Mocht u de informatie op onze website kanker-actueel.nl waarderen dan wilt u ons misschien ondersteunen met een donatie

Ons rekeningnummer is: RABO 37.29.31.138 t.n.v. Stichting Gezondheid Actueel in Terneuzen. 

Onze IBANcode is NL79 RABO 0372 9311 38

Als donateur kunt u ook korting krijgen bij verschillende bedrijven.

En we hebben een ANBI status

30 oktober 2019: Bron: JAMA

Alle vrouwen met de diagnose borstkanker genetisch testen op BRCA1/BRCA2/PALB2 kan voorkomen dat jaarlijks duizenden patienten aan eierstokkanker en borstkanker overlijden. Dit in vergelijking met alleen die vrouwen genetisch te testen die een familiegeschiedenis hebben van erfelijke afwijkingen of op basis van klinische gegevens van de borstkankerpatienten. Dit blijkt uit een studie uitgevoerd bij totaal 11.830 patienten met borstkanker in de VK (Verenigd Koninkrijk) en USA. 

Om maar een paar cijfers te noemen: 

Eén jaar ongeselecteerde multigene-testen kunnen 2101 gevallen van borstkanker en eierstokkanker voorkomen en 633 sterfgevallen in het Verenigd Koninkrijk en 9733 gevallen van borstkanker en eierstokkanker  en 2406 sterfgevallen in de Verenigde Staten voorkomen.

Kostenefectiviteit in het medische systeem van het Verenigd Koninkrijk blijkt 98% tot 99%. In de USA ligt dat wel lager 64% tot 68% maar dat heeft ook met het systeem van de gezondheidszorg te maken. 

Conclusie van de onderzoekers is dan ook

De bevindingen van deze studie suggereren dat niet-geselecteerde multigenentesten voor borstkanker-gevoeligheidsgenen BRCA1 / BRCA2 / PALB2 toekomstige borstkanker gevallen en eierstokkanker gevallen en gerelateerde sterfgevallen aanzienlijk kunnen verminderen in vergelijking met de huidige klinische strategie. Onze analyse suggereert dat een niet-geselecteerde teststrategie uiterst kosteneffectief is voor gezondheidszorgsystemen in het VK en de VS en een basis biedt voor verandering in de huidige richtlijnen en beleid om deze strategie te implementeren.

(This study’s findings suggest that unselected multigene testing for BC susceptibility genes BRCA1/BRCA2/PALB2 can substantially reduce future BC and OC cases and related deaths compared with the current clinical strategy. Our analysis suggests that an unselected testing strategy is extremely cost-effective for UK and US health systems and provides a basis for change in current guidelines and policy to implement this strategy.)

Het volledige studierapport: A Cost-effectiveness Analysis of Multigene Testing for All Patients With Breast Cancer  is gratis in te zien in JAMA of te downloaden als PDF

Hier het abstract:

Audio Interview (12:23)
Cost-effectiveness of Multigene Testing for All Patients With Breast Cancer
Key Points

Question  Is unselected genetic testing of all women with breast cancer cost-effective compared with testing based on clinical criteria or family history?

Findings  In this cost-effectiveness microsimulation modeling study incorporating data from 11 836 women, unselected BRCA1/BRCA2/PALB2 testing at breast cancer diagnosis was extremely cost-effective compared with BRCA1/BRCA2 testing based on clinical criteria or family history for UK and US health systems, with incremental cost-effectiveness ratios of £10 464 or £7216 and $65 661 or $61 618 per quality-adjusted life-year, respectively. One year’s unselected panel genetic testing could prevent 2101 cases of breast or ovarian cancer and 633 deaths in the United Kingdom and 9733 cases and 2406 deaths in the United States.

Meaning  These findings support changing current policy to expand genetic testing to all women with breast cancer.

Abstract

Importance  Moving to multigene testing for all women with breast cancer (BC) could identify many more mutation carriers who can benefit from precision prevention. However, the cost-effectiveness of this approach remains unaddressed.

Objective  To estimate incremental lifetime effects, costs, and cost-effectiveness of multigene testing of all patients with BC compared with the current practice of genetic testing (BRCA) based on family history (FH) or clinical criteria.

