Raadpleeg ook de lijst van niet-toxische ondersteuning bij prostaatkanker van arts-bioloog drs. Engelbert Valstar.

En als donateur kunt u ook korting krijgen bij verschillende bedrijven, waaronder bij MEDpro voor o.a. prostasol  een veel gebruikt natuurlijk middel bij prostaatkanker als alternatief voor hormoontherapie

Zie ook in gerelateerde artikelen

19 april 2024: Bron: JAMA Oncol. Published online April 18, 2024

Urinetest met 18 genen test voorspelt beter of prostaatkanker zich als hooggradig zal ontwikkelen in vergelijking met de eerdere MSP2 test. De urinetesten zijn bedoeld om mannen met verhoogde niveaus van prostaatspecifiek antigeen (PSA) te evalueren om te helpen bepalen of zij risico lopen op agressieve hooggradige prostaatkanker (Gleasonscores hoger dan 5 bv) en daarom aanvullende vervolgtesten nodig hebben, zoals biopsieën of in beeld brengen via bv een MRI of scans. Dat blijkt uit onderzoek van de universiteit van Michigan.

In deze diagnostische studie met 761 mannen in de ontwikkelingstudiegroep en 743 mannen in de validatiegroep werden nieuwe kankerspecifieke en hooggradige kankerspecifieke genen geïdentificeerd uit RNA-sequentiegegevens en optimaal gemodelleerd in een ontwikkelingsstudiegroep, wat een 18-genenanalyse opleverde.

In het onderzoek vergeleken de onderzoekers de resultaten van de urinetest die dus 18 genen testte met die van andere veelgebruikte reflextests voor prostaatkanker en ontdekten dat deze een hogere diagnostische nauwkeurigheid had, waardoor onnodige biopsieën konden worden verminderd terwijl de hoge gevoeligheid voor het detecteren van hooggradige prostaatkanker behouden bleef.

Hoewel PSA-testen vaak worden gebruikt om mannen te screenen op prostaatkanker, lijdt het aan een gebrek aan specificiteit, zowel voor prostaatkanker zelf als voor hooggradige prostaatkanker die een snelle behandeling vereist en patiënten niet in een wait-and-see programma / observatieprogramma kunnen. Daarom is er veel onderzoek gedaan naar de ontwikkeling van tests die kunnen beoordelen of een persoon met een hoge PSA-score waarschijnlijk een agressieve kanker zal hebben.

Uit het abstract de resultaten vertaald in het Nederlands:

  • Van de 761 mannen in de ontwikkelingsstudiegroep was de mediane (IQR) leeftijd 63 (58-68) jaar en het mediane (IQR) PSA-niveau 5,6 (4,6-7,2) ng/ml;
  • van de 743 mannen in de validatiegroep was de mediane (IQR) leeftijd 62 (57-68) jaar en het mediane (IQR) PSA-niveau 5,6 (4,1-8,0) ng/ml.
  • In de validatiegroep hadden 151 patiënten (20,3%) hoogwaardige PCa bij biopsie. De oppervlakte onder de karakteristieke curvewaarden van de ontvanger waren 0,60 met alleen PSA, 0,66 met de risicocalculator, 0,77 met PHI, 0,76 met het afgeleide multiplex 2-genenmodel, 0,72 met het afgeleide multiplex 3-genenmodel en 0,74 met de originele MPS model vergeleken met 0,81 bij gebruik van het MPS2-model en 0,82 bij gebruik van het MPS2+-model.
  • Bij een gevoeligheid van 95% zou het MPS2-model onnodige biopsieën hebben verminderd die zijn uitgevoerd in de initiële biopsiepopulatie (bereik voor andere tests, 15% tot 30%; bereik voor MPS2, 35% tot 42%) en herhaalde biopsiepopulatie (bereik voor andere tests 9% tot 21%; bereik voor MPS2, 46% tot 51%).
  • In de relevante subgroepen hadden de MPS2-modellen negatief voorspellende waarden van 95% tot 99% voor kankers van GG 2 of hoger en van 99% voor kankers van GG 3 of hoger.

