26 juni 2022: Bron: CNN en PNAS

Sociale stress zoals discriminatie en gezinsproblemen, samen met werk- en geldproblemen, kunnen bijdragen aan vroegtijdige veroudering van het menselijke immuunsysteem, zo blijkt uit een recent onderzoek. Dat is een dubbele bedreiging, want het immuunsysteem verslechtert al min of meer automatisch met het ouder worden.

"Immuunveroudering kan leiden tot kanker, hartaandoeningen en andere leeftijdgerelateerde gezondheidsproblemen en de effectiviteit van vaccins, zoals Covid-19, verminderen, zegt hoofdauteur Eric Klopack, een postdoctoraal onderzoeker aan de Leonard Davis School of Gerontology van de University of Southern California.

"Mensen met hogere stressscores hadden een ouder ogend immuunprofiel, met lagere percentages verse ziektebestrijders en hogere percentages versleten T-cellen," aldus Klopack. T-cellen zijn enkele van de belangrijkste verdedigers van het lichaam en vervullen verschillende sleutelfuncties. "Killer" T-cellen kunnen met virus geïnfecteerde cellen en kankercellen direct elimineren en helpen bij het opruimen van zogenaamde "zombiecellen", verouderde cellen die niet langer delen maar weigeren te sterven.

Senescente cellen  zijn een probleem omdat ze een verscheidenheid aan eiwitten afgeven die de weefsels om hen heen aantasten. Van dergelijke cellen is aangetoond dat ze bijdragen aan chronische ontstekingen. Naarmate er zich meer en meer in het lichaam ophopen, bevorderen ze veroudering, zoals osteoporose, chronische obstructieve longziekte en de ziekte van Alzheimer.

Naast de ontdekking dat mensen die hogere stressniveaus rapporteerden, meer zombiecellen hadden, ontdekten Klopack en zijn team dat ze ook minder "naïeve" T-cellen hadden, de jonge, verse cellen die nodig zijn om nieuwe indringers aan te pakken.

Regression coefficients and 95% CIs from nested analyses regressing cell subset percentage/ratio on each stressor and mediators. All models control for age, race, and sex. Zie grafiek hieronder



Dit blijkt uit een Amerikaans onderzoek bij totaal 5744 mensen ouder dan 50 jaar. Het volledige studierapport is grait sin te zien. Klik op de titel van het abstract:

RESEARCH ARTICLE

Social stressors associated with age-related T lymphocyte percentages in older US adults: Evidence from the US Health and Retirement Study

Contributed by Eileen M. Crimmins; received February 15, 2022; accepted April 25, 2022; reviewed by Janice Kiecolt-Glaser and Idan Shalev.
June 13, 2022
119 (25e2202780119


Significance

As the world’s population of older adults increases, understanding disparities in age-related health is essential. Age-related changes in the immune system play a critical role in age-related morbidity and mortality. This study assesses associations between social stress and immunophenotypes as immune age phenotype markers for the first time in a national sample of older US adults. This study helps clarify mechanisms involved in accelerated development of the immune age phenotype, including socioeconomic and lifestyle factors and cytomegalovirus infection and reactivation. This study also identifies important points of intervention that may be useful in addressing inequalities in aging.

Abstract

Exposure to stress is a risk factor for poor health and accelerated aging. Immune aging, including declines in naïve and increases in terminally differentiated T cells, plays a role in immune health and tissue specific aging, and may contribute to elevated risk for poor health among those who experience high psychosocial stress. Past data have been limited in estimating the contribution of life stress to the development of accelerated immune aging and investigating mediators such as lifestyle and cytomegalovirus (CMV) infection. This study utilizes a national sample of 5,744 US adults over age 50 to assess the relationship of social stress (viz., everyday discrimination, stressful life events, lifetime discrimination, life trauma, and chronic stress) with flow cytometric estimates of immune aging, including naïve and terminally differentiated T cell percentages and the ratio of CD4+ to CD8+ cells. Experiencing life trauma and chronic stress was related to a lower percentage of CD4+ naïve cells. Discrimination and chronic stress were each associated with a greater percentage of terminally differentiated CD4+ cells. Stressful life events, high lifetime discrimination, and life trauma were related to a lower percentage of CD8+ naïve cells. Stressful life events, high lifetime discrimination, and chronic stress were associated with a higher percentage of terminally differentiated CD8+ cells. High lifetime discrimination and chronic stress were related to a lower CD4+:CD8+ ratio. Lifestyle factors and CMV seropositivity partially reduced these effects. Results identify psychosocial stress as a contributor to accelerating immune aging by decreasing naïve and increasing terminally differentiated T cells.


