at-home collection of urine samples for prostate cancer detection. Biotechniques 202068, 65–71. [Google Scholar] [CrossRef] [PubMed]
  55. Wallden, B.; Storhoff, J.; Nielsen, T.; Dowidar, N.; Schaper, C.; Ferree, S.; Liu, S.; Leung, S.; Geiss, G.; Snider, J.; et al. Development and Verification of the PAM50-Based Prosigna Breast Cancer Gene Signature Assay. BMC Med. Genom. 20158, 54. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Plaats een reactie ...

Reageer op "Combinatie van urinetest op EN2-eiwitmarker en waarden van 10 specifieke genen kan de noodzaak van een biopt aantonen van patiënten met een klinische verdenking van prostaatkanker."

Gerelateerde artikelen

Gerelateerde artikelen

Urinetest met 18 genen ontdekt >> Prostaatkanker blijkt zich >> MRI van prostaat traceert >> Nieuwe diagnostische ontwikkelingen >> Combinatie van urinetest op >> Oncotype DX Genomic Prostate >> Aanwezigheid van bepaalde >> Prostaat-specifiek membraanantigeen >> Nieuwe richtlijnen bij diagnostiek >> finasteride kan prostaatkanker >>