Conclusie van de onderzoekers van de studie

In deze studie had een nieuwe prostaatkankertest met 18 genen een hogere diagnostische nauwkeurigheid voor hooggradige prostaatkanker (PCa) vergeleken met bestaande biomarkertests. Klinisch gezien zou het gebruik van deze urinetest het onnodig aantal uitgevoerde biopsieën aanzienlijk hebben verminderd, terwijl de zeer gevoelige detectie van hooggradige prostaatkanker behouden bleef. Deze gegevens ondersteunen het gebruik van deze nieuwe PCa-biomarkertest bij patiënten met verhoogde PSA-waarden om de potentiële schade van PCa-screening te verminderen en tegelijkertijd de voordelen op de lange termijn te behouden.


Het volledige studierapport is in Jama gepubliceerd en gratis in te zien:

Key Points

Question  Can a new 18-gene urinary test for high-grade prostate cancer (ie, grade group 2 or greater) improve prostate-specific antigen (PSA) screening outcomes relative to existing biomarker tests?

Findings  In this diagnostic study including 761 men in the development cohort and 743 men in the validation cohort, novel cancer-specific and high-grade cancer-specific genes were identified from RNA sequencing data and optimally modeled in a development cohort, yielding an 18-gene test for high-grade prostate cancer. Applying a testing approach with 95% sensitivity for high-grade prostate cancer to an external validation population, use of the 18-gene test would have reduced the number of unnecessary biopsies performed relative to current guideline-endorsed tests.

Meaning  The new 18-gene prostate cancer test may reduce more burdensome additional testing (eg, imaging and biopsy) while maintaining highly sensitive detection of high-grade cancer in patients undergoing PSA screening.

Abstract

Importance  Benefits of prostate cancer (PCa) screening with prostate-specific antigen (PSA) alone are largely offset by excess negative biopsies and overdetection of indolent cancers resulting from the poor specificity of PSA for high-grade PCa (ie, grade group 2 or greater).

Objective  To develop a multiplex urinary panel for high-grade PCa and validate its external performance relative to current guideline-endorsed biomarkers.

Design, Setting, and Participants  RNA sequencing analysis of 58 724 genes identified 54 markers of PCa, including 17 markers uniquely overexpressed by high-grade cancers. Gene expression and clinical factors were modeled in a new urinary test for high-grade PCa (MyProstateScore 2.0 ). Optimal models were developed in parallel without prostate volume (MPS2) and with prostate volume (MPS2+). The locked models underwent blinded external validation in a prospective National Cancer Institute trial cohort. Data were collected from January 2008 to December 2020, and data were analyzed from November 2022 to November 2023.

Exposure  Protocolized blood and urine collection and transrectal ultrasound-guided systematic prostate biopsy.

Main Outcomes and Measures  Multiple biomarker tests were assessed in the validation cohort, including serum PSA alone, the Prostate Cancer Prevention Trial risk calculator, and the Prostate Health Index (PHI) as well as derived multiplex 2-gene and 3-gene models, the original 2-gene MPS test, and the 18-gene MPS2 models. Under a testing approach with 95% sensitivity for PCa of GG 2 or greater, measures of diagnostic accuracy and clinical consequences of testing were calculated. Cancers of GG 3 or greater were assessed secondarily.

Results  Of 761 men included in the development cohort, the median (IQR) age was 63 (58-68) years, and the median (IQR) PSA level was 5.6 (4.6-7.2) ng/mL; of 743 men included in the validation cohort, the median (IQR) age was 62 (57-68) years, and the median (IQR) PSA level was 5.6 (4.1-8.0) ng/mL. In the validation cohort, 151 (20.3%) had high-grade PCa on biopsy. Area under the receiver operating characteristic curve values were 0.60 using PSA alone, 0.66 using the risk calculator, 0.77 using PHI, 0.76 using the derived multiplex 2-gene model, 0.72 using the derived multiplex 3-gene model, and 0.74 using the original MPS model compared with 0.81 using the MPS2 model and 0.82 using the MPS2+ model. At 95% sensitivity, the MPS2 model would have reduced unnecessary biopsies performed in the initial biopsy population (range for other tests, 15% to 30%; range for MPS2, 35% to 42%) and repeat biopsy population (range for other tests, 9% to 21%; range for MPS2, 46% to 51%). Across pertinent subgroups, the MPS2 models had negative predictive values of 95% to 99% for cancers of GG 2 or greater and of 99% for cancers of GG 3 or greater.

