Helpt u ons aan 500 donateurs?
Lees o.a. ook deze recent gepubliceerde artikelen:
https://kanker-actueel.nl/selenium-speelt-wellicht-een-rol-in-uitzaaiingsproces-bij-prostaatkanker-blijkt-uit-onderzoek-aan-universiteit-van-wageningen.html
en:
https://kanker-actueel.nl/groene-thee-extract-epigallocatechin-gallate-egcg-werkt-uitstekend-als-preventie-van-beginnende-kanker-door-werking-op-de-kankerstamcellen-en-rna-mutaties-en-stimuleert-effectiviteit-van-andere-medicijnen.html
maar vooral ook raadpleeg onze literatuurlijsten
26 februari 2018, Bron: Cell: DOI: doi.org/10.1016/j.cell.2016.11.037
Klik op de titel van het artikel voor het studierapport.
Uitzaaiingen van kanker zijn verantwoordelijk voor het grootste aantal aan kanker gerelateerde sterfgevallen, maar dit complexe proces van hoe ontstaan uitzaaiingen en hoe die te behandelen blijft tot nu toe het minst begrepen aspect van de kankerbiologie. Echter naarmate het wetenschappelijke onderzoek met betrekking tot uitgezaaide kanker en het uitzaaiingenproces / mechanisme zich in een snel tempo blijft ontwikkelen, worden ook de biologische principes (DNA en RNA mutaties) die ten grondslag liggen aan de verspreiding en karakter van de uitgezaaide kankercellen steeds duidelijker.
Zo wordt nog altijd aangenomen dat uitzaaiingen pas ontstaan als er al een primaire tumor is maar uit recent onderzoek bij bv alvleesklierkanker ( Rhim et al., 2012 ) zouden de uitzaaiingen al eens eerder of tegeljikertijd kunnen zijn ontstaan dan de ontdekte primaire tumor.
In een reviewstudie: Emerging Biological Principles of Metastasis worden de zogeheten cellulaire en moleculaire mechanismen samen die betrokken zijn bij het mechanisme van ontstaan van metastasen / uitzaaiingen besproken, met een focus op die vormen van kanker waar het meest van bekend is. De onderzoekers belichten de algemene principes van het ontstaan van uitzaaiingen / metastase en is m.i. bijzonder interessant voor artsen en wetenschappers. (zie verderop in dit artikel de belangrijkste conclusies uit deze reviewstudie). Hier een schematische weergave hoe uitzaaiingen meestal ontstaan:
Figure 1
Dissemination of Carcinoma Cells
(A) Carcinoma cell dissemination occurs via two mechanisms: single-cell dissemination through an EMT (gray arrow) or the collective dissemination of tumor clusters (black arrow). Recent evidence suggests that the leader cells of tumor clusters also undergo certain phenotypic changes associated with the EMT.
(B) The epithelial state can be portrayed as the default state of residence; as cells undergo an EMT they enter into a succession of multiple epigenetic states, depicted here as free energy wells, with each state moving toward a more mesenchymal phenotype representing a higher energy state.
(C) However, the barriers between states, depicted here again as free energy wells, may be relatively low, resulting in substantial spontaneous interconversion between them, this being manifested as phenotypic plasticity.
In deze reviewstudie: Emerging Biological Principles of Metastasis wordt gedetailleerd uitgelegd hoe uitzaaiingen ontstaan en in een aantal gevallen ook hoe die te voorkomen zijn c.q. te behandelen.
Hier de belangrijkste conclusies van de studie met uitgebreide referentielijst:
We believe that an accurate comparison of the principles that govern primary tumor growth with those that govern the dissemination and outgrowth of metastases will be essential in order to enable the development of new approaches and therapies that are specifically designed to prevent or treat metastatic disease.
Review
Emerging Biological Principles of Metastasis
,
, Robert A. WeinbergCorrespondence information about the author Robert A. Weinberg
Conclusion: Principles and Outlook
As the preceding discussions have indicated, significant progress has been made over the past decade in elucidating the cellular and molecular programs that drive cancer metastasis. Although our understanding of metastasis remains quite incomplete, we see a number of common biological principles beginning to emerge. Thus, we suggest that one can take stock of the information that is currently at hand and conclude that:
- 1.
Metastasis occurs mainly through a sequential, multi-step process that can be conceptualized as the invasion-metastasis cascade.
- 2.