Design, Setting, and Participants  This cost-effectiveness microsimulation modeling study compared lifetime costs and effects of high-risk BRCA1/BRCA2/PALB2 (multigene) testing of all unselected patients with BC (strategy A) with BRCA1/BRCA2 testing based on FH or clinical criteria (strategy B) in United Kingdom (UK) and US populations. Data were obtained from 11 836 patients in population-based BC cohorts (regardless of FH) recruited to 4 large research studies. Data were collected and analyzed from January 1, 2018, through June 8, 2019. The time horizon is lifetime. Payer and societal perspectives are presented. Probabilistic and 1-way sensitivity analyses evaluate model uncertainty.

Interventions  In strategy A, all women with BC underwent BRCA1/BRCA2/PALB2 testing. In strategy B, only women with BC fulfilling FH or clinical criteria underwent BRCA testing. Affected BRCA/PALB2 carriers could undertake contralateral preventive mastectomy; BRCA carriers could choose risk-reducing salpingo-oophorectomy (RRSO). Relatives of mutation carriers underwent cascade testing. Unaffected relative carriers could undergo magnetic resonance imaging or mammography screening, chemoprevention, or risk-reducing mastectomy for BC risk and RRSO for ovarian cancer (OC) risk.

Main Outcomes and Measures  Incremental cost-effectiveness ratio (ICER) was calculated as incremental cost per quality-adjusted life-year (QALY) gained and compared with standard £30 000/QALY and $100 000/QALY UK and US thresholds, respectively. Incidence of OC, BC, excess deaths due to heart disease, and the overall population effects were estimated.

Results  BRCA1/BRCA2/PALB2 multigene testing for all patients detected with BC annually would cost £10 464/QALY (payer perspective) or £7216/QALY (societal perspective) in the United Kingdom or $65 661/QALY (payer perspective) or $61 618/QALY (societal perspective) in the United States compared with current BRCA testing based on clinical criteria or FH. This is well below UK and US cost-effectiveness thresholds. In probabilistic sensitivity analysis, unselected multigene testing remained cost-effective for 98% to 99% of UK and 64% to 68% of US health system simulations. One year’s unselected multigene testing could prevent 2101 cases of BC and OC and 633 deaths in the United Kingdom and 9733 cases of BC and OC and 2406 deaths in the United States. Correspondingly, 8 excess deaths due to heart disease occurred in the United Kingdom and 35 in the United States annually.

Conclusions and Relevance  This study found unselected, high-risk multigene testing for all patients with BC to be extremely cost-effective compared with testing based on FH or clinical criteria for UK and US health systems. These findings support changing current policy to expand genetic testing to all women with BC.