Conclusions and Relevance  In this study, a new 18-gene PCa test had higher diagnostic accuracy for high-grade PCa relative to existing biomarker tests. Clinically, use of this test would have meaningfully reduced unnecessary biopsies performed while maintaining highly sensitive detection of high-grade cancers. These data support use of this new PCa biomarker test in patients with elevated PSA levels to reduce the potential harms of PCa screening while preserving its long-term benefits.

Article Information

Accepted for Publication: December 6, 2023.

Published Online: April 18, 2024. doi:10.1001/jamaoncol.2024.0455

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2024 Tosoian JJ et al. JAMA Oncology.

Corresponding Author: Arul M. Chinnaiyan, MD, PhD, Department of Pathology, University of Michigan, 1500 E Medical Center Dr, 5316 Rogel Cancer Center, Ann Arbor, MI 48109-0940 (arul@med.umich.edu).

Author Contributions: Drs Y. Zheng and Chinnaiyan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Tosoian, Zhang, and Xiao serve as co–first authors. Drs Wei and Chinnaiyan serve as co–senior authors.

Concept and design: Tosoian, Xiao, Niknafs, Tomlins, Srivastava, Feng, Sanda, Y. Zheng, Chinnaiyan.

Acquisition, analysis, or interpretation of data: Tosoian, Zhang, Xiao, Xie, Samora, Niknafs, Chopra, Siddiqui, H. Zheng, Herron, Vaishampayan, Robinson, Arivoli, Trock, Ross, Morgan, Palapattu, Salami, Kunju, Sokoll, Chan, Sanda, Y. Zheng, Wei, Chinnaiyan.

Drafting of the manuscript: Tosoian, Zhang, Xiao, Xie, Samora, Niknafs, Trock, Chinnaiyan.

Critical review of the manuscript for important intellectual content: Tosoian, Xiao, Samora, Niknafs, Chopra, Siddiqui, H. Zheng, Herron, Vaishampayan, Robinson, Arivoli, Trock, Ross, Morgan, Palapattu, Salami, Kunju, Tomlins, Sokoll, Chan, Srivastava, Feng, Sanda, Y. Zheng, Wei, Chinnaiyan.

Statistical analysis: Zhang, Xie, Samora, Niknafs, Vaishampayan, Arivoli, Trock, Salami, Y. Zheng.

Obtained funding: Tosoian, Xiao, Niknafs, Tomlins, Chan, Feng, Sanda, Chinnaiyan.

Administrative, technical, or material support: Tosoian, Xiao, Samora, Chopra, Siddiqui, H. Zheng, Herron, Arivoli, Palapattu, Salami, Chan, Srivastava, Feng, Sanda, Wei.

Supervision: Tosoian, Morgan, Palapattu, Srivastava, Feng, Y. Zheng, Chinnaiyan.

Conflict of Interest Disclosures: Dr Tosoian reported personal fees from LynxDx and equity interest from LynxDx outside the submitted work; and has a patent for a novel multiplex urine test for high-grade prostate cancer pending. Dr Zhang reported personal fees from LynxDx outside the submitted work and has a patent for a novel multiplex urine test for high-grade prostate cancer pending. Dr Xiao reported grants from Prostate Cancer Foundation as well as personal fees from LynxDx during the conduct of the study; and has a patent for a novel multiplex urine test for high-grade prostate cancer pending. Dr Niknafs reported personal fees from LynxDx during the conduct of the study; personal fees from LynxDx outside the submitted work; and has a patent for use of some biomarkers as diagnostic tools issued. Dr Trock reported personal fees from Artera during the conduct of the study as well as personal fees from Myriad Genetics outside the submitted work. Dr Salami reported personal fees from Bayer and NRichDx during the conduct of the study. Dr Tomlins reported grants and personal fees from Astellas as well as equity interest from Strata Oncology outside the submitted work; and has a patent for ETS gene fusions in prostate cancer issued and licensed to LynxDx. Dr Sokoll reported grants from the National Institutes of Health during the conduct of the study. Dr Feng reported grants from the National Cancer Institute during the conduct of the study. Dr Chinnaiyan reported grants from the National Institutes of Health/National Cancer Institute, Prostate Cancer Foundation, and Howard Hughes Medical Institute; nonfinancial support from the American Cancer Society during the conduct of the study; and equity interest from LynxDx outside the submitted work; and has a patent for a novel multiplex urine test for high-grade prostate cancer pending. No other disclosures were reported.

