22 november 2016: Bron: Journal of transational medicine

Het succes van immuuntherapie lijkt vooral afhankelijk van vooraf te meten DNA mutaties en receptorenexpressie stellen onderzoekers op een congres over immuuntherapie bij melanomen.  Echter ook stellen zij dat immuuntherapie zonder vooraf vastgestelde biomarkers zeker ook succes kan hebben, zoals bv via verschillende vormen van  T-cel stimulerende behandelingen of algemene dendritische celtherapie. al of niet in combinatie met andere middelen / medicijnen.

In The Journal of translational Medicine is afgelopen week (16 november 2016)  een artikel verschenen met als titel:  Future perspectives in melanoma research Meeting report from the “Melanoma Bridge”. Napoli, December 1st–4th 2015

Hier een korte vrije vertaling van een gedeelte uit het originele abstract, zie verder onderaan de foto en dit artikel

Journal of Translational Medicine

Bron: Translational Medicine

Afgelopen jaar vond in Napels dit 6e "Melanoma Bridge Meeting" plaats. Er vonden vier sessies plaats met de focus op 4 verschillende aspecten:

De vier sessies op deze bijeenkomst richtte zich op 

  1. Moleculaire en immuuntherapeutische ontwikkelingen
  2. Combinatietherapieën
  3. Nieuwe ontwikkelingen specifiek in immuuntherapie
  4. Micro omgeving van tumor en biomarkers.

Recente ontwikkelingen in de tumor biologie en immunologie heeft geleid tot de ontwikkeling van nieuwe gerichte immuuntherapeutische middelen die progressievrije overleving (PFS) en algehele overleving (OS) van kankerpatiënten verlengen. Immuuntherapie met name is een zeer succesvolle benadering gebleken voor patiënten met kanker zoals melanoom, niet-kleincellige longkanker (NSCLC), niercelcarcinoom (RCC), blaaskanker en ziekte van Hodgkin.
In het bijzonder zijn veel klinische successen geboekt met behulp van checkpoint receptorblokkering, waaronder T-cel remmende receptoren zoals cytotoxische-T-lymfocyt-geassocieerd antigeen 4 (CTLA-4) en de geprogrammeerde celdood-1 (PD-1) en zijn ligand PD-L1.

Maar ondanks bewezen successen op immunotherapeutische interventies doen deze zich alleen voor in een relatief klein aantal patiënten. Getracht wordt om reacties op immuuntherapie te verbeteren door de ontwikkeling van biomarkers. Het optimaliseren van biomarkers voor immunotherapie zou kunnen helpen de juiste patiënten te selecteren voor de behandeling en helpen bij het controleren van de ziekte. Het monitoren zou de kennis op respons, progressie van de ziekte en de resistentie kunnen verbeteren, welke natuurlijk de uitdagingen zijn voor het immuuntherapeutische veld in de oncologie. 

Belangrijk is ook dat biomarkers kunnen helpen om rationele combinatietherapieën te ontwerpen. Bovendien kunnen biomarkers helpen de werkingsmechanisme van verschillende middelen te ontrafelen, de dosis te bepalen en volgorde van combinaties van geneesmiddelen vast te stellen.

Echter, biomarkers en ontwikkeling van begeleidende assays van kanker immunotherapie is een uitdaging om verschillende redenen: (i) multipliciteit van immunotherapeutische middelen met verschillende werkingsmechanismen waaronder immuuntherapie met gerichte, activerende en remmende T-celreceptoren (bijvoorbeeld, CTLA-4, PD-1, enz.); adoptieve T-cel therapieën met in weefsel infiltrerende lymfocyten (TIL), chimeer antigen receptoren (CAR-T-cells), en T-cel receptor (TCR) bevatten gemodificeerde T-cellen.............................

Daarna wordt het abstract m.i. te medisch technisch en heb ik maar niet verder vertaald, maar artsen en wetenschappers zullen dit ongetwijfeld begrijpen. Maar zie daarvoor het volledige studierapport: Future perspectives in melanoma research  dat vrij is te lezen en een interessante referentielijst heeft.

Mocht u kanker-actueel de moeite waard vinden en ons willen ondersteunen om kanker-actueel online te houden dan kunt u ons machtigen voor een periodieke donatie via donaties: https://kanker-actueel.nl/NL/donaties.html of doneer al of niet anoniem op - rekeningnummer NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel in Amersfoort. Onze IBANcode is NL79 RABO 0372 9311 38   
Elk bedrag is welkom. En we zijn een ANBI instelling dus uw donatie of gift is in principe aftrekbaar voor de belasting.

