• Functional hematopoietic stem cells with unique gene signatures reside in the adult human lung.

  • These cells contribute to the pool of hematopoietic stem cells mobilized for stem cell transplantation.

Visual Abstract


Abstract

Although the bone marrow is the main site of blood cell production in adults, rare pools of hematopoietic stem and progenitor cells have been found in extramedullary organs. In mice, we have previously shown that the lung contains hematopoietic progenitor cells and is a site of platelet production. Here, in the adult human lung, we show that functional hematopoietic precursors reside in the extravascular spaces with a frequency similar to the bone marrow and are capable of proliferation and engraftment in mice. The gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune-, megakaryocyte/platelet-, and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to an alveolar interstitium niche with only a few cells identified in an intravascular location. In human blood samples collected for stem cell transplantation, CD34+ cells with a lung signature enriched the mobilized pool of hematopoietic stem cells. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans

The authors thank Donor Network West, Michael Matthay (University of California San Francisco ), and the Nina Ireland Program for Lung Health (UCSF) for providing human lung tissue from deceased organ donors.

This work was supported by an International Anesthesia Researach Society (IARS) Mentored Research Award to C.C., the Deutsche Forschungsgemeinschaft Research Fellowships to C.C. (CO 2096/1-1) and N.M. (ME 5209/1-1), Bakar UCSF ImmunoX support to A.J.C, a Wellcome-Royal Society Sir Henry Dale Fellowship (107630/Z/15/Z) and funding in part by the Wellcome Trust [203151/Z/16/Z, 203151/A/16/Z] and the United Kingdom Research and Innovation (UKRI) Medical Research Council to E.L., and National Institutes of Health (NIH), National Heart, Lung, and Blood Institute grant R35HL161241 to M.R.L. Sequencing was performed at the UCSF Center for Advanced Technology, supported by the UCSF Program for Breakthrough Biomedical Research, Research Ressource Program Institutional Matching Instrumentation Award, and NIH, Office of the Director 1S10OD028511-01 grants.

Contribution: C.C. designed and conducted experiments, analyzed the data, and wrote the manuscript; M.M. designed and conducted experiments; J.T., B.S., U.V., and A.J.C. assisted in designing and conducting experiments and helped analyzing the data; H.W. and M.N. helped analyzing the data; S.J.C., L.Q., J.J.T., and M.D.G. assisted in conducting experiments; A.D.L. provided human apheresis blood samples; E.P., E.L., and N.M. assisted in designing experiments, provided technical expertise with hematopoietic progenitor analyses, and provided editorial support on the manuscript; and M.R.L. designed the experiments, supervised the study, and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Mark R. Looney, Department of Medicine, University of California San Francisco, 513 Parnassus Ave, HSE 1355A, San Francisco, CA 94143-0130; email: mark.looney@ucsf.edu.

De redactie van Blood geeft ook een interessant commentaar op de studie van de universiteit van San Francisco: Breathing life into the hematopoietic potential of the lung

1.
Weissman
 
IL
Shizuru
 
JA
The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases
Blood
2008
;
112
(
9
):
3543
-
3553
.
2.
Abkowitz
 
JL
Catlin
 
SN
McCallie
 
MT
Guttorp
 
P
Evidence that the number of hematopoietic stem cells per animal is conserved in mammals
Blood
2002
;
100
(
7
):
2665
-
2667
.
3.
Nombela-Arrieta
 
C
Manz
 
MG
Quantification and three-dimensional microanatomical organization of the bone marrow
Blood Adv
2017
;
1
(
6
):
407
-
416
.
4.
Wilkinson
 
AC
Igarashi
 
KJ
Nakauchi
 
H
Haematopoietic stem cell self-renewal in vivo and ex vivo
Nat Rev Genet
2020
;
21
(
9
):
541
-
554
.
5.
Verovskaya
 
EV
Dellorusso
 
PV
Passegue
 
E
Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation
Trends Mol Med
2019
;
25
(
6
):
494
-
515
.
6.
Jaiswal
 
S
Ebert
 
BL
Clonal hematopoiesis in human aging and disease
Science
2019
;
366
(
6465
):
eaan4673
.
7.
Lefrançais
 
E
Ortiz-Muñoz
 
G
Caudrillier
 
A
, et al. 
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
Nature
2017
;
544
(
7648
):
105
-
109
.
8.
Belluschi
 
S
Calderbank
 
EF
Ciaurro
 
V
, et al. 
Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors
Nat Commun
2018
;
9
(
1
):
4100
.
9.
Kang
 
HM
Subramaniam
 
M
Targ
 
S
, et al. 
Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
Nat Biotechnol
2018
;
36
(
1
):
89
-
94
.
10.
Notta
 
