16 maart 2024: Zie enkele artikelen met CAR-T cellen op onze website via deze search.

16 maart 2024: zie ook in gerelateerde artikelen waarvan het artikel met DCVax-L inmiddels is goedgekeurd om te gebruiken bij hersentumoren van het type Glioblastoma Multiforme.

16 maart 2024: Bron: CNN en drie fase I studies

Met de vertaalde titel: 'Levende medicijnen die de immuuncellen van patiënten herprogrammeren, zijn al vroeg veelbelovend tegen moeilijk te behandelen hersentumoren' publiceerde CNN afgelopen week een artikel over drie fase I studies die onderzoek doen naar het effect van het toedienen van CAR-T cellen (Chimere antigeen recepter (CAR) T celtherapie) direct in de hersenen bij patiënten met een hersentumor van het type Glioblastoma Multiforme

In het artikel van CNN doet een patiënt met een recidief van een hersentumor van het type Glioblastoma Multiforme zijn verhaal van deze aanpak. 

De drie fase I studies die allemaal afgelopen twee weken zijn gepubliceerd, melden spectaculaire resultaten met deze vorm van behandelen met CAR-T cellen, die dus in alle drie de studies rechtstreeks in de hersenen werden toegediend. Wel werden de CAR-T cellen op verschillende manieren gemaakt. In sommige gevallen bleken de tumoren de volgende dag op gemaakte hersenscans te zijn verdwenen. Het negatieve nieuws is dat bij bijna alle patiënten de hersentumoren weer als recidief terugkeerden.

In een eerste fase I open-label onderzoek bij patiënten werden drie deelnemers met een recidief van een hersentumor type glioblastoom multiforme behandeld met zogeheten CARv3-TEAM-ET T-cellen, dit zijn chimere antigeenreceptor (CAR) T-cellen die zijn ontworpen om zich te richten op de epidermale groeifactor. receptor (EGFR) variant III tumorspecifiek antigeen, evenals het wildtype EGFR-eiwit, door uitscheiding van een T-cel-aangrijpend antilichaammolecuul (TEAM).
Behandeling met CARv3-TEAM-E T-cellen resulteerde niet in bijwerkingen hoger dan graad 3 of dosisbeperkende toxische effecten. De radiografische tumorregressie was dramatisch en snel en trad op binnen enkele dagen na ontvangst van een enkel intraventriculair infuus, maar de reacties waren bij twee van de drie deelnemers van voorbijgaande aard want deze patiënten kregen al snel een recidief.

Een tweede publicatie was van een voltooide fase I-studie waarin op IL-13Rα2 gerichte CAR-T cellen werden geëvalueerd bij 65 patiënten met een kwaadaaardige glioom en bij de meeste patiënten een recidief van een hersentumor van het type Glioblastoma Multiforme. Stabiele ziekte of beter werd bereikt bij 50% (29/58) van de patiënten, met twee gedeeltelijke responsen, één volledige respons en een tweede volledige respons na aanvullende CAR-T-cycli buiten het studieprotocol om.

In een derde publicatie van de Universiteit van Pennsylvania was gekozen voor een aanpak die zowel het beoogde eiwit dat werd gebruikt in de City of Hope-onderzoeken, interleukine-13-receptor alfa 2, combineert als het eiwit waarop de Mass General-studie zich richt, de epidermale groeifactorreceptor - EGFR. In deze studie werden 6 patiënten deze behandeling gegeven.
Bij alle zes patiënten werd een afname in verbetering en tumorgrootte waargenomen op snel genomen scanbeelden; geen enkele patiënt bereikte echter een gedeeltelijke of volledige respons. In verkennende doelanalyses werden bij alle zes patiënten wel een aanzienlijke hoeveelheid CAR T-cellen en cytokine-afgifte in het hersenvocht gedetecteerd.
Alles bij elkaar genomen demonstreren deze first-in-human-gegevens volgens de onderzoekers de voorlopige veiligheid en bioactiviteit van CART-EGFR-IL13Rα2-cellen in recidiverend Glioblastoma Multiforme.