References

1
R. J. Turner, “Understanding health disparities: The promise of the stress process model” in Advances in the Conceptualization of the Stress Process, W. R. Avison, C. S. Aneshensel, S. Schieman, B. Wheaton, Eds. (Springer, 2009), pp. 3–21.
2
M. Kivimäki, A. Steptoe, Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).
3
S. Cohen, “Psychological stress, immunity, and physical disease” in Scientists Making a Difference: The Greatest Living Behavioral and Brain Scientists Talk about Their Most Important Contributions, S. Sternberg, S. Fiske, D. Foss, Eds. (Cambridge University Press, 2016), pp. 419–423.
4
B. S. McEwen, T. Seeman, Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 896, 30–47 (1999).
5
E. S. Epel et al., Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. U.S.A. 101, 17312–17315 (2004).
6
I. Shalev, W. J. Hastings, “Psychosocial stress and telomere regulation” in Genes, Brain, and Emotions: Interdisciplinary and Translational PerspectivesA. C. Miu, J. R. Homberg, K.-P. Lesch, Eds. (Oxford University Press, 2019), pp. 247–261.
7
L. C. Etzel, I. Shalev, “Effects of psychological stress on telomeres as genome regulators” in Stress: Genetics, Epigenetics and Genomics, G. Fink, Ed. (Elsevier, 2021), pp. 109–117.
8
C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging. Cell 153, 1194–1217 (2013).
9
B. G. Childs, M. Durik, D. J. Baker, J. M. van Deursen, Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).
10
M. J. Yousefzadeh et al., An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).
11
Z. Huang et al., Effects of sex and aging on the immune cell landscape as assessed by single-cell transcriptomic analysis. Proc. Natl. Acad. Sci. U.S.A. 118, e2023216118 (2021).
12
B. Thyagarajan et al., Age-related differences in T cell subsets in a nationally representative sample of people over age 55: Findings from the Health and Retirement Study. J. Gerontol. Ser. A 77, 927–933 (2022).
13
A. Aiello et al., Immunosenescence and its hallmarks: How to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 10, 2247 (2019).
14
K. J. Kaczorowski et al., Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl. Acad. Sci. U.S.A. 114, E6097–E6106 (2017).
15
W. X. Huff, J. H. Kwon, M. Henriquez, K. Fetcko, M. Dey, The evolving role of CD8+CD28- immunosenescent T cells in cancer immunology. Int. J. Mol. Sci. 20, 2810 (2019).
16
I. Broadley, A. Pera, G. Morrow, K. A. Davies, F. Kern, Expansions of cytotoxic CD4+CD28- T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection. Front. Immunol. 8, 195 (2017).
17
L. Pangrazzi, B. Weinberger, T cells, aging and senescence. Exp. Gerontol. 134, 110887 (2020).
18
R. G. Reed, Stress and immunological aging. Curr. Opin. Behav. Sci. 28, 38–43 (2019).
19
E. S. Epel et al., More than a feeling: A unified view of stress measurement for population science. Front. Neuroendocrinol. 49, 146–169 (2018).
20
A. T. Geronimus et al., Do US Black women experience stress-related accelerated biological aging? A novel theory and first population-based test of Black-White differences in telomere length. Hum. Nat. 21, 19–38 (2010).
21
A. T. Geronimus, M. Hicken, D. Keene, J. Bound, “Weathering” and age patterns of allostatic load scores among blacks and whites in the United States. Am. J. Public Health 96, 826–833 (2006).
22
R. L. Simons et al., Discrimination, segregation, and chronic inflammation: Testing the weathering explanation for the poor health of Black Americans. Dev. Psychol. 54, 1993–2006 (2018).
23
M. Levine, Traumatic life experiences are associated with increases in epigenetic aging. Biol. Psychiatry 83, S92–S93 (2018).
24
M. E. Levine, S. W. Cole, D. R. Weir, E. M. Crimmins, Childhood and later life stressors and increased inflammatory gene expression at older ages. Soc. Sci. Med. 130, 16–22 (2015).
25
R. Glaser, J. K. Kiecolt-Glaser, Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).
26
J.-P. Gouin, L. Hantsoo, J. K. Kiecolt-Glaser, Immune dysregulation and chronic stress among older adults: A review. Neuroimmunomodulation 15, 251–259 (2008).
27
J.-P. Gouin, R. Glaser, W. B. Malarkey, D. Beversdorf, J. Kiecolt-Glaser, Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol. 31, 264–268 (2012).
28
M. E. Bauer, Chronic stress and immunosenescence: A review. Neuroimmunomodulation 15, 241–250 (2008).
29