Referenties

References
1.
National Institute for Health and Care Excellence. Familial breast cancer: classification, care and managing breast cancer and related risks in people with a family history of breast cancer. https://www.nice.org.uk/Guidance/CG164. Published June 2013. Accessed March 1, 2018.
2.
NCCN. NCCN clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast and ovarian. Version 1.2018. https://www2.tri-kobe.org/nccn/guideline/gynecological/english/genetic_familial.pdf. Published October 3, 2017. Accessed May 2, 2019.
3.
Møller  P, Hagen  AI, Apold  J,  et al.  Genetic epidemiology of BRCA mutations—family history detects less than 50% of the mutation carriers.  Eur J Cancer. 2007;43(11):1713-1717. doi:10.1016/j.ejca.2007.04.023PubMedGoogle ScholarCrossref
4.
Beitsch  PD, Whitworth  PW, Hughes  K,  et al.  Underdiagnosis of hereditary breast cancer: are genetic testing guidelines a tool or an obstacle?  J Clin Oncol. 2019;37(6):453-460. doi:10.1200/JCO.18.01631PubMedGoogle ScholarCrossref
5.
Norum  J, Grindedal  EM, Heramb  C,  et al.  BRCA mutation carrier detection: a model-based cost-effectiveness analysis comparing the traditional family history approach and the testing of all patients with breast cancer.  ESMO Open. 2018;3(3):e000328. doi:10.1136/esmoopen-2018-000328PubMedGoogle ScholarCrossref
6.
Childers  CP, Childers  KK, Maggard Gibbons  M, Macinko  J.  National estimates of genetic testing in women with a history of breast or ovarian cancer.  J Clin Oncol. 2017;35(34):3800-3806. doi:10.1200/JCO.2017.73.6314PubMedGoogle ScholarCrossref
7.
Manchanda  R, Blyuss  O, Gaba  F,  et al.  Current detection rates and time to detection of all identifiable BRCA carriers in the Greater London population.  J Med Genet. 2018;55(8):538-545. doi:10.1136/jmedgenet-2017-105195PubMedGoogle ScholarCrossref
8.
Hughes  KS.  Genetic testing: what problem are we trying to solve?  J Clin Oncol. 2017;35(34):3789-3791. doi:10.1200/JCO.2017.74.7899PubMedGoogle ScholarCrossref
9.
Moore  K, Colombo  N, Scambia  G,  et al.  Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.  N Engl J Med. 2018;379(26):2495-2505. doi:10.1056/NEJMoa1810858PubMedGoogle ScholarCrossref
10.
Kuchenbaecker  KB, Hopper  JL, Barnes  DR,  et al; BRCA1 and BRCA2 Cohort Consortium.  Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers.  JAMA. 2017;317(23):2402-2416. doi:10.1001/jama.2017.7112
ArticlePubMedGoogle ScholarCrossref
11.
Antoniou  AC, Casadei  S, Heikkinen  T,  et al.  Breast cancer risk in families with mutations in PALB2 N Engl J Med. 2014;371(6):497-506. doi:10.1056/NEJMoa1400382PubMedGoogle ScholarCrossref
12.
Finch  A, Beiner  M, Lubinski  J,  et al; Hereditary Ovarian Cancer Clinical Study Group.  Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 mutation.  JAMA. 2006;296(2):185-192. doi:10.1001/jama.296.2.185
ArticlePubMedGoogle ScholarCrossref
13.
Rebbeck  TR, Kauff  ND, Domchek  SM.  Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers.  J Natl Cancer Inst. 2009;101(2):80-87. doi:10.1093/jnci/djn442PubMedGoogle ScholarCrossref
14.
Passaperuma  K, Warner  E, Causer  PA,  et al.  Long-term results of screening with magnetic resonance imaging in women with BRCA mutations.  Br J Cancer. 2012;107(1):24-30. doi:10.1038/bjc.2012.204PubMedGoogle ScholarCrossref
15.
Leach  MO, Boggis  CR, Dixon  AK,  et al; MARIBS Study Group.  Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS).  Lancet. 2005;365(9473):1769-1778. doi:10.1016/S0140-6736(05)66481-1PubMedGoogle ScholarCrossref
16.
Rebbeck  TR, Friebel  T, Lynch  HT,  et al.  Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group.  J Clin Oncol. 2004;22(6):1055-1062. doi:10.1200/JCO.2004.04.188PubMedGoogle ScholarCrossref
17.
Cuzick  J, Sestak  I, Bonanni  B,  et al; SERM Chemoprevention of Breast Cancer Overview Group.  Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta analysis of individual participant data.  Lancet. 2013;381(9880):1827-1834. doi:10.1016/S0140-6736(13)60140-3PubMedGoogle ScholarCrossref
18.
