Zie ook in gerelateerde artikelen

20 april 2024: Bron: Nat Commun 15, 2863 (2024)

Specifieke immuungenen van uitgezaaide oogmelanoom voorspellen de resistentie en gevoeligheid voor immuuntherapie met TIL therapie (adoptieve tumor-infiltrerende lymfocyten therapie)  bij een aantal van deze patiënten. Een oogmelanoom wordt gezien als een 'koude tumor' en lijkt daarom niet gevoelig voor immuuntherapie met anti-PD medicijnen - Checkpointremmers

"Wij demonstreren dat adoptieve overdracht van deze transcriptomisch geselecteerde TIL tumorimmuniteit kan bevorderen bij patiënten met uitgezaaide uveaal melanoom / oogmelanoom wanneer andere immuuntherapieën daar niet toe in staat zijn," aldus hoofdonderzoeker Udai Kammula, van de University of Pittsburgh's UPMC Hillman Cancer Center and director of the UPMC Hillman Cancer Center's solid tumor cell therapy program.

Voor hun studie analyses vertrouwden de onderzoekers op 10x op Genomics gebaseerde RNA-sequencing om transcriptomische, genomische en immuuncelpatronen te profileren in 100 monsters van uitzaaiingen van uveale melanoom / oogmelanoom van 84 patiënten.

In tegenstelling tot een huidmelanoom, waar immuuntherapie met anti-PD medicijnen - checkpointremmers vaak gunstig is blijkt een oogmelanoom grotendeels resistent gebleven tegen dergelijke behandelingen, in overeenstemming met de opvatting dat dergelijke tumoren immunologisch 'koud' zijn.
Toch suggereerden de multiomische analyses van het team dat T-celinfiltratie voorkomt in een significante subset van oogmelanoomuitzaaiingen, waarbij tumor-reactieve TIL's opduiken in 55 procent van de uitgezaaide tumoren.

"Onze bevindingen stellen vast dat uitgezaaide oogmelanoom geen immunologisch 'koude tumor' is", aldus de onderzoekers, "maar in plaats daarvan herbergde meer dan de helft van de geanalyseerde oogmelanoom uitzaaiingen tumor-reactieve TIL, ondanks dat ze een van de laagste mutaties hadden."

"We ontdekten dat TIL's van uitgezaaide oogmelanoom het potentieel hebben om de tumor aan te vallen, maar iets in de micro-omgeving van de tumor sluit ze af, zodat ze zich in een slapende of rustige toestand bevinden", aldus Kammula in een verklaring. "Door deze cellen te bevrijden van de onderdrukkende omgeving en ze in het laboratorium te laten groeien, kunnen we hun tumorbestrijdende vermogen redden wanneer ze weer in de patiënt worden ingebracht."

Met dat in gedachten kwamen de onderzoekers met een zogenaamde ‘uveal melanoma immunogenomic score’ (UMIS), gebaseerd op de expressie van bijna 2.400 immuun- en ontstekingsgerelateerde genen. Toen de onderzoekers de UMIS-scores vergeleken met het niveau van antitumorreactiviteit van TIL-culturen die zich uitbreidden ten opzichte van de initiële reeks gevallen van gemetastaseerd oogmelanoom, zagen ze verbeterde tumorspecifieke activiteit voor TIL's van de UMIS met hoge scores. Deze bevindingen werden ondersteund door UMIS-profielen voor zes adoptie-TIL-therapie-responders en 13 non-responders.

“Het gebruik van een biopsie om de UMIS van een patiënt te berekenen zou nutteloze therapieën kunnen helpen voorkomen en patiënten onnodig aan invasieve operaties kunnen onderwerpen,” aldus Udai Kammula in een verklaring.

Het studierapport is gratis in te zien en gepubliceerd in Nature. Hier het summiere abstract:

Uveal melanoma immunogenomics predict immunotherapy resistance and susceptibility

Abstract

Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.

Data availability

Bulk total RNAseq raw sequencing data generated in this study have been deposited in the database of Genotypes and Phenotypes (dbGaP) under accession number phs003330.v1.p1 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003330.v1.p1]. These data are available under restricted access for patient confidentiality reasons and access can be obtained by request via the dbGaP system by following the instructions provided by the website. Approval is determined by the National Cancer Institute Data Access Committee, which can be emailed at ncidac@mail.nih.gov. Access to data is generally granted within a month of successful application and available indefinitely thereafter. Selected raw data are protected and are not publicly available due to data privacy laws but may be shared upon request. Source data are provided with this paper.