En als donateur kunt u ook korting krijgen bij verschillende bedrijven: 

https://kanker-actueel.nl/NL/voordelen-van-ops-lidmaatschap-op-een-rijtje-gezet-inclusief-hoe-het-kookboek-en-de-recepten-op-basis-van-uitgangspunten-van-houtsmullerdieet-te-downloaden-enof-in-te-zien.html

Hier het abstract plus die referentielijst:


In conclusion, immunotherapies have emerged as the most promising class of drugs to treat patients with cancer with diverse tumor types, however many patients do not respond to these therapies. Therefore, determining which patients derive clinical benefit from immune checkpoint agents remains an important clinical question and efforts to identify predictive markers of response are ongoing. The analytical and clinical validation of predictive biomarkers require appropriate clinical studies in which the evaluation of the clinical utility of the biomarker is a pre-specified endpoint of the study. A variety of study designs have been proposed for this purpose. Although, the randomized biomarker stratified design provides the most rigorous assessment of biomarker clinical utility, other study designs might be acceptable depending on the clinical context.

Future perspectives in melanoma research

Meeting report from the “Melanoma Bridge”. Napoli, December 1st–4th 2015
  • Paolo A. AsciertoEmail author,
  • Sanjiv Agarwala,
  • Gerardo Botti,
  • Alessandra Cesano,
  • Gennaro Ciliberto,
  • Michael A. Davies,
  • Sandra Demaria,
  • Reinhard Dummer,
  • Alexander M. Eggermont,
  • Soldano Ferrone,
  • Yang Xin Fu,
  • Thomas F. Gajewski,
  • Claus Garbe,
  • Veronica Huber,
  • Samir Khleif,
  • Michael Krauthammer,
  • Roger S. Lo,
  • Giuseppe Masucci,
  • Giuseppe Palmieri,
  • Michael Postow,
  • Igor Puzanov,
  • Ann Silk,
  • Stefani Spranger,
  • David F. Stroncek,
  • Ahmad Tarhini,
  • Janis M. Taube,
  • Alessandro Testori,
  • Ena Wang,
  • Jennifer A. Wargo,
  • Cassian Yee,
  • Hassane Zarour,
  • Laurence Zitvogel,
  • Bernard A. Fox,
  • Nicola Mozzillo,
  • Francesco M. Marincola and
  • Magdalena ThurinEmail author
Journal of Translational Medicine201614:313

DOI: 10.1186/s12967-016-1070-y

Received: 19 September 2016

Accepted: 27 October 2016

Published: 15 November 2016

Abstract

The sixth “Melanoma Bridge Meeting” took place in Naples, Italy, December 1st–4th, 2015. The four sessions at this meeting were focused on: (1) molecular and immune advances; (2) combination therapies; (3) news in immunotherapy; and 4) tumor microenvironment and biomarkers. Recent advances in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS) of cancer patients. Immunotherapies in particular have emerged as highly successful approaches to treat patients with cancer including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin’s disease. Specifically, many clinical successes have been using checkpoint receptor blockade, including T cell inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death-1 (PD-1) and its ligand PD-L1. Despite demonstrated successes, responses to immunotherapy interventions occur only in a minority of patients. Attempts are being made to improve responses to immunotherapy by developing biomarkers. Optimizing biomarkers for immunotherapy could help properly select patients for treatment and help to monitor response, progression and resistance that are critical challenges for the immuno-oncology (IO) field. Importantly, biomarkers could help to design rational combination therapies. In addition, biomarkers may help to define mechanism of action of different agents, dose selection and to sequence drug combinations. However, biomarkers and assays development to guide cancer immunotherapy is highly challenging for several reasons: (i) multiplicity of immunotherapy agents with different mechanisms of action including immunotherapies that target activating and inhibitory T cell receptors (e.g., CTLA-4, PD-1, etc.); adoptive T cell therapies that include tissue infiltrating lymphocytes (TILs), chimeric antigen receptors (CARs), and T cell receptor (TCR) modified T cells; (ii) tumor heterogeneity including changes in antigenic profiles over time and location in individual patient; and (iii) a variety of immune-suppressive mechanisms in the tumor microenvironment (TME) including T regulatory cells (Treg), myeloid derived suppressor cells (MDSC) and immunosuppressive cytokines. In addition, complex interaction of tumor-immune system further increases the level of difficulties in the process of biomarkers development and their validation for clinical use. Recent clinical trial results have highlighted the potential for combination therapies that include immunomodulating agents such as anti-PD-1 and anti-CTLA-4. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors on T cells and other approaches such as adoptive cell transfer are tested for clinical efficacy in melanoma as well. These agents are also being tested in combination with targeted therapies to improve upon shorter-term responses thus far seen with targeted therapy. Various locoregional interventions that demonstrate promising results in treatment of advanced melanoma are also integrated with immunotherapy agents and the combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for melanoma patients’ population. This meeting’s specific focus was on advances in immunotherapy and combination therapy for melanoma. The importance of understanding of melanoma genomic background for development of novel therapies and biomarkers for clinical application to predict the treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into personalized-medicine approach for treatment of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma. We also discussed the requirements for pre-analytical and analytical as well as clinical validation process as applied to biomarkers for cancer immunotherapy. The concept of the fit-for-purpose marker validation has been introduced to address the challenges and strategies for analytical and clinical validation design for specific assays.

