2 augustus 2023: Bron: The Lancet, de Volkskrant

Uit een groot Zweeds onderzoek blijkt dat AI = Kunstmatige Intelligentie meer beginnende borstkanker ontdekt op de röntgenfoto's die worden gemaakt tijdens het bevolkingsonderzoek borstkanker dan wanneer twee radiologen zoals standaard gebruikelijk is de beelden bekijken. Het verschil lijkt weinig:
  • In de interventiegroep waren 184 (75%) van de 244 ontdekte kankers invasief en 60 (25%) waren in situ;
  • in de controlegroep waren 165 (81%) van de 203 kankers invasief en 38 (19%) waren in situ.

maar alleen al in Nederland zou dit voor honderden vrouwen reden zijn om verder onderzoek te doen n.a.v. de röntgenfoto's met wellicht het starten van een behandeling. 

De resultaten van het Zweedse onderzoek zijn gepubliceerd in The Lancet, abstract onderaan artikel maar ik heb de resultaten vertaald met hulp van google translation: 

Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study  



Bevindingen uit de studie:

  • Tussen 12 april 2021 en 28 juli 2022 werden 80 033 vrouwen willekeurig toegewezen aan AI-ondersteunde screening (n=40 003) of dubbele lezing (2 radiologen) zonder AI (n=40 030). 13 vrouwen werden uitgesloten van de analyse.
  • De mediane leeftijd was 54,0 jaar (IQR 46,7–63,9). Ras- en etniciteitsgegevens werden niet verzameld.
  • AI-ondersteunde screening onder 39-996 deelnemers resulteerde in 244 door het scherm gedetecteerde kankers, 861 terugroepacties en in totaal 46-345 schermuitlezingen.
  • Standaardscreening onder 40 024 deelnemers resulteerde in 203 door het scherm gedetecteerde kankers, 817 terugroepacties en in totaal 83 231 schermuitlezingen.
  • Kankerdetectiepercentages waren 6,1 (95% BI 5,4–6,9) per 1000 gescreende deelnemers in de interventiegroep, boven de laagst aanvaardbare grens voor veiligheid, en 5,1 (4,4–5,8) per 1000 in de controlegroep - een verhouding van 1,2 (95% BI 1,0-1,5; p=0,052).
  • De terugroepingspercentages waren 2,2% (95% BI 2,0-2,3) in de interventiegroep en 2,0% (1,9-2,2) in de controlegroep.
  • Het vals-positieve percentage was 1,5% (95% BI 1,4–1,7) in beide groepen.
  • De PPV van recall was 28,3% (95% BI 25,3-31,5) in de interventiegroep en 24,8% (21,9-28,0) in de controlegroep.
  • In de interventiegroep waren 184 (75%) van de 244 ontdekte kankers invasief en 60 (25%) waren in situ;
  • in de controlegroep waren 165 (81%) van de 203 kankers invasief en 38 (19%) waren in situ.
  • De werklast voor het lezen van schermen werd verminderd met 44,3% met behulp van AI.
In de Volkskrant, NU.nl publiceert het artikel uit de Volkskrant, een artikel over deze studie met ook commentaar van verschillende artsen en wetenschappers over de impact van deze studie:

AI ontdekt vaker kanker dan artsen


Kunstmatige intelligentie is beter in het screenen op borstkanker dan radiologen, blijkt uit een grootschalig Zweeds onderzoek. De technologie kan bovendien de hoge werkdruk van radiologen omlaag brengen.

Dit artikel is afkomstig uit het de Volkskrant. Elke dag verschijnt een selectie van de beste artikelen uit de kranten en tijdschriften op NU.nl. Daar lees je hier meer over.

De studie vormt het nieuwste bewijs dat kunstmatige intelligentie, AI, het werk van radiologen kan aanvullen of zelfs gedeeltelijk vervangen. Ruim 80 duizend vrouwen deden mee. De software, gemaakt door het Nederlandse bedrijf ScreenPoint en getraind op honderdduizenden borstscans, signaleerde vaker borstkanker dan radiologen, zonder daarbij meer vals alarm te slaan. Hoe eerder artsen een tumor vinden, hoe beter de prognose.