Code availability

Software packages were implemented as described in the “Methods” and no custom packages were created.

Acknowledgements

We thank the members of the UPMC clinical trial and research teams for their efforts in this study and the Surgery Branch, NCI, for providing selective tumor samples. We thank Clinigen for providing interleukin-2 for clinical and research studies and thank all the patients who participated in this study. This research was supported by the UPMC Immune Transplant and Therapy Center and in part by the University of Pittsburgh Center for Research Computing, RRID:SCR_022735, through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483. This work utilized the UPMC Hillman Cancer Center Immunologic Monitoring and Cellular Products Laboratory, a shared resource at the University of Pittsburgh supported by the CCSG P30 CA047904. S.L.-M. was supported by a National Institutes of Health National Cancer Institute training grant (T32CA113263).

Author information

Authors and Affiliations

Contributions

S.L.-M., C.B., G.Y., S.M., C.G., J.T., E.A. and P.M. carried out the experiments. S.L.-M., R.K. and U.K. analyzed data and prepared visualizations. S.L.-M., P.M., A.C., V.S., P.C. and U.C. designed the RNAseq bioinformatic pipeline. S.L.-M., P.M., E.S., G.V., L.K., D.K. and X.Z. performed next-generation sequencing. U.K. conducted associated TIL ACT clinical trials. Y.-M.H. and U.K. supervised TIL manufacturing associated with TIL ACT clinical trials. S.L.-M. collected clinicogenomic patient and metastasis data. S.L.-M. and U.K. conceived the project, designed the experiments, and wrote the manuscript.

Corresponding author

Correspondence to Udai S. Kammula.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

We have complied with all relevant ethical regulations in the conduct and reporting of this study.

References

  1. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article CAS PubMed PubMed Central Google Scholar 

  2. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article CAS PubMed Google Scholar 

  3. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  4. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article PubMed PubMed Central Google Scholar 

  5. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  6. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article CAS PubMed Google Scholar 

  7. Algazi, A. P. et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer 122, 3344–3353 (2016).

    Article CAS PubMed Google Scholar 

  8. Piulats, J. M. et al. Nivolumab plus ipilimumab for treatment-naïve metastatic uveal melanoma: an open-label, multicenter, phase II trial by the Spanish Multidisciplinary Melanoma Group (GEM-1402). J. Clin. Oncol. 39, 586–598 (2021).

    Article CAS PubMed Google Scholar 

  9. Jager, M. J. et al. Uveal melanoma. Nat. Rev. Dis. Primers 6, 24 (2020).

    Article PubMed Google Scholar 

  10. Singh, A. D., Turell, M. E. & Topham, A. K. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 118, 1881–1885 (2011).

    Article PubMed Google Scholar 

  11. Niederkorn, J. Y. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front. Immunol. 3, 148 (2012).

    Article CAS PubMed PubMed Central Google Scholar 

  12. Carvajal, R. D. et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: a phase 2 trial. Nat. Med. 28, 2364–2373 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  13. Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021).

    Article CAS PubMed Google Scholar 

  14. Rothermel, L. D. et al. Identification of an immunogenic subset of metastatic uveal melanoma. Clin. Cancer Res. 22, 2237–2249 (2016).

    Article CAS PubMed Google Scholar 

  15. Chandran, S. S. et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18, 792–802 (2017).

    Article PubMed PubMed Central Google Scholar 

  16. Crompton, J. G., Klemen, N. & Kammula, U. S. Metastasectomy for tumor-infiltrating lymphocytes: an emerging operative indication in surgical oncology. Ann. Surg. Oncol. 25, 565–572 (2018).

    Article PubMed Google Scholar 

  17. Javed, A. et al. PD-L1 expression in tumor metastasis is different between uveal melanoma and cutaneous melanoma. Immunotherapy 9, 1323–1330 (2017).

