22 februari 2024 Zie ook de search op hyperthermie in de titel van artikelen op onze website. 

22 februari 2024: zie ook dit artikel: https://kanker-actueel.nl/matters-studie-onderzoekt-effecten-van-hyperthermie-bij-kankerpatienten-met-solide-tumoren-en-patienten-met-alvleesklierkanker-copy-1.html

22 februari 2024: Bron ELMEDIX

Op zoek naar informatie over hyperthermie naast immuuntherapie kwam ik een interessant artikel tegen van ELMEDIX de hyperthermie afdeling van de universiteit van Antwerpen. In dit artikel belichten hoofdauteurs Tine Logghe en Eke van Zwol de rol van hyperthermie als een aanvullende behandelingsoptie in de behandeling van kanker, met name de effectiviteit ervan als een sensibilisator en de invloed ervan op kanker-immuniteitsprocessen en oncogene ‘pathways’.

Ik kopieer hun introductie van een interessant Engelstalig artikel:

Met trots kondigen we aan dat ons artikel Hyperthermia in Combination with Emerging Targeted and Immunotherapies” als een ‘open access’ publicatie is verschenen in Cancers van het MDPI.

Ondanks de aanzienlijke vooruitgang in de ontwikkeling van nieuwe therapieën, blijft kanker wereldwijd een belangrijke doodsoorzaak. In veel gevallen is de standaardtherapie gebaseerd op chemotherapie (CT), radiotherapie (RT) of een combinatie van beide.

In dit artikel belichten hoofdauteurs en Elmedix-collega’s Tine Logghe en Eke van Zwol de rol van hyperthermie (HT) als een modaliteit in de behandeling van kanker, met name de effectiviteit ervan als een sensibilisator en de invloed ervan op kanker-immuniteitsprocessen en oncogene ‘pathways’.>>>>>>>lees verder

Het Engelstalige artikel met mooie grafieken en gedetailleerde uitleg is in PDF vorm te downloaden en in te zien. Inclusief 267 referenties:

Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment

Tine Logghe 1,†, Eke van Zwol 1,†, Benoît Immordino 2,3, Kris Van den Cruys 1 , Marc Peeters 4 , Elisa Giovannetti 2,5 and Johannes Bogers 1,6,* 1 Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium 2 Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy 3 Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy 4 Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium 5 Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands 6 Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium * Correspondence: john-paul.bogers@elmedix.com † These authors contributed equally to this work.

Simple Summary:

This manuscript discusses the ongoing challenge of cancer as a leading global cause of death despite advancements in therapies. It highlights the role of hyperthermia (HT) as a modality in cancer treatment, particularly its effectiveness as a sensitizer and its impact on cancer–immunity processes and oncogenic pathways. The article notes the recent focus on immunotherapy (IT) and targeted therapy (TT) in cancer research, both in academia and pharmaceutical companies. The main focus of the manuscript is to explore potential therapies that can enhance the effects of HT by targeting molecular pathways. The ultimate goal is to pave the way for future research and clinical trials, aiming to harness the synergistic potential of combining emerging IT and TT with HT for improved outcomes.

Abstract:

Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer–immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT

Supplementary Materials:

The following supporting information can be downloaded at: https://www. mdpi.com/article/10.3390/cancers16030505/s1,

Table S1: Summary of oncological pipeline research.

Author Contributions: Conceptualization, T.L. and E.v.Z.; methodology, T.L. and E.v.Z.; formal analysis, T.L. and E.v.Z.; investigation, T.L. and E.v.Z.; writing—original draft preparation, T.L., E.v.Z. and B.I.; writing—review and editing, M.P., E.G., K.V.d.C. and J.B.; visualization, T.L. and E.v.Z.; supervision, J.B.