Alleen al in Nederland nemen jaarlijks ruim 800 duizend vrouwen deel aan bevolkingsonderzoeken naar borstkanker, door röntgenfoto's van hun borst te laten maken. Radiologen zoeken in deze 'mammogrammen' naar afwijkingen die op kanker kunnen wijzen. Dit doen twee radiologen onafhankelijk van elkaar, om de kans op fouten te minimaliseren. Door vergrijzing en een stijgend tekort aan radiologen kampt deze beroepsgroep met een hoge werkdruk, die AI kan helpen verlichten.

''Voor medische AI is de screening op borstkanker een droomapplicatie'', zegt Bram van Ginneken, hoogleraar medische beeldanalyse aan de Radboud Universiteit Nijmegen en niet betrokken bij het Zweedse onderzoek.>>>>>>>lees verder

ARTICLES| VOLUME 24, ISSUE 8P936-944, AUGUST 2023
Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study

Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study  

Summary

Background

Retrospective studies have shown promising results using artificial intelligence (AI) to improve mammography screening accuracy and reduce screen-reading workload; however, to our knowledge, a randomised trial has not yet been conducted. We aimed to assess the clinical safety of an AI-supported screen-reading protocol compared with standard screen reading by radiologists following mammography.

Methods

In this randomised, controlled, population-based trial, women aged 40–80 years eligible for mammography screening (including general screening with 1·5–2-year intervals and annual screening for those with moderate hereditary risk of breast cancer or a history of breast cancer) at four screening sites in Sweden were informed about the study as part of the screening invitation. Those who did not opt out were randomly allocated (1:1) to AI-supported screening (intervention group) or standard double reading without AI (control group). Screening examinations were automatically randomised by the Picture Archive and Communications System with a pseudo-random number generator after image acquisition. The participants and the radiographers acquiring the screening examinations, but not the radiologists reading the screening examinations, were masked to study group allocation. The AI system (Transpara version 1.7.0) provided an examination-based malignancy risk score on a 10-level scale that was used to triage screening examinations to single reading (score 1–9) or double reading (score 10), with AI risk scores (for all examinations) and computer-aided detection marks (for examinations with risk score 8–10) available to the radiologists doing the screen reading. Here we report the prespecified clinical safety analysis, to be done after 80 000 women were enrolled, to assess the secondary outcome measures of early screening performance (cancer detection rate, recall rate, false positive rate, positive predictive value of recall, and type of cancer detected [invasive or in situ]) and screen-reading workload. Analyses were done in the modified intention-to-treat population (ie, all women randomly assigned to a group with one complete screening examination, excluding women recalled due to enlarged lymph nodes diagnosed with lymphoma). The lowest acceptable limit for safety in the intervention group was a cancer detection rate of more than 3 per 1000 participants screened. The trial is registered with ClinicalTrials.gov, NCT04838756, and is closed to accrual; follow-up is ongoing to assess the primary endpoint of the trial, interval cancer rate.

Findings

Between April 12, 2021, and July 28, 2022, 80 033 women were randomly assigned to AI-supported screening (n=40 003) or double reading without AI (n=40 030). 13 women were excluded from the analysis. The median age was 54·0 years (IQR 46·7–63·9). Race and ethnicity data were not collected. AI-supported screening among 39 996 participants resulted in 244 screen-detected cancers, 861 recalls, and a total of 46 345 screen readings. Standard screening among 40 024 participants resulted in 203 screen-detected cancers, 817 recalls, and a total of 83 231 screen readings. Cancer detection rates were 6·1 (95% CI 5·4–6·9) per 1000 screened participants in the intervention group, above the lowest acceptable limit for safety, and 5·1 (4·4–5·8) per 1000 in the control group—a ratio of 1·2 (95% CI 1·0–1·5; p=0·052). Recall rates were 2·2% (95% CI 2·0–2·3) in the intervention group and 2·0% (1·9–2·2) in the control group. The false positive rate was 1·5% (95% CI 1·4–1·7) in both groups. The PPV of recall was 28·3% (95% CI 25·3–31·5) in the intervention group and 24·8% (21·9–28·0) in the control group. In the intervention group, 184 (75%) of 244 cancers detected were invasive and 60 (25%) were in situ; in the control group, 165 (81%) of 203 cancers were invasive and 38 (19%) were in situ. The screen-reading workload was reduced by 44·3% using AI.