Funding/Support: This work was funded by the Michigan-Vanderbilt Early Detection Research Network Biomarker Characterization Center (grant U2C CA271854) and the Early Detection Research Network Data Management and Coordinating Center (grant U24 CA086368). The Early Detection Research Network Data Management and Coordinating Center carried out analyses on the blinded validation cohort. Other sources of funding not involved in the design and conduct of the study included the Michigan Prostate Specialized Program of Research Excellence (grant P50 CA186786), National Cancer Institute Outstanding Investigator Award (Dr Chinnaiyan; grant R35 CA231996), Johns Hopkins University Biomarker Reference Laboratory (grant U24 CA115102), National Cancer Institute Early Detection Research Network Clinical Validation Center (grant U01 CA113913), Prostate Cancer Foundation Young Investigator Award (Drs Tosoian and Xiao), Prostate Cancer Foundation, Howard Hughes Medical Institute (Dr Chinnaiyan), and the American Cancer Society (Dr Chinnaiyan).

Role of the Funder/Sponsor: The Early Detection Research Network Data Management and Coordinating Center members had access to the blinded validation cohort analysis; the other funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Group Information: Members of the EDRN-PCA3 Study Group appear in Supplement 4.

Meeting Presentation: These data were presented in abstract form at the American Urological Association 2023 Annual Meeting; April 28, 2023; Chicago, IL.

Previous Posting: This article was posted as a preprint on medRxiv.org.

Data Sharing Statement: See Supplement 5.

Additional Contributions: We thank Stephanie Miner, PhD (Michigan Center for Translational Pathology, University of Michigan, Ann Arbor), for her help in the editing and file preparation of this study. Dr Miner was not compensated for her work.