In the case of carcinomas, the EMT program enables primary tumor cells to accomplish most if not all of the steps involved in the physical dissemination of tumor cells to a distant site.
- 3.
The fate of disseminating carcinoma cells is strongly influenced by interactions that they experience during transit through the circulatory system.
- 4.
Disseminated carcinoma cells must escape clearance by the arms of the immune system and subvert the cellular programs that impose a state of dormancy.
- 5.
The process of active metastatic colonization is contingent upon the dissemination of cancer stem cells that can re-initiate tumor growth; the ability of their progeny to assemble adaptive, organ-specific colonization programs; and the establishment of a microenvironment conducive to metastasis.
The processes that enable the physical translocation of cancer cells from primary tumors to the parenchyma of distant tissues are within sight and relatively small in number; in contrast, the adaptive programs allowing cancer cells arising from diverse primary tumors to thrive in various tissue microenvironments may be large in number and not readily reducible to a common set of underlying mechanistic principles.
While these principles articulate general concepts, a number of key mechanistic details related to these ideas remain to be established. For example, we are beginning to appreciate that the EMT program is capable of generating a wide spectrum of carcinoma cells with various complements of mesenchymal traits, but there is little information on the functional role of these different phenotypic states in the metastatic process. Yet other critical questions about metastasis fall outside the bounds of the points outlined above. For one, it is not yet clear what specific factors determine the efficiency of clinical metastatic disease and why some patients present with metastatic cancer, while in other patients many years may lapse before the disease advances to this stage. The literature holds some provocative hints that could account for this variability (Figure 5), such as different cells of origin whose differentiation programs strongly predispose to an aggressive malignancy or to the dissemination of CTC clusters that may more readily establish a metastatic colony. Additionally, the fact that many patients experience metastatic spread to multiple organs suggests the existence of more universal, multi-organ metastatic programs, but the extent to which such programs operate is unclear and their biological details have just begun to be described. Finally, the clinical and biological impact of various immunotherapies, particularly checkpoint inhibitors (Sharma and Allison, 2015), on metastases is certain to be a continued area of active research, even offering the hope of seeking out and eliminating metastatic deposits.
Perhaps most pressing is a better understanding of the biological similarities and differences between primary tumors and their metastatic descendants, especially in regard to the extent of heterogeneity, plasticity, and resistance that they exhibit. We believe that an accurate comparison of the principles that govern primary tumor growth with those that govern the dissemination and outgrowth of metastases will be essential in order to enable the development of new approaches and therapies that are specifically designed to prevent or treat metastatic disease.
Acknowledgments
We would like to thank all members of the R.A.W. laboratory for fruitful discussions and especially Tsukasa Shibue for critical review of the manuscript. We would also like to thank Meredith Leffler for preparation of the figures. A.W.L. is supported by an American Cancer Society – New England Division – Ellison Foundation Postdoctoral Fellowship ( PF-15-131-01-CSM ). D.R.P. was supported by a C.J. Martin Overseas Biomedical Fellowship from the National Health and Medical Research Council of Australia ( NHMRC APP1071853 ) and is currently supported by a K99/R00 Pathway to Independence Award (NIH/NCI 1K99CA201574-01A1 ). Work in the R.A.W. laboratory is supported by grants from the NIH ( R01-CA078461 ), the Breast Cancer Research Foundation, the Advanced Medical Research Foundation, and the Ludwig Center for Molecular Oncology. R.A.W. is an American Cancer Society Research Professor and a Daniel K. Ludwig Cancer Research Professor.
© 2016 Elsevier Inc.
References
Aceto, N., Bardia, A., Miyamoto, D.T., Donaldson, M.C., Wittner, B.S., Spencer, J.A., Yu, M., Pely, A., Engstrom, A., Zhu, H. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis.
Cell. 2014; 158: 1110–1122
Aceto, N., Toner, M., Maheswaran, S., and Haber, D.A. En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition.
Trends Cancer. 2015; 1: 44–52
Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P.G., Manova-Todorova, K., Leversha, M., Hogg, N., Seshan, V.E. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis.
Cell. 2012; 150: 165–178
Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy.
Nat. Rev. Cancer. 2007; 7: 834–846
Aguirre Ghiso, J.A., Kovalski, K., and Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling.
J. Cell Biol. 1999; 147: 89–104
Al-Mehdi, A.B., Tozawa, K., Fisher, A.B., Shientag, L., Lee, A., and Muschel, R.J. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis.