References

  1. Cancer Genome Atlas. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. doi:10.1016/j.cell.2015.05.044.View ArticleGoogle Scholar
  2. Bucheit AD, Chen G, Siroy A, et al. Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations. Clin Cancer Res. 2014;20(21):5527–36. doi:10.1158/1078-0432.CCR-14-1027.View ArticlePubMedPubMed CentralGoogle Scholar
  3. Chen G, Chakravarti N, Aardalen K, et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res. 2014;20(21):5537–46. doi:10.1158/1078-0432.CCR-13-3003.View ArticlePubMedPubMed CentralGoogle Scholar
  4. Gopal YN, Rizos H, Chen G, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 2014;74(23):7037–47. doi:10.1158/0008-5472.CAN-14-1392.View ArticlePubMedPubMed CentralGoogle Scholar
  5. Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16. doi:10.1158/2159-8290.CD-15-0283.View ArticlePubMedGoogle Scholar
  6. Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14. doi:10.1038/ng.2359.View ArticlePubMedPubMed CentralGoogle Scholar
  7. Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996–1002. doi:10.1038/ng.3361.View ArticlePubMedPubMed CentralGoogle Scholar
  8. Thiel C, Wilken M, Zenker M, et al. Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome. Am J Med Genet A. 2009;149A(6):1263–7. doi:10.1002/ajmg.a.32837.View ArticlePubMedGoogle Scholar
  9. Kontaridis MI, Swanson KD, David FS, et al. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281(10):6785–92. doi:10.1074/jbc.M513068200.View ArticlePubMedGoogle Scholar
  10. Hovelson DH, McDaniel AS, Cani AK, et al. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia. 2015;17(4):385–99. doi:10.1016/j.neo.2015.03.004.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Shain AH, Yeh I, Kovalyshyn I, et al. The Genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36. doi:10.1056/NEJMoa1502583.View ArticlePubMedGoogle Scholar
  12. Little AS, Smith PD, Cook SJ. Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene. 2013;32(10):1207–15. doi:10.1038/onc.2012.160.View ArticlePubMedGoogle Scholar
  13. Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9. doi:10.1056/NEJMoa1412690.View ArticlePubMedGoogle Scholar
  14. Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. doi:10.1038/nature09626.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Moriceau G, Hugo W, Hong A, et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015;27(2):240–56. doi:10.1016/j.ccell.2014.11.018.View ArticlePubMedPubMed CentralGoogle Scholar
  16. Shi H, Hong A, Kong X, et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014;4(1):69–79. doi:10.1158/2159-8290.CD-13-0279.View ArticlePubMedGoogle Scholar
  17. Obenauf AC, Zou Y, Ji AL, et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520(7547):368–72. doi:10.1038/nature14336.View ArticlePubMedPubMed CentralGoogle Scholar
  18. Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015;162(6):1271–85. doi:10.1016/j.cell.2015.07.061.View ArticlePubMedPubMed CentralGoogle Scholar
  19. Dummer R, Goldinger SM, Paulitschke V, et al. Curing advanced melanoma by 2025. Curr Opin Oncol. 2015;27(2):125–7. doi:10.1097/CCO.0000000000000168.View ArticlePubMedGoogle Scholar
  20. Urosevic-Maiwald M, Barysch MJ, Cheng PF, et al. Profiling reveals immunomodulatory effects of sorafenib and dacarbazine on melanoma. Oncoimmunology. 2015;4(2):e988458. doi:10.4161/2162402X.2014.988458.View ArticlePubMedPubMed CentralGoogle Scholar
  21. Zingg D, Debbache J, Schaefer SM, et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun. 2015;6:6051. doi:10.1038/ncomms7051.View ArticlePubMedGoogle Scholar
  22. Holderfield M, Deuker MM, McCormick F, et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):455–67. doi:10.1038/nrc3760.View ArticlePubMedPubMed CentralGoogle Scholar
  23. Fattore L, Malpicci D, Marra E, et al. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma. Oncotarget. 2015;6(28):24823–41. doi:10.18632/oncotarget.4485.View ArticlePubMedPubMed CentralGoogle Scholar
  24. Fattore L, Marra E, Pisanu ME, et al. Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. J Transl Med. 2013;11:180. doi:10.1186/1479-5876-11-180.View ArticlePubMedPubMed CentralGoogle Scholar
  25. Fattore L, Acunzo M, Romano G, et al. miR-579-3p is a novel master regulator of melanoma progression and drug resistance metastatic melanoma. Proceedings: AACR 107th Annual Meeting 2016 April 16–20, 2016; New Orleans.