F
Doulatov
 
S
Laurenti
 
E
Poeppl
 
A
Jurisica
 
I
Dick
 
JE
Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
Science
2011
;
333
(
6039
):
218
-
221
.
11.
Notta
 
F
Zandi
 
S
Takayama
 
N
, et al. 
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
Science
2016
;
351
(
6269
):
aab2116
.
12.
Sanada
 
C
Xavier-Ferrucio
 
J
Lu
 
YC
, et al. 
Adult human megakaryocyte-erythroid progenitors are in the CD34+CD38mid fraction
Blood
2016
;
128
(
7
):
923
-
933
.
13.
Green
 
J
Endale
 
M
Auer
 
H
Perl
 
AKT
Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor α kinase activity
Am J Respir Cell Mol Biol
2016
;
54
(
4
):
532
-
545
.
14.
Nicolini
 
FE
Cashman
 
JD
Hogge
 
DE
Humphries
 
RK
Eaves
 
CJ
NOD/SCID mice engineered to express human IL-3, GM-CSF and steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration
Leukemia
2004
;
18
(
2
):
341
-
347
.
15.
Park
 
CY
Majeti
 
R
Weissman
 
IL
In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood
Nat Protoc
2008
;
3
(
12
):
1932
-
1940
.
16.
McKenzie
 
JL
Takenaka
 
K
Gan
 
OI
Doedens
 
M
Dick
 
JE
Low rhodamine 123 retention identifies long-term human hematopoietic stem cells within the Lin-CD34+CD38- population
Blood
2007
;
109
(
2
):
543
-
545
.
17.
Goyama
 
S
Wunderlich
 
M
Mulloy
 
JC
Xenograft models for normal and malignant stem cells
Blood
2015
;
125
(
17
):
2630
-
2640
.
18.
Korsunsky
 
I
Millard
 
N
Fan
 
J
, et al. 
Fast, sensitive and accurate integration of single-cell data with harmony
Nat Methods
2019
;
16
(
12
):
1289
-
1296
.
19.
Hay
 
SB
Ferchen
 
K
Chetal
 
K
Grimes
 
HL
Salomonis
 
N
The Human Cell Atlas bone marrow single-cell interactive web portal
Exp Hematol
2018
;
68
:
51
-
61
.
20.
Travaglini
 
KJ
Nabhan
 
AN
Penland
 
L
, et al. 
A molecular cell atlas of the human lung from single-cell RNA sequencing
Nature
2020
;
587
(
7835
):
619
-
625
.
21.
Cao
 
J
Spielmann
 
M
Qiu
 
X
, et al. 
The single-cell transcriptional landscape of mammalian organogenesis
Nature
2019
;
566
(
7745
):
496
-
502
.
22.
Sato
 
A
Kamio
 
N
Yokota
 
A
, et al. 
C/EBPβ isoforms sequentially regulate regenerating mouse hematopoietic stem/progenitor cells
Blood Adv
2020
;
4
(
14
):
3343
-
3356
.
23.
Mohanty
 
JG
Nagababu
 
E
Friedman
 
JS
Rifkind
 
JM
SOD2 deficiency in hematopoietic cells in mice results in reduced red blood cell deformability and increased heme degradation
Exp Hematol
2013
;
41
(
3
):
316
-
321
.
24.
Barbosa
 
CM
Bincoletto
 
C
Barros
 
CC
Ferreira
 
AT
Paredes-Gamero
 
EJ
PLCγ2 and PKC are important to myeloid lineage commitment triggered by M-SCF and G-CSF
J Cell Biochem
2014
;
115
(
1
):
42
-
51
.
25.
Kruta
 
M
Sunshine
 
MJ
Chua
 
BA
, et al. 
Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging
Cell Stem Cell
2021
;
28
(
11
):
1950
-
1965.e6
.
26.
Livada
 
AC
McGrath
 
KE
Malloy
 
MW
, et al. 
Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models
J Clin Invest
2024
;
134
(
22
):
e181111
.
27.
Pariser
 
DN
Hilt
 
ZT
Ture
 
SK
, et al. 
Lung megakaryocytes are immune modulatory cells
J Clin Invest
2021
;
131
(
1
):
e137377
.
28.
Sikkema
 
L
Ramírez-Suástegui
 
C
Strobl
 
DC
, et al. 
An integrated cell atlas of the lung in health and disease
Nat Med
2023
;
29
(
6
):
1563
-
1577
.
29.
HuBMAP
Azimuth references
. Accessed 24 October 2023. https://azimuth.hubmapconsortium.org/references/#Human%20-%20Lung%20v2%20%28HLCA%29.
30.
Palla
 
