5 maart 2022: Bron: UMC Utrecht en EMBO journal

Augustus 2020 al ontdekten onderzoekers aan de Nederlandse UMC universiteit - Utrecht dat wanneer kankerremmende eiwitten (met name in het RNF43 gen) door een mutatie gedeeltelijk of geheel worden uitgeschakeld deze kankerremmende eiwitten kunnen veranderen in kankerstimulerend. Het UMC brachten in hun persbericht over deze studie gedaan in gekweekte mini-darmen (darmorganoïden) met deze titel: Kankermutatie zet remmend eiwit om in gaspedaal . Dit onderzoek is dus nog in een beginnende fase van laboratorium onderzoek tot dierstudies. Maar toch wel belangrijk. 

Afgelopen januari 2022 blijkt wat de Utrechtse onderzoekers vonden ook op te treden bij leverproblemen / leverkanker. Conclusie van een studie:  "RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state" (vertaling via google translate: RNF43 / ZNRF3-verlies maakt vatbaar voor hepatocellulair carcinoom door leverregeneratie te belemmeren en de metabolische grondtoestand van leverlipiden te veranderen). Deze leverstudies zijn uitgebreid en tot in detail beschreven in een studierapport. Zie onder dit artikel. Met lange referentielijst gerelateerd aan dit onderwerp. 

In de Utrechtse studie (abstract onderaan dit artikel) wordt grafisch weergegeven hoe dit mechanisme werkt en er wordt ook in video uitgelegd hoe dit mechanisme werkt:
image

The Wnt pathway-antagonising tumor suppressor RNF43 is frequently lost in human malignancies. Identification of a distinct class of patient-derived RNF43 truncating mutations that drive Wnt receptor/β-catenin target expression in a ligand-independent manner may impact on current cancer treatment schemes.

  • Expression of C-terminally-truncated RNF43 increases β-catenin-mediated transcription in the absence of Wnt ligands.
  • Truncated RNF43 retains destruction complex components CK1 and AXIN at the plasma membrane.
  • CK1α-mediated phosphorylation of the cytosolic tail of truncated RNF43 activates intracellular Wnt signaling.
  • Oncogenic RNF43 induces TP53-dependent epithelial growth arrest in human colon organoids, and decreases sensitivity to anti-Wnt-based therapy.

Abstract

Wnt/β-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce β-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing β-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.

Abstract

RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.