  26. Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. doi:10.1126/scitranslmed.3006504.View ArticlePubMedPubMed CentralGoogle Scholar
  27. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5. doi:10.1038/nature14404.View ArticlePubMedGoogle Scholar
  28. Chapuis AG, Roberts IM, Thompson JA, et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J Clin Oncol. 2016. doi:10.1200/JCO.2015.65.5142.PubMedGoogle Scholar
  29. Yee C. The use of endogenous T cells for adoptive transfer. Immunol Rev. 2014;257(1):250–63. doi:10.1111/imr.12134.View ArticlePubMedGoogle Scholar
  30. Chapuis AG, Thompson JA, Margolin KA, et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci USA. 2012;109(12):4592–7. doi:10.1073/pnas.1113748109.View ArticlePubMedPubMed CentralGoogle Scholar
  31. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–40. doi:10.1016/j.coi.2009.03.002.View ArticlePubMedPubMed CentralGoogle Scholar
  32. Zhou J, Dudley ME, Rosenberg SA, et al. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother. 2005;28(1):53–62.View ArticlePubMedPubMed CentralGoogle Scholar
  33. Li Y, Bleakley M, Yee C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol. 2005;175(4):2261–9.View ArticlePubMedGoogle Scholar
  34. Chapuis AG, Lee SM, Thompson JA, et al. Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med. 2016;213(7):1133–9. doi:10.1084/jem.20152021.View ArticlePubMedGoogle Scholar
  35. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. doi:10.1126/science.aaa8172.View ArticlePubMedGoogle Scholar
  36. Demaria S, Formenti SC. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol. 2012;2:95. doi:10.3389/fonc.2012.00095.PubMedPubMed CentralGoogle Scholar
  37. Demaria S, Kawashima N, Yang AM, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11(2 Pt 1):728–34.PubMedGoogle Scholar
  38. Pilones K, Koelwyn G, Emerson R, et al. Unique changes in the TCR repertoire of tumor-infiltrating lymphocytes underlie the synergy of radiotherapy with CTLA-4 blockade. Cancer Res. 2015;75(15 Suppl):2856.View ArticleGoogle Scholar
  39. Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88. doi:10.1158/1078-0432.CCR-09-0265.View ArticlePubMedPubMed CentralGoogle Scholar
  40. Golden EB, Chachoua A, Fenton-Kerimian MB, et al. Abscopal responses in metastatic non-small cell lung cancer (NSCLC) patients treatded on a phase 2 study of combined radiation therapy and ipilimumab: evidence for the in situ vaccination hypothesis of radiation. Int J Radiat Oncol Biol Phys. 2015;93:S66–7.View ArticleGoogle Scholar
  41. VanpouilleBox C, Formenti S, Demaria S. TGFb and activin A control regulatory T cells in irradiated tumors. J Immunother Cancer. 2015;3:277.View ArticleGoogle Scholar
  42. Golden EB, Frances D, Pellicciotta I, et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 2014;3:e28518. doi:10.4161/onci.28518.View ArticlePubMedPubMed CentralGoogle Scholar
  43. Wennerberg E, Kremer V, Childs R, et al. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother. 2015;64(2):225–35. doi:10.1007/s00262-014-1629-5.View ArticlePubMedGoogle Scholar
  44. Abu-Eid R, Samara RN, Ozbun L, et al. Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. Cancer Immunol Res. 2014;2(11):1080–9. doi:10.1158/2326-6066.CIR-14-0095.View ArticlePubMedPubMed CentralGoogle Scholar
  45. Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell. 2010;18(2):160–70. doi:10.1016/j.ccr.2010.06.014.View ArticlePubMedPubMed CentralGoogle Scholar
  46. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Tenga MW, Smytha MJ. Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 2011;108(17):7142–47. doi:10.1073/pnas.1016569108.View ArticlePubMedPubMed CentralGoogle Scholar
  47. Gajewski TF, Schreiber H, Fu Y-X. Defective IFN production can reduce cross priming while targeting tumor tissues with type I IFN can bridge innate and adaptive immune responses. Nat Immunol. 2013;14(10):1014–22. doi:10.1038/ni.2703.View ArticlePubMedPubMed CentralGoogle Scholar
  48. Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer. 2012;12(1):58–67. doi:10.1038/nrc3171.Google Scholar
  49. Liu X, Pu Y, Cron K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21(10):1209–15. doi:10.1038/nm.3931.View ArticlePubMedPubMed CentralGoogle Scholar
  50. Tang H, Wang Y, Chlewicki LK, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell. 2016;29(3):285–96. doi:10.1016/j.ccell.2016.02.004.View ArticlePubMedGoogle Scholar