Interpretation

AI-supported mammography screening resulted in a similar cancer detection rate compared with standard double reading, with a substantially lower screen-reading workload, indicating that the use of AI in mammography screening is safe. The trial was thus not halted and the primary endpoint of interval cancer rate will be assessed in 100 000 enrolled participants after 2-years of follow up.

Funding

Swedish Cancer Society, Confederation of Regional Cancer Centres, and the Swedish governmental funding for clinical research (ALF).

References

  1. 1.
    • Schünemann HJ 
    • Lerda D 
    • Quinn C 
    • et al.
    Breast cancer screening and diagnosis: a synopsis of the European Breast Guidelines.
    Ann Intern Med. 2020; 17246-56
  2. 2.
    • Taylor P 
    • Potts HWW
    Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate.
    Eur J Cancer. 2008; 44798-807
  3. 3.
    • Taylor-Phillips S 
    • Stinton C
    Double reading in breast cancer screening: considerations for policy-making.
    Br J Radiol. 2020; 9320190610
  4. 4.
    • Posso M 
    • Carles M 
    • Rué M 
    • Puig T 
    • Bonfill X
    Cost-effectiveness of double reading versus single reading of mammograms in a breast cancer screening programme.
    PLoS One. 2016; 11e0159806
  5. 5.
    • Gulland A
    Staff shortages are putting UK breast cancer screening “at risk,” survey finds.
    BMJ. 2016; 353i2350
  6. 6.
    • Houssami N 
    • Hunter K
    The epidemiology, radiology and biological characteristics of interval breast cancers in population mammography screening.
    NPJ Breast Cancer. 2017; 312
  7. 7.
    • Hovda T 
    • Hoff SR 
    • Larsen M 
    • Romundstad L 
    • Sahlberg KK 
    • Hofvind S
    True and missed interval cancer in organized mammographic screening: a retrospective review study of diagnostic and prior screening mammograms.
    Acad Radiol. 2022; 29S180-S191
  8. 8.
    • Hofvind S 
    • Skaane P 
    • Vitak B 
    • et al.
    Influence of review design on percentages of missed interval breast cancers: retrospective study of interval cancers in a population-based screening program.
    Radiology. 2005; 237437-443
  9. 9.
    • Sechopoulos I 
    • Teuwen J 
    • Mann R
    Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art.
    Semin Cancer Biol. 2021; 72214-225
  10. 10.
    • Rodriguez-Ruiz A 
    • Lång K 
    • Gubern-Merida A 
    • et al.
    Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists.
    J Natl Cancer Inst. 2019; 111916-922
  11. 11.
    • McKinney SM 
    • Sieniek M 
    • Godbole V 
    • et al.
    International evaluation of an AI system for breast cancer screening.
    Nature. 2020; 57789-94
  12. 12.
    • Salim M 
    • Wåhlin E 
    • Dembrower K 
    • et al.
    External evaluation of 3 commercial artificial intelligence algorithms for independent assessment of screening mammograms.
    JAMA Oncol. 2020; 61581-1588
  13. 13.
    • Freeman K 
    • Geppert J 
    • Stinton C 
    • et al.
    Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy.
    BMJ. 2021; 374n1872
  14. 14.
    • Rodriguez-Ruiz A 
    • Lång K 
    • Gubern-Merida A 
    • et al.
    Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
    Eur Radiol. 2019; 294825-4832
  15. 15.
    • Dembrower K 
    • Wåhlin E 
    • Liu Y 
    • et al.
    Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study.
    Lancet Digit Health. 2020; 2e468-e474
  16. 16.
    • Larsen M 
    • Aglen CF 
    • Lee CI 
    • et al.
    Artificial intelligence evaluation of 122 969 mammography examinations from a population-based screening program.