In het artikel van CNN zijn alle bovenstaande gegevens terug te vinden, klik op de titel van het CNN artikel: 



For decades, a diagnosis of glioblastoma – an aggressive, hard-to-treat cancer in the brain – has been a death sentence for patients.

Only 3% to 5% of people who are diagnosed with this type of brain tumor will be alive three years later. On average, patients live about 14 months after diagnosis.

Now, an experimental therapy that reprograms a person’s own immune cells to attack these tumors is showing some exciting promise.

Three studies published within the past week have reported dramatic results with a therapy called CAR-T delivered directly to the brain. In some cases, tumors have seemingly melted away on brain scans by the next day.

“That was shocking to me,” said Dr. Otis Brawley, a professor of oncology at Johns Hopkins University and former chief medical officer of the American Cancer Society, who was not involved in the research. “That’s fast. I mean, whoa!”

In most cases, however, the tumors have returned, and none of the studies – from the City of Hope Cancer Center in Duarte, California; the University of Pennsylvania; and Massachusetts General Hospital – has demonstrated a survival benefit for patients. But researchers think that with some tweaks, they’ll soon be able to accomplish that.>>>>>>>lees verder

Deze studies zijn genoemd in bovenstaand artikel:

Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy

List of authors.
  • Christine E. Brown, Ph.D., 
  • Darya Alizadeh, Ph.D., 
  • Renate Starr, M.S., 
  • Lihong Weng, M.D., 
  • Jamie R. Wagner, B.A., 
  • Araceli Naranjo, B.A., 
  • Julie R. Ostberg, Ph.D., 
  • M. Suzette Blanchard, Ph.D., 
  • Julie Kilpatrick, M.S.N., 
  • Jennifer Simpson, B.A., 
  • Anita Kurien, M.B.S., 
  • Saul J. Priceman, Ph.D., 

Summary

A patient with recurrent multifocal glioblastoma received chimeric antigen receptor (CAR)–engineered T cells targeting the tumor-associated antigen interleukin-13 receptor alpha 2 (IL13Rα2). Multiple infusions of CAR T cells were administered over 220 days through two intracranial delivery routes — infusions into the resected tumor cavity followed by infusions into the ventricular system. Intracranial infusions of IL13Rα2-targeted CAR T cells were not associated with any toxic effects of grade 3 or higher. After CAR T-cell treatment, regression of all intracranial and spinal tumors was observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid. This clinical response continued for 7.5 months after the initiation of CAR T-cell therapy. (Funded by Gateway for Cancer Research and others; ClinicalTrials.gov number, NCT02208362. opens in new tab.)



De tweede studie:

Intraventricular CARv3-TEAM-E T Cells in Recurrent Glioblastoma

List of authors.
  • Bryan D. Choi, M.D., Ph.D., 
  • Elizabeth R. Gerstner, M.D., 
  • Matthew J. Frigault, M.D., 
  • Mark B. Leick, M.D., 
  • Christopher W. Mount, M.D., Ph.D., 
  • Leonora Balaj, Ph.D., 
  • Sarah Nikiforow, M.D., Ph.D., 
  • Bob S. Carter, M.D., Ph.D., 
  • William T. Curry, M.D., 
  • Kathleen Gallagher, Ph.D., 
  • and Marcela V. Maus, M.D., Ph.D.

Summary

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell–engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants. (Funded by Gateway for Cancer Research and others; INCIPIENT ClinicalTrials.gov number, NCT05660369. opens in new tab.)

De derde studie bij 6 patiënten:

Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results

Abstract

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study’s primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423.