  51. Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249–53. doi:10.1038/nature15520.View ArticlePubMedPubMed CentralGoogle Scholar
  52. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336–47. doi:10.1038/nri1349.View ArticlePubMedGoogle Scholar
  53. Wu BX, Hong F, Zhang Y, et al. GRP94/gp96 in cancer: biology, structure, immunology, and drug development. Adv Cancer Res. 2016;129:165–90. doi:10.1016/bs.acr.2015.09.001.View ArticlePubMedGoogle Scholar
  54. Sabbatino F, Favoino E, Wang Y, et al. Grp94-specific monoclonal antibody to counteract BRAF inhibitor resistance in BRAFV600E melanoma. J Transl Med. 2015;13:1.View ArticleGoogle Scholar
  55. Wang Y, Wang X, Ferrone CR, et al. Intracellular antigens as targets for antibody based immunotherapy of malignant diseases. Mol Oncol. 2015;9(10):1982–93. doi:10.1016/j.molonc.2015.10.019.View ArticlePubMedGoogle Scholar
  56. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. doi:10.1038/nrd4663.View ArticlePubMedGoogle Scholar
  57. Zamarin D, Holmgaard RB, Subudhi SK, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6(226):226ra32. doi:10.1126/scitranslmed.3008095.View ArticlePubMedPubMed CentralGoogle Scholar
  58. Andtbacka RHI. 8th World Congress of melanoma. Hamburg: European Association of Dermatology (EADO); 2013.Google Scholar
  59. Andtbacka RHI, Curti B, Kaufman H, et al. Secondary endpoints of a Phase II study of a novel oncolytic immunotherapeutic agent, Coxsackievirus A21, delivered intratumorally in patients with advanced malignant melanoma. Madrid: ESMO Congress; 2014.Google Scholar
  60. Andtbacka RH, Curti BD, Kaufman H, et al. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol. 2015;33(15):9030.Google Scholar
  61. Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9(12):967–78. doi:10.1038/sj.cgt.7700537.View ArticlePubMedGoogle Scholar
  62. Hawkins LK, Lemoine NR, Kirn D. Oncolytic biotherapy: a novel therapeutic plafform. Lancet Oncol. 2002;3(1):17–26.View ArticlePubMedGoogle Scholar
  63. Fukuhara H, Todo T. Oncolytic herpes simplex virus type 1 and host immune responses. Curr Cancer Drug Targets. 2007;7(2):149–55.View ArticlePubMedGoogle Scholar
  64. Sobol PT, Boudreau JE, Stephenson K, et al. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther. 2011;19(2):335–44. doi:10.1038/mt.2010.264.View ArticlePubMedGoogle Scholar
  65. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303. doi:10.1038/sj.gt.3301885.View ArticlePubMedGoogle Scholar
  66. Melcher A, Parato K, Rooney CM, et al. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther. 2011;19(6):1008–16. doi:10.1038/mt.2011.65.View ArticlePubMedPubMed CentralGoogle Scholar
  67. Dranoff G. GM-CSF-secreting melanoma vaccines. Oncogene. 2003;22(20):3188–92. doi:10.1038/sj.onc.1206459.View ArticlePubMedGoogle Scholar
  68. Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. doi:10.1200/JCO.2014.58.3377.View ArticlePubMedGoogle Scholar
  69. Puzanov I, Milhem MM, Minor D, et al. Talimogene Laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol. 2016. doi:10.1200/JCO.2016.67.1529.Google Scholar
  70. Rajani K, Parrish C, Kottke T, et al. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther. 2016;24(1):166–74. doi:10.1038/mt.2015.156.View ArticlePubMedGoogle Scholar
  71. Pilon-Thomas S, Liu H, Kodumudi K. Efficacy of intralesional injection with PV-10 in combination with co-inhibitory blockade in a murine model of melanoma. Society for Immunotherapy of Cancer Annual Meeting; 2014.
  72. Agarwala SS. Intralesional therapy for advanced melanoma: promise and limitation. Curr Opin Oncol. 2015;27(2):151–6. doi:10.1097/CCO.0000000000000158.View ArticlePubMedPubMed CentralGoogle Scholar
  73. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi:10.1056/NEJMoa1414428.View ArticlePubMedGoogle Scholar
  74. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi:10.1056/NEJMoa1504030.View ArticlePubMedGoogle Scholar
  75. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. doi:10.1056/NEJMc1509660.View ArticlePubMedGoogle Scholar
  76. Hoshimoto S, Faries MB, Morton DL, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62. doi:10.1097/SLA.0b013e3182380f56.View ArticlePubMedPubMed CentralGoogle Scholar
  77. Howard JH, Thompson JF, Mozzillo N, et al. Metastasectomy for distant metastatic melanoma: analysis of data from the first multicenter selective lymphadenectomy trial (MSLT-I). Ann Surg Oncol. 2012;19(8):2547–55. doi:10.1245/s10434-012-2398-z.View ArticlePubMedPubMed CentralGoogle Scholar