A. Sommershof et al., Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav. Immun. 23, 1117–1124 (2009).
30
M. Maes et al., The effects of psychological stress on leukocyte subset distribution in humans: Evidence of immune activation. Neuropsychobiology 39, 1–9 (1999).
31
M. M. C. Elwenspoek et al., T cell immunosenescence after early life adversity: Association with cytomegalovirus infection. Front. Immunol. 8, 1263 (2017).
32
J. A. Bosch, J. E. Fischer, J. C. Fischer, Psychologically adverse work conditions are associated with CD8+ T cell differentiation indicative of immunesenescence. Brain Behav. Immun. 23, 527–534 (2009).
33
A. E. Aiello et al., Income and markers of immunological cellular aging. Psychosom. Med. 78, 657–666 (2016).
34
A. E. Aiello et al., PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit. Psychoneuroendocrinology 67, 133–141 (2016).
35
K. E. Rentscher et al., Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4aPsychoneuroendocrinology 102, 139–148 (2019).
36
C. P. Fagundes, R. Glaser, J. K. Kiecolt-Glaser, Stressful early life experiences and immune dysregulation across the lifespan. Brain Behav. Immun. 27, 8–12 (2013).
37
J. K. Kiecolt-Glaser, L. McGuire, T. F. Robles, R. Glaser, Psychoneuroimmunology: Psychological influences on immune function and health. J. Consult. Clin. Psychol. 70, 537–547 (2002).
38
J. K. Kiecolt-Glaser, R. Glaser, Stress and immunity: Age enhances the risks. Curr. Dir. Psychol. Sci. 10, 18–21 (2001).
39
A. Kalathookunnel Antony, Z. Lian, H. Wu, T cells in adipose tissue in aging. Front. Immunol. 9, 2945 (2018).
40
P. Zuluaga et al., Loss of naive T lymphocytes is associated with advanced liver fibrosis in alcohol use disorder. Drug Alcohol Depend. 213, 108046 (2020).
41
A. Bektas, S. H. Schurman, R. Sen, L. Ferrucci, Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol. 102, 977–988 (2017).
42
M. E. Bauer, Mde. L. Fuente, The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech. Ageing Dev. 158, 27–37 (2016).
43
R. G. Reed, R. N. Greenberg, S. C. Segerstrom, Cytomegalovirus serostatus, inflammation, and antibody response to influenza vaccination in older adults: The moderating effect of beta blockade. Brain Behav. Immun. 61, 14–20 (2017).
44
M. E. Bauer, Stress, glucocorticoids and ageing of the immune system. Stress 8, 69–83 (2005).
45
L. I. Pearlin, The sociological study of stress. J. Health Soc. Behav. 30, 241–256 (1989).
46
H. T. Maecker, J. P. McCoy, R. Nussenblatt, Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191–200 (2012).
47
B. Thyagarajan et al., Effect of delayed cell processing and cryopreservation on immunophenotyping in multicenter population studies. J. Immunol. Methods 463, 61–70 (2018).
48
H. Barcelo, J. Faul, E. Crimmins, B. Thyagarajan, A practical cryopreservation and staining protocol for immunophenotyping in population studies. Curr. Protoc. Cytom. 84, e35 (2018).
49
E. M. Crimmins, J. D. Faul, B. Thyagarajan, D. R. Weir, Venous Blood Collection and Assay Protocol in the 2016 Health and Retirement Study 2016 Venous Blood Study (VBS, 2017).
50
R. J. Turner, B. Wheaton, D. A. Lloyd, The epidemiology of social stress. Am. Sociol. Rev. 60, 104–125 (1995).
51
W. M. Troxel, K. A. Matthews, J. T. Bromberger, K. Sutton-Tyrrell, Chronic stress burden, discrimination, and subclinical carotid artery disease in African American and Caucasian women. Health Psychol. 22, 300–309 (2003).
52
D. R. Williams, Yan Yu, J. S. Jackson, N. B. Anderson, Racial differences in physical and mental health: Socio-economic status, stress and discrimination. J. Health Psychol. 2, 335–351 (1997).
53
N. Krause, B. A. Shaw, J. Cairney, A descriptive epidemiology of lifetime trauma and the physical health status of older adults. Psychol. Aging 19, 637–648 (2004).
54
J. Smith, L. H. Ryan, G. G. Fisher, A. Sonnega, D. R. Weir, HRS Psychosocial and Lifestyle Questionnaire 2006–2016 (Survey Research Center, Institute for Social Research, University of Michigan, 2017).
55
R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
56
T. Lumley, Analysis of complex survey samples. J. Stat. Softw. 9, 1–19 (2004).

Plaats een reactie ...

Reageer op "Sociale stress zoals discriminatie en gezinsproblemen, samen met werk- en geldproblemen, kunnen bijdragen aan vroegtijdige veroudering van menselijk immuunsysteem"


Gerelateerde artikelen