References

1. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–1205. [PubMed[]
2. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–999. [PubMed[]
3. Behrens J, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382:638–642. [PubMed[]
4. Molenaar M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86:391–399. [PubMed[]
5. Hu M, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133:1579–1591. [PubMed[]
6. Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology. 2017;65:1384–1392. [PubMed[]
7. Nejak-Bowen KN, Monga SP. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin. Cancer Biol. 2011;21:44–58. [PMC free article] [PubMed[]
8. Russell JO, Monga SP. Wnt/beta-catenin signaling in liver development, homeostasis, and pathobiology. Annu. Rev. Pathol. 2018;13:351–378. [PMC free article] [PubMed[]
9. Ding BS, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010;468:310–315. [PMC free article] [PubMed[]
10. Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015;524:180–185. [PMC free article] [PubMed[]
11. Apte U, et al. Beta-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol. 2009;175:1056–1065. [PMC free article] [PubMed[]
12. Planas-Paz L, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 2016;18:467–479. [PubMed[]
13. Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006;43:817–825. [PubMed[]
14. Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology. 2006;131:1561–1572. [PubMed[]
15. Boj SF, et al. Diabetes risk gene and Wnt effector Tcf7l2/TCF4 controls hepatic response to perinatal and adult metabolic demand. Cell. 2012;151:1595–1607. [PubMed[]
16. Benhamouche S, et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell. 2006;10:759–770. [PubMed[]
17. Hao HX, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012;485:195–200. [PubMed[]
18. Koo BK, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–669. [PubMed[]
19. de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28:305–316. [PMC free article] [PubMed[]
20. Wu J, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc. Natl Acad. Sci. USA. 2011;108:21188–21193. [PMC free article] [PubMed[]
21. Schulze K, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015;47:505–511. [PMC free article] [PubMed[]
22. Ong CK, et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat. Genet. 2012;44:690–693. [PubMed[]
23. Mastrogiovanni, G. et al. Loss of RNF43/ZNRF3 predisposes to Hepatocellular carcinoma by impairing liver regeneration and altering liver fat metabolism. bioRxiv. 10.1101/2020.09.25.313205 (2020).
24. Sun, T. et al. ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell10.1016/j.stem.2021.05.013 (2021). [PubMed]
25. Schuler M, Dierich A, Chambon P, Metzger D. Efficient temporally controlled targeted somatic mutagenesis in hepatocytes of the mouse. Genesis. 2004;39:167–172. [PubMed[]
26. Lackner C, et al. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J. Hepatol. 2008;48:821–828. [PubMed[]
27. Hirsova P, Gores GJ. Ballooned hepatocytes, undead cells, sonic hedgehog, and vitamin E: therapeutic implications for nonalcoholic steatohepatitis. Hepatology. 2015;61:15–17. [PMC free article] [PubMed[]
28. Liangpunsakul S, Chalasani N. Treatment of nonalcoholic fatty liver disease. Curr. Treat. Options Gastroenterol. 2003;6:455–463. [PubMed[]
29. Kleiner DE, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. [PubMed[]
30. Flurkey K, et al. PohnB6F1: a cross of wild and domestic mice that is a new model of extended female reproductive life span. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:1187–1198. [PubMed[]
31. Hall Z, et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology. 2017;65:1165–1180. [PMC free article] [PubMed[]
32. Prior, N. et al. Lgr5(+) stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development10.1242/dev.174557 (2019). [PMC free article] [PubMed]
33. Hu H, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell. 2018;175:1591.e19–1606.e19. [PubMed[]
34. Matsuzaka T, et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology. 2012;56:2199–2208. [PubMed[]
35. Font-Burgada J, et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell. 2015;162:766–779. [PMC free article] [PubMed[]
36. Tan X, et al. Epidermal growth factor receptor: a novel target of the Wnt/beta-catenin pathway in liver. Gastroenterology. 2005;129:285–302. [PMC free article] [PubMed[]
37. Colnot S, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc. Natl Acad. Sci. USA. 2004;101:17216–17221. [PMC free article] [PubMed[]
38. Camp JG, et al. Multilineage communication regulates human liver bud development from pluripotency. Nature. 2017;546:533–538. [PubMed[]
39. Yang L, et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology. 2017;66:1387–1401. [PMC free article] [PubMed[]
40. Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol. 2010;176:2–13. [PMC free article] [PubMed[]
41. Huch M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–250. [PMC free article] [PubMed[]
42. ten Berge D, et al. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 2011;13:1070–1075. [PMC free article] [PubMed[]
43. Sogutlu F, et al. The effect of ICRT-3 on Wnt signaling pathway in head and neck cancer. J. Cell. Biochem. 2019;120:380–395. [PubMed[]
44. Broutier L, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 2017;23:1424–1435. [PMC free article] [PubMed[]
45. Chiang DY, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68:6779–6788. [PMC free article] [PubMed[]
46. Cairo S, et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell. 2008;14:471–484. [PubMed[]
47. Arendt BM, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61:1565–1578. [PubMed[]
48. International Cancer Genome Consortium et al. International network of cancer genome projects. Nature. 2010;464:993–998. [PMC free article] [PubMed[]
49. Zhang J, et al. International Cancer Genome Consortium Data Portal-a one-stop shop for cancer genomics data. Database. 2011;2011:bar026. [PMC free article] [PubMed[]
50. Guichard C, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 2012;44:694–698. [PMC free article] [PubMed[]
51. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat. Rev. Cancer. 2004;4:197–205. [PubMed[]
52. Go GW, et al. The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by Wnt3a rescue. Cell Metab. 2014;19:209–220. [PMC free article] [PubMed[]
53. Wang S, et al. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J. 2015;29:3436–3445. [PMC free article] [PubMed[]
54. Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol. Cell. 2009;36:872–884. [PMC free article] [PubMed[]
55. Merlos-Suarez A, et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell. 2011;8:511–524. [PubMed[]
56. Tammela T, et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 2017;545:355–359. [PMC free article] [PubMed[]
57. Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 2010;12:468–476. [PubMed[]
58. Lau JK, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J. Pathol. 2017;241:36–44. [PMC free article] [PubMed[]
59. Neumeyer V, et al. Loss of RNF43 function contributes to gastric carcinogenesis by impairing DNA damage response. Cell. Mol. Gastroenterol. Hepatol. 2021;11:1071–1094. [PMC free article] [PubMed[]
60. Khurana E, et al. Role of non-coding sequence variants in cancer. Nat. Rev. Genet. 2016;17:93–108. [PubMed[]
61. Spit M, et al. RNF43 truncations trap CK1 to drive niche-independent self-renewal in cancer. EMBO J. 2020;39:e103932. [PMC free article] [PubMed[]
62. Tsukiyama T, Koo BK, Hatakeyama S. Post-translational Wnt receptor regulation: Is the fog slowly clearing?: the molecular mechanism of RNF43/ZNRF3 ubiquitin ligases is not yet fully elucidated and still controversial. Bioessays. 2021;43:e2000297. [PubMed[]
63. Tsukiyama T, et al. A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nat. Commun. 2020;11:4586. [PMC free article] [PubMed[]
64. Mitchell C, Willenbring H. A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat. Protoc. 2008;3:1167–1170. [PubMed[]
65. Hengstler JG, et al. Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem. Biol. Interact. 2000;125:51–73. [PubMed[]
66. Rompp A, et al. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging. Methods Mol. Biol. 2011;696:205–224. [PubMed[]
67. Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J. Am. Soc. Mass Spectrom. 2018;29:8–16. [PMC free article] [PubMed[]
68. Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–2383. [PubMed[]
69. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. [PMC free article] [PubMed[]

Articles from Nature Communications are provided here courtesy of Nature Publishing Group

Formats:

Recent Activity

See more...




Plaats een reactie ...

Reageer op "Kankerremmende eiwitten kunnen bij mutatie die gen uitschakelt veranderen van kankerremmend in stimulerend, ontdekten Nederlandse onderzoekers"


Gerelateerde artikelen
 

Gerelateerde artikelen

Blaaskanker: Biomarkers als >> 6 nieuwe doorbraken in de >> CDK4 en 6-remmers - palbociclib, >> Overzicht van studies met >> Vaccin tegen KRAS positief >> Kankerremmende eiwitten kunnen >> Een overzicht van de belangrijkste >> Borstkanker: Vrouwen met hormoongevoelige >> Radiotherapeutisch stimulerend >> Sotorasib (AMG 510) geeft >>