  78. Simeone E, Gentilcore G, Giannarelli D, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 2014;63(7):675–83. doi:10.1007/s00262-014-1545-8.View ArticlePubMedGoogle Scholar
  79. Amaravadi RK, Kim KB, Flaherty KT, et al. Prolonged responses to vemurafenib in patients with BRAFV600E mutant melanoma with low tumor burden at baseline. 8th International Congress of the Society for Melanoma Research; Tampa: 2013.
  80. Tarhini AA, Gogas H, Kirkwood JM. IFN-alpha in the treatment of melanoma. J Immunol. 2012;189(8):3789–93. doi:10.4049/jimmunol.1290060.View ArticlePubMedPubMed CentralGoogle Scholar
  81. Mocellin S, Lens MB, Pasquali S, Pilati P, Chiarion Sileni V. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst Rev. 2013(6):CD008955.
  82. Eggermont AM, Suciu S, Testori A, et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30(31):3810–8. doi:10.1200/JCO.2011.41.3799.View ArticlePubMedGoogle Scholar
  83. Corrie PG, Marshall A, Dunn JA, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 2014;15(6):620–30. doi:10.1016/S1470-2045(14)70110-X.View ArticlePubMedGoogle Scholar
  84. Estevez LG, Gradishar WJ. Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004;10(10):3249–61. doi:10.1158/1078-0432.CCR-03-0133.View ArticlePubMedGoogle Scholar
  85. Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66. doi:10.1056/NEJMoa022148.View ArticlePubMedGoogle Scholar
  86. Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15(7):2483–93.PubMedGoogle Scholar
  87. Medical Research Council Oesophageal Cancer Working G. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet. 2002;359(9319):1727–33. doi:10.1016/S0140-6736(02)08651-8.View ArticleGoogle Scholar
  88. Tarhini AA, Edington H, Butterfield LH, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE. 2014;9(2):e87705. doi:10.1371/journal.pone.0087705.View ArticlePubMedPubMed CentralGoogle Scholar
  89. Tarhini AA, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-beta1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer. 2015;3:39. doi:10.1186/s40425-015-0081-1.View ArticlePubMedPubMed CentralGoogle Scholar
  90. Salama AK, Flaherty KT. BRAF in melanoma: current strategies and future directions. Clin Cancer Res. 2013;19(16):4326–34. doi:10.1158/1078-0432.CCR-13-0779.View ArticlePubMedGoogle Scholar
  91. Hu-Lieskovan S, Robert L, Homet Moreno B, et al. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol. 2014;32(21):2248–54. doi:10.1200/JCO.2013.52.1377.View ArticlePubMedPubMed CentralGoogle Scholar
  92. Tarhini AA. Neoadjuvant therapy for melanoma: a promising therapeutic approach and an ideal platform in drug development. Am Soc Clin Oncol Educ Book. 2015. doi:10.14694/EdBook_AM.2015.35.e535.PubMedGoogle Scholar
  93. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.View ArticlePubMedPubMed CentralGoogle Scholar
  94. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94. doi:10.1200/JCO.2014.56.2736.View ArticlePubMedGoogle Scholar
  95. Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 2008;372(9633):117–26. doi:10.1016/S0140-6736(08)61033-8.View ArticlePubMedGoogle Scholar
  96. Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383(9919):816–27. doi:10.1016/S0140-6736(13)60802-8.View ArticlePubMedGoogle Scholar
  97. van Akkooi AC, Nowecki ZI, Voit C, et al. Sentinel node tumor burden according to the Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: a multicenter study in 388 patients with positive sentinel nodes. Ann Surg. 2008;248(6):949–55. doi:10.1097/SLA.0b013e31818fefe0.View ArticlePubMedGoogle Scholar
  98. van der Ploeg AP, van Akkooi AC, Rutkowski P, et al. Prognosis in patients with sentinel node-positive melanoma is accurately defined by the combined Rotterdam tumor load and Dewar topography criteria. J Clin Oncol. 2011;29(16):2206–14. doi:10.1200/JCO.2010.31.6760.View ArticlePubMedGoogle Scholar
  99. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30. doi:10.1016/S1470-2045(15)70122-1.View ArticlePubMedGoogle Scholar
  100. Eggermont AM, Suciu S, MacKie R, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet. 2005;366(9492):1189–96. doi:10.1016/S0140-6736(05)67482-X.View ArticlePubMedGoogle Scholar
  101. Eggermont AM, Suciu S, Testori A, et al. Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer. 2012;48(2):218–25. doi:10.1016/j.ejca.2011.09.028.View ArticlePubMedGoogle Scholar