Een refenrentielijst van een studie:

References (25)

  1. 1.Brown CE, Starr R, Aguilar B, et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin Cancer Res 2012;18:2199-2209

    Google Scholar. opens in new tab
  2. 2.Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004;64:9160-9166

    Google Scholar. opens in new tab
  3. 3.Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res 1999;5:985-990

    Google Scholar. opens in new tab
  4. 4.Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014;123:2625-2635

    Google Scholar. opens in new tab
  5. 5.Ramos CA, Savoldo B, Dotti G. CD19-CAR trials. Cancer J 2014;20:112-118

    Google Scholar. opens in new tab
  6. 6.Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 2016;13:25-40

    Google Scholar. opens in new tab
  7. 7.Kakarla S, Gottschalk S. CAR T cells for solid tumors: armed and ready to go? Cancer J 2014;20:151-155

    Google Scholar. opens in new tab
  8. 8.Priceman SJ, Forman SJ, Brown CE. Smart CARs engineered for cancer immunotherapy. Curr Opin Oncol 2015;27:466-474

    Google Scholar. opens in new tab
  9. 9.Brown CE, Badie B, Barish ME, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 2015;21:4062-4072

    Google Scholar. opens in new tab
  10. 10.Yaghoubi SS, Jensen MC, Satyamurthy N, et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 2009;6:53-58

    Google Scholar. opens in new tab
  11. 11.Jonnalagadda M, Mardiros A, Urak R, et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid Fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther 2015;23:757-768

    Google Scholar. opens in new tab
  12. 12.Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood 2011;117:1888-1898

    Google Scholar. opens in new tab
  13. 13.Wang X, Naranjo A, Brown CE, et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J Immunother 2012;35:689-701

    Google Scholar. opens in new tab
  14. 14.Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015;314:2535-2543

    Google Scholar. opens in new tab
  15. 15.Debinski W, Thompson JP. Retargeting interleukin 13 for radioimmunodetection and radioimmunotherapy of human high-grade gliomas. Clin Cancer Res 1999;5:Suppl:3143s-3147s

    Google Scholar. opens in new tab
  16. 16.Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972

    Google Scholar. opens in new tab
  17. 17.Brentjens RJ, Rivière I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118:4817-4828

    Google Scholar. opens in new tab
  18. 18.Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008;26:5233-5239

    Google Scholar. opens in new tab
  19. 19.Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 2014;6:224ra25-224ra25

    Google Scholar. opens in new tab
  20. 20.Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014;20:119-122

    Google Scholar. opens in new tab
  21. 21.Cerny C, Bronger H, Davoodi M, et al. The role of CXCR3/ligand axis in cancer. Int Trends Immun 2015;3:46-52 (http://researchpub.org/journal/iti/abstract/vol3-no2.html#paper3. opens in new tab).

    Google Scholar. opens in new tab
  22. 22.Liu M, Guo S, Stiles JK. The emerging role of CXCL10 in cancer (review). Oncol Lett 2011;2:583-589

    Google Scholar. opens in new tab
  23. 23.Maus MV, Haas AR, Beatty GL, et al. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013;1:26-31

    Google Scholar. opens in new tab
  24. 24.Ahmed N, Brawley V, Hegde M, et al. Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a phase I trial. J Immunother Cancer 2015;3(Suppl 2):O11 (http://jitc.biomedcentral.com/articles/10.1186/2051-1426-3-S2-O11. opens in new tab).

    Google Scholar. opens in new tab
  25. 25.O’Rourke DM, Nasrallah M, Morrissette JJ, et al. Pilot study of T cells redirected to EGFRvIII with a chimeric antigen receptor in patients with EGFRvIII+ glioblastoma. J Clin Oncol 2016;34:2067-2067 (http://meetinglibrary.asco.org/content/171405-176. opens in new tab).

    Google Scholar
Een andere referentielijst:

References

  1. Wen, P. Y. et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 22, 1073–1113 (2020).

    Article CAS PubMed PubMed Central Google Scholar 

  2. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article PubMed PubMed Central Google Scholar 

  3. Goff, S. L. et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 42, 126–135 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  4. Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).