Haddow  J, Palomaki  G. ACCE: a model process for evaluating data on emerging genetic tests. In: Khoury  M, Little  J, Burke  W, eds.  Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease. New York, NY: Oxford University Press; 2003:217-233.
19.
Easton  DF, Pharoah  PD, Antoniou  AC,  et al.  Gene panel sequencing and the prediction of breast cancer risk.  N Engl J Med. 2015;372(23):2243-2257. doi:10.1056/NEJMsr1501341PubMedGoogle ScholarCrossref
20.
Evans  DG, Ingham  S, Dawe  S,  et al.  Breast cancer risk assessment in 8824 women attending a family history evaluation and screening programme.  Fam Cancer. 2014;13(2):189-196. doi:10.1007/s10689-013-9694-zPubMedGoogle ScholarCrossref
21.
Copson  ER, Maishman  TC, Tapper  WJ,  et al.  Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study.  Lancet Oncol. 2018;19(2):169-180. doi:10.1016/S1470-2045(17)30891-4PubMedGoogle ScholarCrossref
22.
Brentnall  AR, Cuzick  J, Buist  DSM, Bowles  EJA.  Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density.  JAMA Oncol. 2018;4(9):e180174. doi:10.1001/jamaoncol.2018.0174
ArticlePubMedGoogle ScholarCrossref
23.
Hopper  JL, Chenevix Trench  G, Jolley  DJ,  et al.  Design and analysis issues in a population-based, case-control family study of the genetic epidemiology of breast cancer and the Co-operative Family Registry for Breast Cancer Studies (CFRBCS).  J Natl Cancer Inst Monogr. 1999;(26):95-100. doi:10.1093/oxfordjournals.jncimonographs.a024232PubMedGoogle Scholar
24.
Mazzola  E, Blackford  A, Parmigiani  G, Biswas  S.  Recent enhancements to the genetic risk prediction model BRCAPRO.  Cancer Inform. 2015;14(suppl 2):147-157. doi:10.4137/CIN.S17292PubMedGoogle Scholar
25.
Antoniou  AC, Cunningham  AP, Peto  J,  et al.  The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions  [published correction appears in Br J Cancer. 2008;98(12):2015].  Br J Cancer. 2008;98(8):1457-1466. doi:10.1038/sj.bjc.6604305PubMedGoogle Scholar
26.
Cancer Research UK. Breast cancer incidence (invasive) statistics. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive. Published 2015. Accessed March 14, 2018.
27.
Centers for Disease Control and Prevention. United States cancer statistics: data visualizations. https://gis.cdc.gov/Cancer/USCS/DataViz.html. Published 2015. Accessed November 19, 2018.
28.
van Marcke  C, Collard  A, Vikkula  M, Duhoux  FP.  Prevalence of pathogenic variants and variants of unknown significance in patients at high risk of breast cancer: a systematic review and meta-analysis of gene panel data.  Crit Rev Oncol Hematol. 2018;132:138-144. doi:10.1016/j.critrevonc.2018.09.009PubMedGoogle Scholar
29.
Mersch  J, Brown  N, Pirzadeh Miller  S,  et al.  Prevalence of variant reclassification following hereditary cancer genetic testing.  JAMA. 2018;320(12):1266-1274. doi:10.1001/jama.2018.13152
ArticlePubMedGoogle Scholar
30.
Chai  X, Domchek  S, Kauff  N, Rebbeck  T, Chen  J.  RE: breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction.  J Natl Cancer Inst. 2015;107(9):djv217. doi:10.1093/jnci/djv217PubMedGoogle Scholar
31.
Domchek  SM, Friebel  TM, Singer  CF,  et al.  Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality.  JAMA. 2010;304(9):967-975. doi:10.1001/jama.2010.1237
ArticlePubMedGoogle Scholar
32.
Heemskerk Gerritsen  BA, Seynaeve  C, van Asperen  CJ,  et al; Hereditary Breast and Ovarian Cancer Research Group Netherlands.  Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: revisiting the evidence for risk reduction.  J Natl Cancer Inst. 2015;107(5):djv033. doi:10.1093/jnci/djv033PubMedGoogle Scholar
33.
Parker  WH, Feskanich  D, Broder  MS,  et al.  Long-term mortality associated with oophorectomy compared with ovarian conservation in the Nurses’ Health Study.  Obstet Gynecol. 2013;121(4):709-716. doi:10.1097/AOG.0b013e3182864350PubMedGoogle Scholar
34.
Rivera  CM, Grossardt  BR, Rhodes  DJ,  et al.  Increased cardiovascular mortality after early bilateral oophorectomy.  Menopause. 2009;16(1):15-23. doi:10.1097/gme.0b013e31818888f7PubMedGoogle Scholar
35.