    Radiology. 2022; 303502-511
  17. 17.
    • Lauritzen AD 
    • Rodríguez-Ruiz A 
    • von Euler-Chelpin MC 
    • et al.
    An artificial intelligence-based mammography screening protocol for breast cancer: outcome and radiologist workload.
    Radiology. 2022; 30441-49
  18. 18.
    • Lång K 
    • Hofvind S 
    • Rodríguez-Ruiz A 
    • Andersson I
    Can artificial intelligence reduce the interval cancer rate in mammography screening?.
    Eur Radiol. 2021; 315940-5947
  19. 19.
    • Byng D 
    • Strauch B 
    • Gnas L 
    • et al.
    AI-based prevention of interval cancers in a national mammography screening program.
    Eur J Radiol. 2022; 152110321
  20. 20.
    • Larsen M 
    • Aglen CF 
    • Hoff SR 
    • Lund-Hanssen H 
    • Hofvind S
    Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations.
    Eur Radiol. 2022; 328238-8246
  21. 21.
    • Evans KK 
    • Birdwell RL 
    • Wolfe JM
    If you don't find it often, you often don't find it: why some cancers are missed in breast cancer screening.
    PLoS One. 2013; 8e64366
  22. 22.
    • Houssami N 
    • Hofvind S 
    • Soerensen AL 
    • et al.
    Interval breast cancer rates for digital breast tomosynthesis versus digital mammography population screening: an individual participant data meta-analysis.
    eClinicalMedicine. 2021; 34100804
  23. 23.
    • van Luijt PA 
    • Heijnsdijk EAM 
    • Fracheboud J 
    • et al.
    The distribution of ductal carcinoma in situ (DCIS) grade in 4232 women and its impact on overdiagnosis in breast cancer screening.
    Breast Cancer Res. 2016; 1847
  24. 24.
    • Fenton JJ 
    • Taplin SH 
    • Carney PA 
    • et al.
    Influence of computer-aided detection on performance of screening mammography.
    N Engl J Med. 2007; 3561399-1409
  25. 25.
    • Lehman CD 
    • Wellman RD 
    • Buist DSM 
    • Kerlikowske K 
    • Tosteson ANA 
    • Miglioretti DL
    Diagnostic accuracy of digital screening mammography with and without computer-aided detection.
    JAMA Intern Med. 2015; 1751828-1837
  26. 26.
    • Elmore JG 
    • Lee CI
    Artificial Intelligence in medical imaging: learning from past mistakes in mammography.
    JAMA Health Forum. 2022; 3e215207
  27. 27.
    • Fenton JJ
    Is it time to stop paying for computer-aided mammography?.
    JAMA Intern Med. 2015; 1751837-1838
  28. 28.
    • Gur D 
    • Nishikawa RM 
    • Sumkin JH
    New screening technologies and practices: a different approach to estimation of performance improvement by using data from the transition period.
    Radiology. 2015; 2759-12
  29. 29.
    • Alberdi RZ 
    • Llanes AB 
    • Ortega RA 
    • et al.
    Effect of radiologist experience on the risk of false-positive results in breast cancer screening programs.
    Eur Radiol. 2011; 212083-2090
  30. 30.
    • Larsson SHF 
    • Heintz F
    Transparency in artificial intelligence.
    Internet Policy Rev. 2020; 91469

Linked Articles





Plaats een reactie ...

Reageer op "AI = Kunstmatige intelligentie is beter in het screenen op borstkanker dan dan twee radiologen die de beelden bekijken, blijkt uit een grootschalig Zweeds onderzoek."


Gerelateerde artikelen
 

Gerelateerde artikelen

Arc-Well is nieuwe manier >> AI = Kunstmatige intelligentie >> Alcohol vergroot kans op kanker >> Anorexia: Vrouwen met anorexia >> Aspirine en NSAIDs lijken >> Bisphosfonaten lijken preventief >> Black Cohosh = zilverkruid >> Borstkanker is soms erfelijk >> Chemo en bestraling voor kinderen >> Cosmetische borstimplantaten >>