All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: All data used in this review from our pipeline research are made publicly available through the Supplementary Materials. Conflicts of Interest: The authors T.L., E.v.Z., K.V.d.C. and J.B. are employed by ElmediX NV, a company that is developing a medical device to administer hyperthermia. J.B. holds shares and options in ElmediX. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Barbari, C.; Fontaine, T.; Parajuli, P.; Lamichhane, N.; Jakubski, S.; Lamichhane, P.; Deshmukh, R.R. Immunotherapies and Combination Strategies for Immuno-Oncology. Int. J. Mol. Sci. 2020, 21, 5009.
2. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48.
3. Dagher, O.K.; Schwab, R.D.; Brookens, S.K.; Posey, A.D. Advances in Cancer Immunotherapies. Cell 2023, 186, 1814–1814.e1.
4. Joo, W.D.; Visintin, I.; Mor, G. Targeted Cancer Therapy—Are the Days of Systemic Chemotherapy Numbered? Maturitas 2013, 76, 308–314.
5. Shuel, S.L. Targeted Cancer Therapies. Can. Fam. Physician 2022, 68, 515–518.
6. Targeted Therapy for Cancer—NCI. Available online: https://www.cancer.gov/about-cancer/treatment/types/targetedtherapies (accessed on 25 July 2023).
7. Oei, A.L.; Kok, H.P.; Oei, S.B.; Horsman, M.R.; Stalpers, L.J.A.; Franken, N.A.P.; Crezee, J. Molecular and Biological Rationale of Hyperthermia as Radio- and Chemosensitizer. Adv. Drug Deliv. Rev. 2020, 163–164, 84–97.
8. Kok, H.P.; Cressman, E.N.K.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; ter Haar, G.; Wust, P.; Crezee, J. Heating Technology for Malignant Tumors: A Review. Int. J. Hyperth. 2020, 37, 711–741.
9. Levin, W.; Blair, R.M. Pettigrew Technique of Inducing Whole-Body Hyperthermia. Natl. Cancer Inst. Monogr. 1982, 61, 377–379.
10. Behrouzkia, Z.; Joveini, Z.; Keshavarzi, B.; Eyvazzadeh, N.; Aghdam, R.Z. Hyperthermia: How Can It Be Used? Oman Med. J. 2016, 31, 89–97.
11. Maurici, C.E.; Colenbier, R.; Wylleman, B.; Brancato, L.; van Zwol, E.; Van den Bossche, J.; Timmermans, J.-P.; Giovannetti, E.; Mori da Cunha, M.G.M.C.; Bogers, J. Hyperthermia Enhances Efficacy of Chemotherapeutic Agents in Pancreatic Cancer Cell Lines. Biomolecules 2022,
12, 651. 12. Li, Z.; Deng, J.; Sun, J.; Ma, Y. Hyperthermia Targeting the Tumor Microenvironment Facilitates Immune Checkpoint Inhibitors. Front. Immunol. 2020, 11, 595207.
13. Mantso, T.; Goussetis, G.; Franco, R.; Botaitis, S.; Pappa, A.; Panayiotidis, M. Effects of Hyperthermia as a Mitigation Strategy in DNA Damage-Based Cancer Therapies. Semin. Cancer Biol. 2016, 37–38, 96–105.
14. Oei, A.L.; Vriend, L.E.M.; Crezee, J.; Franken, N.A.P.; Krawczyk, P.M. Effects of Hyperthermia on DNA Repair Pathways: One Treatment to Inhibit Them All. Radiat. Oncol. 2015, 10, 165.
15. Takahashi, A.; Mori, E.; Somakos, G.I.; Ohnishi, K.; Ohnishi, T. Heat Induces gammaH2AX Foci Formation in Mammalian Cells. Mutat. Res. 2008, 656, 88–92.
16. Takahashi, A.; Matsumoto, H.; Nagayama, K.; Kitano, M.; Hirose, S.; Tanaka, H.; Mori, E.; Yamakawa, N.; Yasumoto, J.-I.; Yuki, K.; et al. Evidence for the Involvement of Double-Strand Breaks in Heat-Induced Cell Killing. Cancer Res. 2004, 64, 8839–8845.
17. Jazayeri, A.; Falck, J.; Lukas, C.; Bartek, J.; Smith, G.C.M.; Lukas, J.; Jackson, S.P. ATM- and Cell Cycle-Dependent Regulation of ATR in Response to DNA Double-Strand Breaks. Nat. Cell Biol. 2006, 8, 37–45.
18. Furusawa, Y.; Iizumi, T.; Fujiwara, Y.; Zhao, Q.-L.; Tabuchi, Y.; Nomura, T.; Kondo, T. Inhibition of Checkpoint Kinase 1 Abrogates G2/M Checkpoint Activation and Promotes Apoptosis under Heat Stress. Apoptosis 2012, 17, 102–112.
19. Germano, G.; Lamba, S.; Rospo, G.; Barault, L.; Magrì, A.; Maione, F.; Russo, M.; Crisafulli, G.; Bartolini, A.; Lerda, G.; et al. Inactivation of DNA Repair Triggers Neoantigen Generation and Impairs Tumour Growth. Nature 2017, 552, 116–120.
20. Liu, Z.; Lv, J.; Dang, Q.; Liu, L.; Weng, S.; Wang, L.; Zhou, Z.; Kong, Y.; Li, H.; Han, Y.; et al. Engineering Neoantigen Vaccines to Improve Cancer Personalized Immunotherapy. Int. J. Biol. Sci. 2022, 18, 5607–5623.