References
1.
Kocarnik  JM, Compton  K, Dean  FE,  et al; Global Burden of Disease 2019 Cancer Collaboration.  Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019.   JAMA Oncol. 2022;8(3):420-444. doi:10.1001/jamaoncol.2021.6987
ArticlePubMedGoogle ScholarCrossref
2.
Hugosson  J, Roobol  MJ, Månsson  M,  et al; ERSPC investigators.  A 16-yr follow-up of the European Randomized Study of Screening for Prostate Cancer.   Eur Urol. 2019;76(1):43-51. doi:10.1016/j.eururo.2019.02.009PubMedGoogle ScholarCrossref
3.
Frånlund  M, Månsson  M, Godtman  RA,  et al.  Results from 22 years of followup in the Göteborg randomized population-based prostate cancer screening trial.   J Urol. 2022;208(2):292-300. doi:10.1097/JU.0000000000002696PubMedGoogle ScholarCrossref
4.
Fenton  JJ, Weyrich  MS, Durbin  S, Liu  Y, Bang  H, Melnikow  J.  Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US Preventive Services Task Force.   JAMA. 2018;319(18):1914-1931. doi:10.1001/jama.2018.3712
ArticlePubMedGoogle ScholarCrossref
5.
National Comprehensive Cancer Network. Prostate cancer early detection (version 1.2023). Accessed May 19, 2023. https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf
6.
Wei  JT, Barocas  D, Carlsson  S,  et al.  Early detection of prostate cancer: AUA/SUO guideline part i: prostate cancer screening.   J Urol. 2023;210(1):46-53. doi:10.1097/JU.0000000000003491PubMedGoogle ScholarCrossref
7.
Ahdoot  M, Wilbur  AR, Reese  SE,  et al.  MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis.   N Engl J Med. 2020;382(10):917-928. doi:10.1056/NEJMoa1910038PubMedGoogle ScholarCrossref
8.
Zhu  AAS, DiBianco  JM, Qi  J,  et al.  PD38-01 Negative predictive value of prostate MRI in real world practice: results from a statewide surgical collaboration.   J Urol. 2023;209(4):e993. doi:10.1097/JU.0000000000003336.01Google ScholarCrossref
9.
Sathianathen  NJ, Omer  A, Harriss  E,  et al.  Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis.   Eur Urol. 2020;78(3):402-414. doi:10.1016/j.eururo.2020.03.048PubMedGoogle ScholarCrossref
10.
Sonn  GA, Fan  RE, Ghanouni  P,  et al.  Prostate magnetic resonance imaging interpretation varies substantially across radiologists.   Eur Urol Focus. 2019;5(4):592-599. doi:10.1016/j.euf.2017.11.010PubMedGoogle ScholarCrossref
11.
Jiao  B, Gulati  R, Hendrix  N,  et al.  Economic evaluation of urine-based or magnetic resonance imaging reflex tests in men with intermediate prostate-specific antigen levels in the United States.   Value Health. 2021;24(8):1111-1117. doi:10.1016/j.jval.2021.02.009PubMedGoogle ScholarCrossref
12.
Borregales  LD, DeMeo  G, Gu  X,  et al.  Grade migration of prostate cancer in the United States during the last decade.   J Natl Cancer Inst. 2022;114(7):1012-1019. doi:10.1093/jnci/djac066PubMedGoogle ScholarCrossref
13.
Eyrich  NW, Morgan  TM, Tosoian  JJ.  Biomarkers for detection of clinically significant prostate cancer: contemporary clinical data and future directions.   Transl Androl Urol. 2021;10(7):3091-3103. doi:10.21037/tau-20-1151PubMedGoogle ScholarCrossref
14.
Abeshouse  A, Ahn  J, Akbani  R,  et al; Cancer Genome Atlas Research Network.  The molecular taxonomy of primary prostate cancer.   Cell. 2015;163(4):1011-1025. doi:10.1016/j.cell.2015.10.025PubMedGoogle ScholarCrossref
15.
Fraser  M, Sabelnykova  VY, Yamaguchi  TN,  et al.  Genomic hallmarks of localized, non-indolent prostate cancer.   Nature. 2017;541(7637):359-364. doi:10.1038/nature20788PubMedGoogle ScholarCrossref
16.
Prensner  JR, Iyer  MK, Balbin  OA,  et al.  Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression.   Nat Biotechnol. 2011;29(8):742-749. doi:10.1038/nbt.1914PubMedGoogle ScholarCrossref
17.
Iyer  MK, Niknafs  YS, Malik  R,  et al.  The landscape of long noncoding RNAs in the human transcriptome.   Nat Genet. 2015;47(3):199-208. doi:10.1038/ng.3192PubMedGoogle ScholarCrossref
18.