National Institute of Health and Clinical Excellence.  Guide to the Methods of Technology Appraisal. London, UK: National Institute for Health and Care Excellence; 2013.
36.
Cancer Research UK. Ovarian cancer incidence statistics. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/incidence. Published 2015. Accessed March 14, 2018.
37.
Office for National Statistics. Cohort fertility: England and Wales. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/conceptionandfertilityrates/datasets/cohortfertilityenglandandwales. Published December 5, 2013. Accessed March 20, 2018.
38.
National Center for Health Statistics. Cohort fertility tables. https://www.cdc.gov/nchs/nvss/cohort_fertility_tables.htm. Reviewed November 16, 2015. Accessed November 20, 2018.
39.
Manchanda  R, Burnell  M, Loggenberg  K,  et al.  Cluster randomised non-inferiority trial comparing DVD-assisted and traditional genetic counselling in systematic population testing for BRCA1/2 mutations.  J Med Genet. 2016;53(7):472-480. doi:10.1136/jmedgenet-2015-103740PubMedGoogle Scholar
40.
Schwartz  MD, Valdimarsdottir  HB, Peshkin  BN,  et al.  Randomized noninferiority trial of telephone versus in person genetic counseling for hereditary breast and ovarian cancer.  J Clin Oncol. 2014;32(7):618-626. doi:10.1200/JCO.2013.51.3226PubMedGoogle Scholar
41.
Office for National Statistics. Lifetable for females in the UK. 2011; Office for National Statistics licensed under the Open Government Licence v.1.0. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/datasets/nationallifetablesunitedkingdomreferencetables. Published June 1, 2012. Accessed March 1, 2018.
42.
Arias  E, Heron  M, Xu  J.  United States life tables, 2014.  Natl Vital Stat Rep. 2017;66(4):1-64.PubMedGoogle Scholar
43.
Evans  DG, Lalloo  F, Ashcroft  L,  et al.  Uptake of risk reducing surgery in unaffected women at high risk of breast and ovarian cancer is risk, age, and time dependent.  Cancer Epidemiol Biomarkers Prev. 2009;18(8):2318-2324. doi:10.1158/1055-9965.EPI-09-0171PubMedGoogle Scholar
44.
Metcalfe  K, Eisen  A, Senter  L,  et al; Hereditary Breast Cancer Clinical Study Group.  International trends in the uptake of cancer risk reduction strategies in women with a BRCA1 or BRCA2 mutation.  Br J Cancer. 2019;121(1):15-21. doi:10.1038/s41416-019-0446-1PubMedGoogle Scholar
45.
Hammerschmidt  T, Goertz  A, Wagenpfeil  S, Neiss  A, Wutzler  P, Banz  K.  Validation of health economic models: the example of EVITA.  Value Health. 2003;6(5):551-559. doi:10.1046/j.1524-4733.2003.65241.xPubMedGoogle Scholar
46.
National Institute for Health and Care Excellence. Social value judgements: principles for the development of NICE guidance. 2nd ed. https://www.ncbi.nlm.nih.gov/books/NBK395865/. Published 2008. Accessed January 1, 2018.
47.
Ubel  PA, Hirth  RA, Chernew  ME, Fendrick  AM.  What is the price of life and why doesn’t it increase at the rate of inflation?  Arch Intern Med. 2003;163(14):1637-1641. doi:10.1001/archinte.163.14.1637
ArticlePubMedGoogle Scholar
48.
Neumann  PJ, Cohen  JT, Weinstein  MC.  Updating cost-effectiveness: the curious resilience of the $50,000 per QALY threshold.  N Engl J Med. 2014;371(9):796-797. doi:10.1056/NEJMp1405158PubMedGoogle Scholar
49.
National Institute for Health and Care Excellence.  Guide to the Methods of Technology Appraisal. London, UK: National Institute for Health and Clinical Excellence (NICE); 2013.
50.
Briggs  A.  Probabilistic analysis of cost-effectiveness models: statistical representation of parameter uncertainty.  Value Health. 2005;8(1):1-2. doi:10.1111/j.1524-4733.2005.08101.xPubMedGoogle Scholar
51.
Tung  N, Battelli  C, Allen  B,  et al.  Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel.  Cancer. 2015;121(1):25-33. doi:10.1002/cncr.29010PubMedGoogle Scholar
52.
Lerner Ellis  J, Khalouei  S, Sopik  V, Narod  SA.  Genetic risk assessment and prevention: the role of genetic testing panels in breast cancer.  Expert Rev Anticancer Ther. 2015;15(11):1315-1326. doi:10.1586/14737140.2015.1090879PubMedGoogle Scholar