21. Schumacher, T.N.; Scheper, W.; Kvistborg, P. Cancer Neoantigens. Annu. Rev. Immunol. 2019, 37, 173–200.
22. Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic Cell Death and DAMPs in Cancer Therapy. Nat. Rev. Cancer 2012, 12, 860–875.
23. Garg, A.D.; Galluzzi, L.; Apetoh, L.; Baert, T.; Birge, R.B.; Bravo-San Pedro, J.M.; Breckpot, K.; Brough, D.; Chaurio, R.; Cirone, M.; et al. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front. Immunol. 2015, 6, 588.
24. Garg, A.D.; Dudek-Peric, A.M.; Romano, E.; Agostinis, P. Immunogenic Cell Death. Int. J. Dev. Biol. 2015, 59, 131–140.
25. Wang, Q.; Ju, X.; Wang, J.; Fan, Y.; Ren, M.; Zhang, H. Immunogenic Cell Death in Anticancer Chemotherapy and Its Impact on Clinical Studies. Cancer Lett. 2018, 438, 17–23.
26. Adkins, I.; Fucikova, J.; Garg, A.D.; Agostinis, P.; Špíšek, R. Physical Modalities Inducing Immunogenic Tumor Cell Death for Cancer Immunotherapy. Oncoimmunology 2015, 3, e968434.
27. Kepp, O.; Zitvogel, L.; Kroemer, G. Clinical Evidence That Immunogenic Cell Death Sensitizes to PD-1/PD-L1 Blockade. Oncoimmunology 2019, 8, e1637188.
28. Xu, X.; Gupta, S.; Hu, W.; McGrath, B.C.; Cavener, D.R. Hyperthermia Induces the ER Stress Pathway. PLoS ONE 2011, 6, e23740.
29. Lee, S.; Son, B.; Park, G.; Kim, H.; Kang, H.; Jeon, J.; Youn, H.; Youn, B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int. J. Mol. Sci. 2018, 19, 2795.
30. Katschinski, D.M.; Wiedemann, G.J.; Longo, W.; d’Oleire, F.R.; Spriggs, D.; Robins, H.I. Whole Body Hyperthermia Cytokine Induction: A Review, and Unifying Hypothesis for Myeloprotection in the Setting of Cytotoxic Therapy. Cytokine Growth Factor Rev. 1999, 10, 93–97.
31. Baronzio, G.F.; Seta, R.D.; D’Amico, M.; Baronzio, A.; Freitas, I.; Forzenigo, G.; Gramaglia, A.; Hager, E.D. Effects of Local and Whole Body Hyperthermia on Immunity; Landes Bioscience: Austin, TX, USA, 2013.
32. Toraya-Brown, S.; Fiering, S. Local Tumour Hyperthermia as Immunotherapy for Metastatic Cancer. Int. J. Hyperth. 2014, 30, 531–539.
33. Redzovic, A.; Gulic, T.; Laskarin, G.; Eminovic, S.; Haller, H.; Rukavina, D. Heat-Shock Proteins 70 Induce Pro-Inflammatory Maturation Program in Decidual CD1a(+) Dendritic Cells. Am. J. Reprod. Immunol. 2015, 74, 38–53.
34. Wells, A.D.; Malkovsky, M. Heat Shock Proteins, Tumor Immunogenicity and Antigen Presentation: An Integrated View. Immunol. Today 2000, 21, 129–132.
35. Binder, R.J.; Han, D.K.; Srivastava, P.K. CD91: A Receptor for Heat Shock Protein Gp96. Nat. Immunol. 2000, 1, 151–155.
36. Manjili, M.H.; Wang, X.-Y.; Park, J.; Facciponte, J.G.; Repasky, E.A.; Subjeck, J.R. Immunotherapy of Cancer Using Heat Shock Proteins. Front. Biosci. 2002, 7, d43–d52.
37. Liso, A.; Venuto, S.; Coda, A.R.D.; Giallongo, C.; Palumbo, G.A.; Tibullo, D. IGFBP-6: At the Crossroads of Immunity, Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022, 23, 4358.
38. Liso, A.; Castellani, S.; Massenzio, F.; Trotta, R.; Pucciarini, A.; Bigerna, B.; De Luca, P.; Zoppoli, P.; Castiglione, F.; Palumbo, M.C.; et al. Human Monocyte-Derived Dendritic Cells Exposed to Hyperthermia Show a Distinct Gene Expression Profile and Selective Upregulation of IGFBP6. Oncotarget 2017, 8, 60826–60840.
39. Zheng, H.; Benjamin, I.J.; Basu, S.; Li, Z. Heat Shock Factor 1-Independent Activation of Dendritic Cells by Heat Shock: Implication for the Uncoupling of Heat-Mediated Immunoregulation from the Heat Shock Response. Eur. J. Immunol. 2003, 33, 1754–1762.

>>>>>lees verder tot 267 referenties


Plaats een reactie ...

Reageer op "Hyperthermie in combinatie met doelgerichte en immuuntherapeutische behandelingen is veel belovende combinatiebehandeling voor kankerpatienten, aldus artsen van ELMEDIX van de universiteit van Antwerpen"


Gerelateerde artikelen
 

Gerelateerde artikelen

Algemene artikelen die met >> Aflibercept (Zaltrap) toegevoegd >> Aprepitant - Emend is een >> Avastin - Bevacizumab, een >> BBBD-behandeling (Blood Brain >> Beenmergtransplantaties en >> Bloedarmoede (anemia) en ESA's >> Boekenlijst met daarop titels >> Celebrex - een zogeheten COX-2 >> Chemo en voedingsondersteuning: >>