Bossuyt  PM, Reitsma  JB, Bruns  DE,  et al; STARD Group.  STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies.   BMJ. 2015;351:h5527. doi:10.1136/bmj.h5527PubMedGoogle ScholarCrossref
19.
Tomlins  SA, Day  JR, Lonigro  RJ,  et al.  Urine TMPRSS2:ERG plus PCA3 for individualized prostate cancer risk assessment.   Eur Urol. 2016;70(1):45-53. doi:10.1016/j.eururo.2015.04.039PubMedGoogle ScholarCrossref
20.
Wei  JT, Feng  Z, Partin  AW,  et al.  Can urinary PCA3 supplement PSA in the early detection of prostate cancer?   J Clin Oncol. 2014;32(36):4066-4072. doi:10.1200/JCO.2013.52.8505PubMedGoogle ScholarCrossref
21.
Thompson  IM, Ankerst  DP, Chi  C,  et al.  Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial.   J Natl Cancer Inst. 2006;98(8):529-534. doi:10.1093/jnci/djj131PubMedGoogle ScholarCrossref
22.
Ankerst  DP, Till  C, Boeck  A,  et al.  The impact of prostate volume, number of biopsy cores and American Urological Association symptom score on the sensitivity of cancer detection using the Prostate Cancer Prevention Trial risk calculator.   J Urol. 2013;190(1):70-76. doi:10.1016/j.juro.2012.12.108PubMedGoogle ScholarCrossref
23.
Roobol  MJ, Schröder  FH, Hugosson  J,  et al.  Importance of prostate volume in the European Randomised Study of Screening for Prostate Cancer (ERSPC) risk calculators: results from the Prostate Biopsy Collaborative Group.   World J Urol. 2012;30(2):149-155. doi:10.1007/s00345-011-0804-yPubMedGoogle ScholarCrossref
24.
Vergouwe  Y, Nieboer  D, Oostenbrink  R,  et al.  A closed testing procedure to select an appropriate method for updating prediction models.   Stat Med. 2017;36(28):4529-4539. doi:10.1002/sim.7179PubMedGoogle ScholarCrossref
25.
Moons  KG, Altman  DG, Reitsma  JB,  et al.  Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration.   Ann Intern Med. 2015;162(1):W1-73. doi:10.7326/M14-0698PubMedGoogle ScholarCrossref
26.
Lillard  JW  Jr, Moses  KA, Mahal  BA, George  DJ.  Racial disparities in Black men with prostate cancer: a literature review.   Cancer. 2022;128(21):3787-3795. doi:10.1002/cncr.34433PubMedGoogle ScholarCrossref
27.
Johnson  JA, Moore  B, Hwang  EK, Hickner  A, Yeo  H.  The accuracy of race & ethnicity data in US based healthcare databases: a systematic review.   Am J Surg. 2023;226(4):463-470. doi:10.1016/j.amjsurg.2023.05.011PubMedGoogle ScholarCrossref
28.
Sanda  MG, Feng  Z, Howard  DH,  et al; and the EDRN-PCA3 Study Group.  Association between combined TMPRSS2:ERG and PCA3 RNA urinary testing and detection of aggressive prostate cancer.   JAMA Oncol. 2017;3(8):1085-1093. doi:10.1001/jamaoncol.2017.0177
ArticlePubMedGoogle ScholarCrossref
29.
Robin  X, Turck  N, Hainard  A,  et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves.   BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77PubMedGoogle ScholarCrossref
30.
Tosoian  JJ, Trock  BJ, Morgan  TM,  et al.  Use of the MyProstateScore Test to rule out clinically significant cancer: validation of a straightforward clinical testing approach.   J Urol. 2021;205(3):732-739. doi:10.1097/JU.0000000000001430PubMedGoogle ScholarCrossref
31.
de la Calle  C, Patil  D, Wei  JT,  et al.  Multicenter evaluation of the prostate health index to detect aggressive prostate cancer in biopsy naïve men.   J Urol. 2015;194(1):65-72. doi:10.1016/j.juro.2015.01.091PubMedGoogle ScholarCrossref
32.
McKiernan  J, Donovan  MJ, O’Neill  V,  et al.  A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy.   JAMA Oncol. 2016;2(7):882-889. doi:10.1001/jamaoncol.2016.0097
ArticlePubMedGoogle ScholarCrossref
33.
Parekh  DJ, Punnen  S, Sjoberg  DD,  et al.  A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer.   Eur Urol. 2015;68(3):464-470. doi:10.1016/j.eururo.2014.10.021PubMedGoogle ScholarCrossref
34.
Loeb  S, Sanda  MG, Broyles  DL,  et al.  The Prostate Health Index selectively identifies clinically significant prostate cancer.   J Urol. 2015;193(4):1163-1169. doi:10.1016/j.juro.2014.10.121PubMedGoogle ScholarCrossref