    Article CAS PubMed Google Scholar 

  18. Foroutan, M. et al. Single sample scoring of molecular phenotypes. BMC Bioinform. 19, 404 (2018).

    Article CAS Google Scholar 

  19. Nieto, P. et al. A single-cell tumor immune atlas for precision oncology. Genome Res. 31, 1913–1926 (2021).

    Article PubMed PubMed Central Google Scholar 

  20. Andreatta, M. & Carmona, S. J. UCell: robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  21. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  22. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article CAS PubMed PubMed Central Google Scholar 

  23. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  24. Dersh, D., Hollý, J. & Yewdell, J. W. A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat. Rev. Immunol. 21, 116–128 (2021).

    Article CAS PubMed Google Scholar 

  25. Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46–57 (2013).

    Article CAS PubMed Google Scholar 

  26. Chandran, S. S. et al. Tumor-specific effector CD8+ T cells that can establish immunological memory in humans after adoptive transfer are marked by expression of IL7 receptor and c-myc. Cancer Res. 75, 3216–3226 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  27. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  28. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  29. Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  30. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article ADS CAS PubMed Google Scholar 

  31. Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642.e20 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  32. Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res. 25, 3074–3083 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  33. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  34. Yu, F. et al. Loss of lncRNA-SNHG7 promotes the suppression of hepatic stellate cell activation via miR-378a-3p and DVL2. Mol. Ther. Nucleic Acids 17, 235–244 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  35. Chen, Y. et al. Knockdown of lncRNA SNHG7 inhibited cell proliferation and migration in bladder cancer through activating Wnt/β-catenin pathway. Pathol. Res. Pract. 215, 302–307 (2019).

    Article ADS CAS PubMed Google Scholar 

  36. Bian, Z. et al. The role of long noncoding RNA SNHG7 in human cancers (Review). Mol. Clin. Oncol. 13, 45 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  37. Najafi, S. et al. Oncogenic roles of small nucleolar RNA host gene 7 (SNHG7) long noncoding RNA in human cancers and potentials. Front. Cell Dev. Biol. 9, 809345 (2021).

    Article PubMed Google Scholar 

  38. Ren, J. et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem. Biophys. Res. Commun. 496, 712–718 (2018).

    Article CAS PubMed Google Scholar 

  39. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  40. Fehrenbacher, L. et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387, 1837–1846 (2016).

    Article CAS PubMed Google Scholar 

  41. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article PubMed PubMed Central Google Scholar 

  42. Chiffelle, J. et al. T-cell repertoire analysis and metrics of diversity and clonality. Curr. Opin. Biotechnol. 65, 284–295 (2020).

    Article CAS PubMed Google Scholar 

  43. Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220.e15 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  44. Field, M. G. et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat. Commun. 9, 116 (2018).

    Article ADS PubMed PubMed Central Google Scholar 

  45. Carvajal, R. D. et al. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 20, 99–115 (2023).

    Article PubMed Google Scholar 

  46. Pelster, M. S. et al. Nivolumab and ipilimumab in metastatic uveal melanoma: results from a single-arm phase II study. J. Clin. Oncol. 39, 599–607 (2021).

    Article CAS PubMed Google Scholar 

  47. Karlsson, J. et al. Molecular profiling of driver events in metastatic uveal melanoma. Nat. Commun. 11, 1894 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  48. Shain, A. H. et al. The genetic evolution of metastatic uveal melanoma. Nat. Genet. 51, 1123–1130 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  49. Durante, M. A. et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun. 11, 496 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  50. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723.e14 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  51. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  52. Wang, Y. et al. Multimodal single-cell and whole-genome sequencing of small, frozen clinical specimens. Nat. Genet. 55, 19–25 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  53. Bugter, J. M., Fenderico, N. & Maurice, M. M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer 21, 5–21 (2021).

    Article CAS PubMed Google Scholar 

  54. Mariani, P. et al. Immunohistochemical characterisation of the immune landscape in primary uveal melanoma and liver metastases. Br. J. Cancer 129, 772–781 (2023).

    Article CAS PubMed Google Scholar 

  55. Valpione, S. et al. The T cell receptor repertoire of tumor infiltrating T cells is predictive and prognostic for cancer survival. Nat. Commun. 12, 4098 (2021).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  56. Yusko, E. et al. Association of tumor microenvironment T-cell repertoire and mutational load with clinical outcome after sequential checkpoint blockade in melanoma. Cancer Immunol. Res. 7, 458–465 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  57. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e16 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  58. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  59. Hanada, K. I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493.e6 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  60. Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  61. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article CAS PubMed Google Scholar 

  62. Kendig, K. I. et al. Sentieon DNASeq variant calling workflow demonstrates strong computational performance and accuracy. Front. Genet. 10, 736 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  63. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 43, 11.10.11–11.10.33 (2013).