    Article PubMed PubMed Central Google Scholar 

  5. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  6. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article CAS PubMed PubMed Central Google Scholar 

  7. Lin, Q. et al. First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front. Oncol. 11, 694941 (2021).

    Article PubMed PubMed Central Google Scholar 

  8. Liu, Z. et al. Safety and antitumor activity of GD2-specific 4SCAR-T cells in patients with glioblastoma. Mol. Cancer 22, 3 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  9. Durgin, J. S. et al. Case Report: Prolonged survival following EGFRvIII CAR T cell treatment for recurrent glioblastoma. Front. Oncol. 11, 669071 (2021).

    Article PubMed PubMed Central Google Scholar 

  10. Alizadeh, D. et al. IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 11, 2248–2265 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  11. Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13, eabe7378 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  12. Bielamowicz, K. et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 20, 506–518 (2018).

    Article CAS PubMed Google Scholar 

  13. Yin, Y. et al. Locally secreted BiTEs complement CAR T cells by enhancing killing of antigen heterogeneous solid tumors. Mol. Ther. 30, 2537–2553 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  14. Thokala, R. et al. High-affinity chimeric antigen receptor with cross-reactive scFv to clinically relevant EGFR oncogenic isoforms. Front. Oncol. 11, 664236 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  15. Gan, H. K., Burgess, A. W., Clayton, A. H. & Scott, A. M. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 72, 2924–2930 (2012).

    Article CAS PubMed Google Scholar 

  16. Jungbluth, A. A. et al. A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc. Natl Acad. Sci. USA 100, 639–644 (2003).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  17. Reilly, E. B. et al. Characterization of ABT-806, a humanized tumor-specific anti-EGFR monoclonal antibody. Mol. Cancer Ther. 14, 1141–1151 (2015).

    Article CAS PubMed Google Scholar 

  18. Yin, Y. et al. Checkpoint blockade reverses anergy in IL13Rα2 humanized scFv based CAR T cells to treat murine and canine gliomas. Mol. Ther. Oncolytics 11, 20–38 (2018).

  19. Lassman, A. B. et al. Comparison of biomarker assays for EGFR: implications for precision medicine in patients with glioblastoma. Clin. Cancer Res. 25, 3259–3265 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  20. Newman, J. P. et al. Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nat. Commun. 8, 1913 (2017).

    Article ADS PubMed PubMed Central Google Scholar 

  21. Ellingson, B. M., Wen, P. Y. & Cloughesy, T. F. Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14, 307–320 (2017).

    Article PubMed PubMed Central Google Scholar 

  22. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  23. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  24. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article PubMed PubMed Central Google Scholar 

  25. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  26. Santomasso, B. D. et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J. Clin. Oncol. 39, 3978–3992 (2021).

    Article CAS PubMed Google Scholar 

  27. Danylesko, I. et al. Immune imitation of tumor progression after anti-CD19 chimeric antigen receptor T cells treatment in aggressive B-cell lymphoma. Bone Marrow Transplant. 56, 1134–1143 (2021).

    Article CAS PubMed Google Scholar 

  28. Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar 

  29. Vitanza, N. A. et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 13, 114–131 (2023).

    Article CAS PubMed Google Scholar 


Plaats een reactie ...

Reageer op "CAR-T celtherapie rechtstreeks toegediend in de hersenen doet tumorweefsel van Glioblastoma Multiforma snel slinken en soms zelfs verdwijnen."


Gerelateerde artikelen
 

Gerelateerde artikelen

CAR-T celtherapie rechtstreeks >> DCVax-L verbetert overall >> Craniopharyngiomas, goedaardige >> Immuuntherapie met Natural >> Immuuntherapie met cocktail >> Lage tumor mutatie belasting >> Meisje van drie jaar komt >> Surviving terminal cancer: >> Immuuntherapie met anti-PD >> Immuuntherapie met gemoduleerd >>