35.
Haese  A, Trooskens  G, Steyaert  S,  et al.  Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy.   J Urol. 2019;202(2):256-263. doi:10.1097/JU.0000000000000293PubMedGoogle ScholarCrossref
36.
Assel  M, Sjoberg  D, Elders  A,  et al.  Guidelines for reporting of statistics for clinical research in urology.   Eur Urol. 2019;75(3):358-367. doi:10.1016/j.eururo.2018.12.014PubMedGoogle ScholarCrossref
37.
US Centers for Medicare & Medicaid Services. Biomarker testing for prostate cancer diagnosis. Accessed March 23, 2020. https://www.cms.gov/medicare-coverage-database/view/lcd.aspx?LCDId=37733
38.
Nordström  T, Vickers  A, Assel  M, Lilja  H, Grönberg  H, Eklund  M.  Comparison between the four-kallikrein panel and Prostate Health Index for predicting prostate cancer.   Eur Urol. 2015;68(1):139-146. doi:10.1016/j.eururo.2014.08.010PubMedGoogle ScholarCrossref
39.
ElShafei  A, Nyame  Y, Kara  O,  et al.  More favorable pathological outcomes in men with low risk prostate cancer diagnosed on repeat versus initial transrectal ultrasound guided prostate biopsy.   J Urol. 2016;195(6):1767-1772. doi:10.1016/j.juro.2015.12.079PubMedGoogle ScholarCrossref
40.
Kearns  J, Lin  D. Utilizing biomarkers in patients with prior negative prostate biopsy. In: Change  SS, Cookson  MS, eds.  Prostate Cancer: Clinical Case Scenarios. Springer International Publishing; 2018:43-52.
41.
Tan  N, Lane  BR, Li  J, Moussa  AS, Soriano  M, Jones  JS.  Prostate cancers diagnosed at repeat biopsy are smaller and less likely to be high grade.   J Urol. 2008;180(4):1325-1329. doi:10.1016/j.juro.2008.06.022PubMedGoogle ScholarCrossref
42.
Vickers  AJ, van Calster  B, Steyerberg  EW.  A simple, step-by-step guide to interpreting decision curve analysis.   Diagn Progn Res. 2019;3:18. doi:10.1186/s41512-019-0064-7PubMedGoogle ScholarCrossref
43.
Vickers  AJ, Van Calster  B, Steyerberg  EW.  Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests.   BMJ. 2016;352:i6. doi:10.1136/bmj.i6PubMedGoogle ScholarCrossref
44.
European Association of Urologists Guidelines Office. Prostate cancer. Accessed December 1, 2023. https://uroweb.org/guidelines/prostate-cancer
45.
Narayan  VM.  A critical appraisal of biomarkers in prostate cancer.   World J Urol. 2020;38(3):547-554. doi:10.1007/s00345-019-02759-xPubMedGoogle ScholarCrossref
46.
Nordström  T, Adolfsson  J, Grönberg  H, Eklund  M.  Repeat prostate-specific antigen tests before prostate biopsy decisions.   J Natl Cancer Inst. 2016;108(12):djw165. doi:10.1093/jnci/djw165PubMedGoogle ScholarCrossref
47.
McKiernan  J, Noerholm  M, Tadigotla  V,  et al.  A urine-based exosomal gene expression test stratifies risk of high-grade prostate cancer in men with prior negative prostate biopsy undergoing repeat biopsy.   BMC Urol. 2020;20(1):138. doi:10.1186/s12894-020-00712-4PubMedGoogle ScholarCrossref
48.
Tosoian  JJ, Sessine  MS, Trock  BJ,  et al.  MyProstateScore in men considering repeat biopsy: validation of a simple testing approach.   Prostate Cancer Prostatic Dis. 2023;26(3):563-567. doi:10.21203/rs.3.rs-1728404/v1PubMedGoogle ScholarCrossref
50.
Wilson  JMG, Jungner  G. Principles and practice of screening for disease. Accessed December 1, 2023. https://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf?sequence=17&isAllowed=y
51.
Bloom  JB, Daneshvar  MA, Lebastchi  AH,  et al.  Risk of adverse pathology at prostatectomy in the era of MRI and targeted biopsies; rethinking active surveillance for intermediate risk prostate cancer patients.   Urol Oncol. 2021;39(10):729.e1-729.e6. doi:10.1016/j.urolonc.2021.02.018PubMedGoogle ScholarCrossref
52.
Nakanishi  H, Groskopf  J, Fritsche  HA,  et al.  PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance.   J Urol. 2008;179(5):1804-1809. doi:10.1016/j.juro.2008.01.013PubMedGoogle ScholarCrossref