  102. Eggermont AM, Suciu S, Rutkowski P, et al. Long term follow up of the EORTC 18952 trial of adjuvant therapy in resected stage IIB-III cutaneous melanoma patients comparing intermediate doses of interferon-alpha-2b (IFN) with observation: ulceration of primary is key determinant for IFN-sensitivity. Eur J Cancer. 2016;55:111–21. doi:10.1016/j.ejca.2015.11.014.View ArticlePubMedGoogle Scholar
  103. Suciu S, Ives N, Eggermont A, et al. Predictive importance of ulceration on the efficacy of adjuvant interferon-a (IFN): An individual patient data (IPD) meta-analysis of 15 randomized trials in more than 7500 melanoma patients (pts). J Clin Oncol. 2014;32(5):9067.Google Scholar
  104. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi:10.1056/NEJMoa1412082.View ArticlePubMedGoogle Scholar
  105. Larkin J, Lao CD, Urba WJ, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40. doi:10.1001/jamaoncol.2015.1184.View ArticlePubMedGoogle Scholar
  106. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. doi:10.1056/NEJMoa1503093.View ArticlePubMedGoogle Scholar
  107. Weber J, Grob JJ, Margolin KA, et al. A Phase III study (CheckMate 238) of adjuvant immunotherapy with nivolumab (NIVO) versus ipilimumab (IPI) after complete resection of stage IIIb/c or stage IV melanoma (MEL) in patients (pts) at high risk for recurrence. J Transl Med. 2015;3(Suppl 2):166.Google Scholar
  108. Eggermont AM, Maio M, Robert C. Immune checkpoint inhibitors in melanoma provide the cornerstones for curative therapies. Semin Oncol. 2015;42(3):429–35. doi:10.1053/j.seminoncol.2015.02.010.View ArticlePubMedGoogle Scholar
  109. Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22(8):1856–64. doi:10.1158/1078-0432.CCR-15-1849.View ArticlePubMedGoogle Scholar
  110. Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86. doi:10.1084/jem.20100637.View ArticlePubMedPubMed CentralGoogle Scholar
  111. Fourcade J, Sun Z, Pagliano O, et al. CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 2012;72(4):887–96. doi:10.1158/0008-5472.CAN-11-2637.View ArticlePubMedGoogle Scholar
  112. Fourcade J, Sun Z, Pagliano O, et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res. 2014;74(4):1045–55. doi:10.1158/0008-5472.CAN-13-2908.View ArticlePubMedGoogle Scholar
  113. Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest. 2015;125(5):2046–58. doi:10.1172/JCI80445.View ArticlePubMedPubMed CentralGoogle Scholar
  114. Jensen SM, Twitty CG, Maston LD, et al. Increased frequency of suppressive regulatory T cells and T cell-mediated antigen loss results in murine melanoma recurrence. J Immunol. 2012;189(2):767–76. doi:10.4049/jimmunol.1103822.View ArticlePubMedPubMed CentralGoogle Scholar
  115. Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol. 2011;32(11):548–58. doi:10.1016/j.it.2011.08.001.View ArticlePubMedPubMed CentralGoogle Scholar
  116. Li Y, Wang LX, Yang G, et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68(17):6889–95. doi:10.1158/0008-5472.CAN-08-0161.View ArticlePubMedPubMed CentralGoogle Scholar
  117. Twitty CG, Jensen SM, Hu HM, et al. Tumor-derived autophagosome vaccine: induction of cross-protective immune responses against short-lived proteins through a p62-dependent mechanism. Clin Cancer Res. 2011;17(20):6467–81. doi:10.1158/1078-0432.CCR-11-0812.View ArticlePubMedPubMed CentralGoogle Scholar
  118. Sanborn R, Boulmay B, Li R, et al. Preliminary analysis of immune responses in patients enrolled in a Phase II trial of cyclophosphamide with allogenic dribble vaccine alone (DPV-001) or with GM-CSF or imiquimod for adjuvant treatment of stage IIIa or IIIb NSCLC. J Immunother Cancer. 2015;3(Suppl 2):435.View ArticleGoogle Scholar
  119. Page DB, Hulett TW, Hilton TL, Hu HM, Urba WJ, Fox BA. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine. J Immunother Cancer. 2016;4:25. doi:10.1186/s40425-016-0130-4.View ArticlePubMedPubMed CentralGoogle Scholar
  120. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi:10.1016/S0140-6736(14)61403-3.View ArticlePubMedGoogle Scholar
  121. Stroncek DF, Ren J, Lee DW, et al. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy. 2016;18(7):893–901. doi:10.1016/j.jcyt.2016.04.003.View ArticlePubMedGoogle Scholar
  122. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56. doi:10.1038/nrc1739.View ArticlePubMedGoogle Scholar