53.
Metcalfe  KA, Birenbaum Carmeli  D, Lubinski  J,  et al; Hereditary Breast Cancer Clinical Study Group.  International variation in rates of uptake of preventive options in BRCA1 and BRCA2 mutation carriers.  Int J Cancer. 2008;122(9):2017-2022. doi:10.1002/ijc.23340PubMedGoogle Scholar
54.
Tuffaha  HW, Mitchell  A, Ward  RL,  et al.  Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers.  Genet Med. 2018;20(9):985-994. doi:10.1038/gim.2017.231PubMedGoogle Scholar
55.
Francken  AB, Schouten  PC, Bleiker  EM, Linn  SC, Rutgers  EJ.  Breast cancer in women at high risk: the role of rapid genetic testing for BRCA1 and -2 mutations and the consequences for treatment strategies.  Breast. 2013;22(5):561-568. doi:10.1016/j.breast.2013.07.045PubMedGoogle Scholar
56.
Department of Health Long Term Conditions Team. Long Term Conditions Compendium of Information. 3rd ed. Leeds, UK: Department of Health. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/216528/dh_134486.pdf. Published 2012. Accessed December 3, 2018.
57.
Milken Institute.  Checkup Time: Chronic Disease and Wellness in America. Santa Monica, CA, and Washington, DC: Milken Institute; 2014.
58.
George  A, Riddell  D, Seal  S,  et al.  Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients.  Sci Rep. 2016;6:29506. doi:10.1038/srep29506PubMedGoogle Scholar
59.
Bednar  EM, Oakley  HD, Sun  CC,  et al.  A universal genetic testing initiative for patients with high-grade, non-mucinous epithelial ovarian cancer and the implications for cancer treatment.  Gynecol Oncol. 2017;146(2):399-404. doi:10.1016/j.ygyno.2017.05.037PubMedGoogle Scholar
60.
Plaskocinska  I, Shipman  H, Drummond  J,  et al.  New paradigms for BRCA1/BRCA2 testing in women with ovarian cancer: results of the Genetic Testing in Epithelial Ovarian Cancer (GTEOC) study.  J Med Genet. 2016;53(10):655-661. doi:10.1136/jmedgenet-2016-103902PubMedGoogle Scholar
61.
Senter  L, O’Malley  DM, Backes  FJ,  et al.  Genetic consultation embedded in a gynecologic oncology clinic improves compliance with guideline-based care.  Gynecol Oncol. 2017;147(1):110-114. doi:10.1016/j.ygyno.2017.07.141PubMedGoogle Scholar
62.
Pederson  HJ, Hussain  N, Noss  R,  et al.  Impact of an embedded genetic counselor on breast cancer treatment.  Breast Cancer Res Treat. 2018;169(1):43-46. doi:10.1007/s10549-017-4643-4PubMedGoogle Scholar
63.
Kinney  AY, Butler  KM, Schwartz  MD,  et al.  Expanding access to BRCA1/2 genetic counseling with telephone delivery: a cluster-randomized trial.  J Natl Cancer Inst. 2014;106(12):dju328. doi:10.1093/jnci/dju328PubMedGoogle Scholar
64.
Kinney  AY, Steffen  LE, Brumbach  BH,  et al.  Randomized noninferiority trial of telephone delivery of BRCA1/2 genetic counseling compared with in person counseling: 1-year follow-up.  J Clin Oncol. 2016;34(24):2914-2924. doi:10.1200/JCO.2015.65.9557PubMedGoogle Scholar
65.
Solomons  NM, Lamb  AE, Lucas  FL, McDonald  EF, Miesfeldt  S.  Examination of the patient-focused impact of cancer telegenetics among a rural population: comparison with traditional in-person services.  Telemed J E Health. 2018;24(2):130-138. doi:10.1089/tmj.2017.0073PubMedGoogle Scholar
66.
Manchanda  R, Gaba  F.  Population-based testing for primary prevention: a systematic review.  Cancers (Basel). 2018;10(11):E424. doi:10.3390/cancers10110424PubMedGoogle Scholar
67.
Plon  SE, Eccles  DM, Easton  D,  et al; IARC Unclassified Genetic Variants Working Group.  Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results.  Hum Mutat. 2008;29(11):1282-1291. doi:10.1002/humu.20880PubMedGoogle Scholar
68.
Kurian  AW, Li  Y, Hamilton  AS,  et al.  Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer.  J Clin Oncol. 2017;35(20):2232-2239. doi:10.1200/JCO.2016.71.6480PubMedGoogle Scholar
69.
Manchanda  R, Loggenberg  K, Sanderson  S,  et al.  Population testing for cancer predisposing BRCA1/BRCA2 mutations in the Ashkenazi Jewish community: a randomized controlled trial.  J Natl Cancer Inst. 2014;107(1):379. doi:10.1093/jnci/dju379PubMedGoogle Scholar