53.
Prensner  JR, Zhao  S, Erho  N,  et al.  RNA biomarkers associated with metastatic progression in prostate cancer: a multi-institutional high-throughput analysis of SChLAP1.   Lancet Oncol. 2014;15(13):1469-1480. doi:10.1016/S1470-2045(14)71113-1PubMedGoogle ScholarCrossref
54.
Young  A, Palanisamy  N, Siddiqui  J,  et al.  Correlation of urine TMPRSS2:ERG and PCA3 to ERG+ and total prostate cancer burden.   Am J Clin Pathol. 2012;138(5):685-696. doi:10.1309/AJCPU7PPWUPYG8OHPubMedGoogle ScholarCrossref
55.
Hendriks  R, Dijkstra  S, Cornel  EB,  et al.  Elevated HOXC6/DLX1 mRNA biomarker levels in urine to help select patients at increased risk for high-grade prostate cancer detection upon prostate biopsy.   J Clin Oncol. 2016;34(2)(suppl):31. doi:10.1200/jco.2016.34.2_suppl.31Google ScholarCrossref
56.
Salami  SS, Kaplan  JB, Nallandhighal  S,  et al.  Biologic significance of magnetic resonance imaging invisibility in localized prostate cancer.   JCO Precis Oncol. 2019;3:PO.19.00054. Published online June 12, 2019. doi:10.1200/PO.19.00054PubMedGoogle ScholarCrossref
57.
Klein  EA, Cooperberg  MR, Magi-Galluzzi  C,  et al.  A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling.   Eur Urol. 2014;66(3):550-560. doi:10.1016/j.eururo.2014.05.004PubMedGoogle ScholarCrossref
58.
Salami  SS, Hovelson  DH, Kaplan  JB,  et al.  Transcriptomic heterogeneity in multifocal prostate cancer.   JCI Insight. 2018;3(21):e123468. doi:10.1172/jci.insight.123468PubMedGoogle ScholarCrossref
59.
Wei  L, Wang  J, Lampert  E,  et al.  Intratumoral and intertumoral genomic heterogeneity of multifocal localized prostate cancer impacts molecular classifications and genomic prognosticators.   Eur Urol. 2017;71(2):183-192. doi:10.1016/j.eururo.2016.07.008PubMedGoogle ScholarCrossref
60.
Moussa  AS, Kattan  MW, Berglund  R, Yu  C, Fareed  K, Jones  JS.  A nomogram for predicting upgrading in patients with low- and intermediate-grade prostate cancer in the era of extended prostate sampling.   BJU Int. 2010;105(3):352-358. doi:10.1111/j.1464-410X.2009.08778.xPubMedGoogle ScholarCrossref
61.
Epstein  JI, Feng  Z, Trock  BJ, Pierorazio  PM.  Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades.   Eur Urol. 2012;61(5):1019-1024. doi:10.1016/j.eururo.2012.01.050PubMedGoogle ScholarCrossref
62.
Bullock  N, Simpkin  A, Fowler  S, Varma  M, Kynaston  H, Narahari  K.  Pathological upgrading in prostate cancer treated with surgery in the United Kingdom: trends and risk factors from the British Association of Urological Surgeons Radical Prostatectomy Registry.   BMC Urol. 2019;19(1):94. doi:10.1186/s12894-019-0526-9PubMedGoogle ScholarCrossref
63.
Bandala-Jacques  A, Castellanos Esquivel  KD, Pérez-Hurtado  F, Hernández-Silva  C, Reynoso-Noverón  N.  Prostate cancer risk calculators for healthy populations: systematic review.   JMIR Cancer. 2021;7(3):e30430. doi:10.2196/30430PubMedGoogle ScholarCrossref
64.
Ankerst  DP, Straubinger  J, Selig  K,  et al.  A contemporary prostate biopsy risk calculator based on multiple heterogeneous cohorts.   Eur Urol. 2018;74(2):197-203. doi:10.1016/j.eururo.2018.05.003PubMedGoogle ScholarCrossref
65.
EDRN Prostate MRI Biomarker Study (P-MRI). ClinicalTrials.gov identifier: NCT03784924. Updated February 23, 2024. Accessed December 1, 2023. https://ClinicalTrials.gov/show/NCT03784924



Plaats een reactie ...

Reageer op "Urinetest met 18 genen ontdekt beter of prostaatkanker hooggradig is of zal worden dan de 2-genentest via PSA blijkt uit nieuwe studie"


Gerelateerde artikelen
 

Gerelateerde artikelen

Urinetest met 18 genen ontdekt >> Prostaatkanker blijkt zich >> MRI van prostaat traceert >> Nieuwe diagnostische ontwikkelingen >> Combinatie van urinetest op >> Oncotype DX Genomic Prostate >> Aanwezigheid van bepaalde >> Prostaat-specifiek membraanantigeen >> Nieuwe richtlijnen bij diagnostiek >> finasteride kan prostaatkanker >>