    Google Scholar 

  64. Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

    Article ADS PubMed PubMed Central Google Scholar 

  65. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

    Article CAS PubMed PubMed Central Google Scholar 

  66. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article CAS PubMed Google Scholar 

  67. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  68. Geoffroy, V. et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics 34, 3572–3574 (2018).

    Article CAS PubMed Google Scholar 

  69. Kandoth, C. mskcc/vcf2maf: vcf2maf v1.6.19 (2020).

  70. McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article PubMed PubMed Central Google Scholar 

  71. Smigielski, E. M., Sirotkin, K., Ward, M. & Sherry, S. T. dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 28, 352–355 (2000).

    Article CAS PubMed PubMed Central Google Scholar 

  72. Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).

    Article CAS PubMed Google Scholar 

  73. Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  74. Paniccia, A. et al. Prospective, multi-institutional, real-time next-generation sequencing of pancreatic cyst fluid reveals diverse genomic alterations that improve the clinical management of pancreatic cysts. Gastroenterology 164, 117–133.e17 (2023).

    Article CAS PubMed Google Scholar 

  75. Andrews, S. FastQC: a quality control tool for high throughput sequence data (2010).

  76. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  77. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).

    Article CAS PubMed Google Scholar 

  78. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article CAS PubMed Google Scholar 

  79. Frankish, A. et al. GENCODE 2021. Nucleic Acids Res. 49, D916–D923 (2021).

    Article CAS PubMed Google Scholar 

  80. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article PubMed PubMed Central Google Scholar 

  81. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article CAS PubMed Google Scholar 

  82. Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).

    Article CAS PubMed Google Scholar 

  83. Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 43, W589–598 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  84. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article CAS PubMed Google Scholar 

  85. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article PubMed PubMed Central Google Scholar 

  86. Blighe, K. PCAtools: PCAtools: Everything Principal Components Analysis. R package version 2.10.0 (2022).

  87. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).

    Article Google Scholar 

  88. Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 50, W216–221 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  89. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS PubMed PubMed Central Google Scholar 

  90. Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  91. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res47, D330–D338 (2019).

  92. Orenbuch, R. et al. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics 36, 33–40 (2020).

    Article CAS PubMed Google Scholar 

  93. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    Article CAS PubMed Google Scholar 

  94. Nazarov, V. et al. immunarch: Bioinformatics Analysis of T-Cell and B-Cell Immune Repertoires R package version 1.0.0 (2022).

  95. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  96. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, 12 (2020)

  97. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol. 23, 27 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  98. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  99. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  100. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods 16, 1289–1296 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  101. Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  102. Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res 9, 47 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  103. The R Development Core Team. R: A Language and Environment for Statistical Computing (2021).

  104. RStudio Team. RStudio: Integrated Development for R (2020).

  105. Kassambara, A. et al. survminer: Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9 (2021).

  106. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Article CAS PubMed Google Scholar 

  107. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

  108. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  109. Brewer, C. RColorBrewer: ColorBrewer Palettes. R package version 1.1-3 (2022).

  110. Dawson, C. ggprism: A. ‘ggplot2’ Extension Inspired by ‘GraphPad Prism’. R package version 1.0.4 (2022).

  111. Pedersen, T. patchwork: The Composer of Plots. R package version 1.1.2 (2022).

  112. Bedward, M., Eppstein, D. & Menzel, P. packcircles: Circle Packing. R package version 0.3.5 (2022).







Plaats een reactie ...

Reageer op "Uitgezaaide oogmelanoom bevat soms immuuncelkenmerken die patienten gevoelig kan maken voor TIL therapie (adoptieve tumor-infiltrerende lymfocyten - TIL)"


Gerelateerde artikelen
 

Gerelateerde artikelen

Immuuntherapie met pembrolizumab >> Immuuntherapie vooraf aan >> Uitgezaaide oogmelanoom bevat >> mRNA-4157 (V940) in combinatie >> Mediterraan dieet stimuleert >> Tumor-infiltrerende lymfocyten >> Vrouw met een progressief >> Pembrolizumab gegeven na operatie >> Relatlimab plus nivolumab >> Nivolumab plus ipilimumab >>