  123. Ribas A, Robert C, Hodi FS, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J Clin Oncol. 2015;33:3001.View ArticleGoogle Scholar
  124. Seiwert TY, Burtness B, Weiss J, et al. Inflamed-phenotype gene expression signatures to predict benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ head and neck cancer patients. J Clin Oncol. 2015;33:6017.Google Scholar
  125. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22. doi:10.1038/ni.2703.View ArticlePubMedPubMed CentralGoogle Scholar
  126. Spranger S, Sivan A, Corrales L, et al. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol. 2016;130:75–93. doi:10.1016/bs.ai.2015.12.003.View ArticlePubMedPubMed CentralGoogle Scholar
  127. Sivan A, Corrales L, Hubert N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. doi:10.1126/science.aac4255.View ArticlePubMedPubMed CentralGoogle Scholar
  128. Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. doi:10.1126/scitranslmed.3003689.View ArticlePubMedPubMed CentralGoogle Scholar
  129. Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. doi:10.1158/1078-0432.CCR-13-3271.View ArticlePubMedPubMed CentralGoogle Scholar
  130. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi:10.1056/NEJMoa1200690.View ArticlePubMedPubMed CentralGoogle Scholar
  131. Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. doi:10.1158/1078-0432.CCR-12-1630.View ArticlePubMedPubMed CentralGoogle Scholar
  132. Cooper ZA, Frederick DT, Juneja VR, et al. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology. 2013;2(10):e26615. doi:10.4161/onci.26615.View ArticlePubMedPubMed CentralGoogle Scholar
  133. Cooper ZA, Juneja VR, Sage PT, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res. 2014;2(7):643–54. doi:10.1158/2326-6066.CIR-13-0215.View ArticlePubMedPubMed CentralGoogle Scholar
  134. Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016. doi:10.1158/2159-8290.CD-15-1545.Google Scholar
  135. Filipazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25(18):2546–53. doi:10.1200/JCO.2006.08.5829.View ArticlePubMedGoogle Scholar
  136. Filipazzi P, Burdek M, Villa A, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9. doi:10.1016/j.semcancer.2012.02.005.View ArticlePubMedGoogle Scholar
  137. Ridder K, Sevko A, Heide J, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4(6):e1008371. doi:10.1080/2162402X.2015.1008371.View ArticlePubMedPubMed CentralGoogle Scholar
  138. Jacquelot N, Roberti MP, Enot DP, et al. Immunophenotyping of stage III melanoma reveals parameters associated with patient prognosis. J Invest Dermatol. 2016. doi:10.1016/j.jid.2015.12.042.PubMedGoogle Scholar
  139. Jacquelot N, Enot DP, Flament C, et al. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest. 2016;126(3):921–37. doi:10.1172/JCI80071.View ArticlePubMedPubMed CentralGoogle Scholar
  140. Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. doi:10.1126/science.aad1329.View ArticlePubMedPubMed CentralGoogle Scholar
  141. Lee JW, Devanarayan V, Barrett YC, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28. doi:10.1007/s11095-005-9045-3.View ArticlePubMedGoogle Scholar
  142. Dako. PD-L1 IHC 22C3 pharmDx specification sheet. 2015. http://www.dako.com/download.pdf?objectid=128206001. Accessed 3 Oct 2016.
  143. Cree IA, Deans Z, Ligtenberg MJ, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67(11):923–31. doi:10.1136/jclinpath-2014-202404.View ArticlePubMedPubMed CentralGoogle Scholar
  144. Pant S, Weiner R, Marton MJ. Navigating the rapids: the development of regulated next-generation sequencing-based clinical trial assays and companion diagnostics. Front Oncol. 2014;4:78. doi:10.3389/fonc.2014.00078.View ArticlePubMedPubMed CentralGoogle Scholar
  145. Rehm HL, Bale SJ, Bayrak-Toydemir P, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47. doi:10.1038/gim.2013.92.View ArticlePubMedPubMed CentralGoogle Scholar
  146. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.View ArticlePubMedGoogle Scholar
  147. Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol. 2009;27(24):4027–34. doi:10.1200/JCO.2009.22.3701.View ArticlePubMedPubMed CentralGoogle Scholar

Copyright

© The Author(s) 2016

Advertisement


Plaats een reactie ...

Reageer op "Biomarkers - DNA mutaties en receptorenexpressie - zijn bepalend voor succes van immuuntherapie bij melanomen al lijkt algemene dendritische celtherapie als immuuntherapie ook zinvol"


Gerelateerde artikelen