70.
Parker  WH, Broder  MS, Chang  E,  et al.  Ovarian conservation at the time of hysterectomy and long-term health outcomes in the Nurses’ Health Study.  Obstet Gynecol. 2009;113(5):1027-1037. doi:10.1097/AOG.0b013e3181a11c64PubMedGoogle Scholar
71.
Manchanda  R, Abdelraheim  A, Johnson  M,  et al.  Outcome of risk reducing salpingo-oophorectomy in BRCA carriers and women of unknown mutation status.  BJOG. 2011;118(7):814-824. doi:10.1111/j.1471-0528.2011.02920.xPubMedGoogle Scholar
72.
Nelson  HD, Pappas  M, Zakher  B, Mitchell  JP, Okinaka Hu  L, Fu  R.  Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: a systematic review to update the US Preventive Services Task Force recommendation.  Ann Intern Med. 2014;160(4):255-266. doi:10.7326/M13-1684PubMedGoogle Scholar
73.
Contant  CM, Menke Pluijmers  MB, Seynaeve  C,  et al.  Clinical experience of prophylactic mastectomy followed by immediate breast reconstruction in women at hereditary risk of breast cancer (HB(O)C) or a proven BRCA1 and BRCA2 germ-line mutation.  Eur J Surg Oncol. 2002;28(6):627-632. doi:10.1053/ejso.2002.1279PubMedGoogle Scholar
74.
Finch  A, Metcalfe  KA, Chiang  JK,  et al.  The impact of prophylactic salpingo-oophorectomy on menopausal symptoms and sexual function in women who carry a BRCA mutation.  Gynecol Oncol. 2011;121(1):163-168. doi:10.1016/j.ygyno.2010.12.326PubMedGoogle Scholar
75.
Robson  M, Hensley  M, Barakat  R,  et al.  Quality of life in women at risk for ovarian cancer who have undergone risk-reducing oophorectomy.  Gynecol Oncol. 2003;89(2):281-287. doi:10.1016/S0090-8258(03)00072-6PubMedGoogle Scholar
76.
Madalinska  JB, Hollenstein  J, Bleiker  E,  et al.  Quality of life effects of prophylactic salpingo-oophorectomy versus gynecologic screening among women at increased risk of hereditary ovarian cancer.  J Clin Oncol. 2005;23(28):6890-6898. doi:10.1200/JCO.2005.02.626PubMedGoogle Scholar
77.
Brandberg  Y, Sandelin  K, Erikson  S,  et al.  Psychological reactions, quality of life, and body image after bilateral prophylactic mastectomy in women at high risk for breast cancer: a prospective 1-year follow-up study.  J Clin Oncol. 2008;26(24):3943-3949. doi:10.1200/JCO.2007.13.9568PubMedGoogle Scholar
78.
Brandberg  Y, Arver  B, Johansson  H, Wickman  M, Sandelin  K, Liljegren  A.  Less correspondence between expectations before and cosmetic results after risk-reducing mastectomy in women who are mutation carriers: a prospective study.  Eur J Surg Oncol. 2012;38(1):38-43. doi:10.1016/j.ejso.2011.10.010PubMedGoogle Scholar
79.
Wasteson  E, Sandelin  K, Brandberg  Y, Wickman  M, Arver  B.  High satisfaction rate ten years after bilateral prophylactic mastectomy: a longitudinal study.  Eur J Cancer Care (Engl). 2011;20(4):508-513. doi:10.1111/j.1365-2354.2010.01204.xPubMedGoogle Scholar
80.
Isern  AE, Tengrup  I, Loman  N, Olsson  H, Ringberg  A.  Aesthetic outcome, patient satisfaction, and health-related quality of life in women at high risk undergoing prophylactic mastectomy and immediate breast reconstruction.  J Plast Reconstr Aesthet Surg. 2008;61(10):1177-1187. doi:10.1016/j.bjps.2007.08.006PubMedGoogle Scholar
81.
Nelson  HD, Fu  R, Goddard  K,  et al.  Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: Systematic Review to Update the US Preventive Services Task Force Recommendation. Rockville, MD: Agency for Healthcare Research and Quality; 2013.
82.
Manchanda  R, Burnell  M, Abdelraheim  A,  et al.  Factors influencing uptake and timing of risk-reducing salpingo-oophorectomy in women at risk of familial ovarian cancer: a competing risk time to event analysis.  BJOG. 2012;119(5):527-536. doi:10.1111/j.1471-0528.2011.03257.xPubMedGoogle Scholar

Plaats een reactie ...

Reageer op "Genetische testen uitvoeren bij alle vrouwen met borstkanker kan jaarlijks veel doden aan eierstokkanker en borstkanker voorkomen en is veel kosten effectiever vergeleken met genetisch testen op basis van klinische criteria of familiegeschiedenis"


Gerelateerde artikelen