G
Spitzer
 
H
Klein
 
M
, et al. 
Squidpy: a scalable framework for spatial omics analysis
Nat Methods
2022
;
19
(
2
):
171
-
178
.
31.
Ghersi
 
JJ
Baldissera
 
G
Hintzen
 
J
, et al. 
Haematopoietic stem and progenitor cell heterogeneity is inherited from the embryonic endothelium
Nat Cell Biol
2023
;
25
(
8
):
1135
-
1145
.
32.
Zhang
 
Y
Liu
 
F
The evolving views of hematopoiesis: from embryo to adulthood and from in vivo to in vitro
J Genet Genomics
2024
;
51
(
1
):
3
-
15
.
33.
Mende
 
N
Bastos
 
HP
Santoro
 
A
, et al. 
Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans
Blood
2022
;
139
(
23
):
3387
-
3401
.
34.
Spencer
 
JA
Ferraro
 
F
Roussakis
 
E
, et al. 
Direct measurement of local oxygen concentration in the bone marrow of live animals
Nature
2014
;
508
(
7495
):
269
-
273
.
35.
Li
 
D
Xue
 
W
Li
 
M
, et al. 
VCAM-1(+) macrophages guide the homing of HSPCs to a vascular niche
Nature
2018
;
564
(
7734
):
119
-
124
.
36.
Massberg
 
S
Schaerli
 
P
Knezevic-Maramica
 
I
, et al. 
Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues
Cell
2007
;
131
(
5
):
994
-
1008
.
37.
Wright
 
DE
Wagers
 
AJ
Gulati
 
AP
Johnson
 
FL
Weissman
 
IL
Physiological migration of hematopoietic stem and progenitor cells
Science
2001
;
294
(
5548
):
1933
-
1936
.
38.
Acar
 
M
Kocherlakota
 
KS
Murphy
 
MM
, et al. 
Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
Nature
2015
;
526
(
7571
):
126
-
130
.
39.
Kiel
 
MJ
Yilmaz
 
OH
Iwashita
 
T
Yilmaz
 
OH
Terhorst
 
C
Morrison
 
SJ
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
Cell
2005
;
121
(
7
):
1109
-
1121
.
40.
Cao
 
Z
Lis
 
R
Ginsberg
 
M
, et al. 
Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis
Nat Med
2016
;
22
(
2
):
154
-
162
.
41.
Mammoto
 
A
Mammoto
 
T
Vascular niche in lung alveolar development, homeostasis, and regeneration
Front Bioeng Biotechnol
2019
;
7
:
318
.
42.
Phan
 
SH
Genesis of the myofibroblast in lung injury and fibrosis
Proc Am Thorac Soc
2012
;
9
(
3
):
148
-
152
.
43.
Reilkoff
 
RA
Bucala
 
R
Herzog
 
EL
Fibrocytes: emerging effector cells in chronic inflammation
Nat Rev Immunol
2011
;
11
(
6
):
427
-
435
.
44.
Ceradini
 
DJ
Kulkarni
 
AR
Callaghan
 
MJ
, et al. 
Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1
Nat Med
2004
;
10
(
8
):
858
-
864
.
45.
Gomez Perdiguero
 
E
Klapproth
 
K
Schulz
 
C
, et al. 
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
Nature
2015
;
518
(
7540
):
547
-
551
.
46.
Yeung
 
AK
Villacorta-Martin
 
C
Lindstrom-Vautrin
 
J
, et al. 
De novo hematopoiesis from the fetal lung
Blood Adv
2023
;
7
(
22
):
6898
-
6912
.
47.
Calvanese
 
V
Capellera-Garcia
 
S
Ma
 
F
, et al. 
Mapping human haematopoietic stem cells from haemogenic endothelium to birth
Nature
2022
;
604
(
7906
):
534
-
540
.
48.
Zhao
 
Y
Magaña
 
LC
Cui
 
H
, et al. 
Formaldehyde-induced hematopoietic stem and progenitor cell toxicity in mouse lung and nose
Arch Toxicol
2021
;
95
(
2
):
693
-
701
.
49.
Montoro
 
DT
Haber
 
AL
Biton
 
M
, et al. 
A revised airway epithelial hierarchy includes CFTR-expressing ionocytes
Nature
2018
;
560
(
7718
):
319
-
324
.

Author notes

Sequencing data have been deposited in the Gene Expression Omnibus database (accession code GSE255687).

There are no restrictions on data availability or use. The Human Lung Cell Atlas is publicly available data set that can be accessed at https://azimuth.hubmapconsortium.org/references/human_lung_v2/. Codes used in this study are available on request from the corresponding author, Mark R. Looney (mark.looney@ucsf.edu).

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.