Nat. Med. 2000; 6: 100–102
Alluri, P.G., Speers, C., and Chinnaiyan, A.M. Estrogen receptor mutations and their role in breast cancer progression.
Breast Cancer Res. 2014; 16: 494
Au, S.H., Storey, B.D., Moore, J.C., Tang, Q., Chen, Y.L., Javaid, S., Sarioglu, A.F., Sullivan, R., Madden, M.W., O’Keefe, R. et al. Clusters of circulating tumor cells traverse capillary-sized vessels.
Proc. Natl. Acad. Sci. USA. 2016; 113: 4947–4952
Baccelli, I., Schneeweiss, A., Riethdorf, S., Stenzinger, A., Schillert, A., Vogel, V., Klein, C., Saini, M., Bäuerle, T., Wallwiener, M. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay.
Nat. Biotechnol. 2013; 31: 539–544
Balic, M., Lin, H., Young, L., Hawes, D., Giuliano, A., McNamara, G., Datar, R.H., and Cote, R.J. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype.
Clin. Cancer Res. 2006; 12: 5615–5621
Barkan, D., Kleinman, H., Simmons, J.L., Asmussen, H., Kamaraju, A.K., Hoenorhoff, M.J., Liu, Z.Y., Costes, S.V., Cho, E.H., Lockett, S. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton.
Cancer Res. 2008; 68: 6241–6250
Barkan, D., El Touny, L.H., Michalowski, A.M., Smith, J.A., Chu, I., Davis, A.S., Webster, J.D., Hoover, S., Simpson, R.M., Gauldie, J., and Green, J.E. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment.
Cancer Res. 2010; 70: 5706–5716
Bednarz-Knoll, N., Alix-Panabières, C., and Pantel, K. Plasticity of disseminating cancer cells in patients with epithelial malignancies.
Cancer Metastasis Rev. 2012; 31: 673–687
Bidwell, B.N., Slaney, C.Y., Withana, N.P., Forster, S., Cao, Y., Loi, S., Andrews, D., Mikeska, T., Mangan, N.E., Samarajiwa, S.A. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape.
Nat. Med. 2012; 18: 1224–1231
Bonapace, L., Coissieux, M.M., Wyckoff, J., Mertz, K.D., Varga, Z., Junt, T., and Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis.
Nature. 2014; 515: 130–133
Bonnomet, A., Syne, L., Brysse, A., Feyereisen, E., Thompson, E.W., Noël, A., Foidart, J.M., Birembaut, P., Polette, M., and Gilles, C. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer.
Oncogene. 2012; 31: 3741–3753
Bos, P.D., Zhang, X.H., Nadal, C., Shu, W., Gomis, R.R., Nguyen, D.X., Minn, A.J., van de Vijver, M.J., Gerald, W.L., Foekens, J.A., and Massagué, J. Genes that mediate breast cancer metastasis to the brain.
Nature. 2009; 459: 1005–1009
Brabletz, T. To differentiate or not--routes towards metastasis.
Nat. Rev. Cancer. 2012; 12: 425–436
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., and Kirchner, T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.
Nat. Rev. Cancer. 2005; 5: 744–749
Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H.G., Schewe, D.M., and Aguirre-Ghiso, J.A. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling.
Nat. Cell Biol. 2013; 15: 1351–1361
Braun, S., Vogl, F.D., Naume, B., Janni, W., Osborne, M.P., Coombes, R.C., Schlimok, G., Diel, I.J., Gerber, B., Gebauer, G. et al. A pooled analysis of bone marrow micrometastasis in breast cancer.
N. Engl. J. Med. 2005; 353: 793–802
Cairns, J. Mutation selection and the natural history of cancer.
Nature. 1975; 255: 197–200
Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Stebbings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer.
Nature. 2010; 467: 1109–1113
Celià-Terrassa, T., Meca-Cortés, O., Mateo, F., Martínez de Paz, A., Rubio, N., Arnal-Estapé, A., Ell, B.J., Bermudo, R., Díaz, A., Guerra-Rebollo, M. et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells.
J. Clin. Invest. 2012; 122: 1849–1868
Chambers, A.F., Groom, A.C., and MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites.
Nat. Rev. Cancer. 2002; 2: 563–572
Chen, Q., Zhang, X.H., and Massagué, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs.
Cancer Cell. 2011; 20: 538–549
Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E.E., Lopez-Soto, A., Jacob, L.S., Patwa, R., Shah, H., Xu, K. et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.
Nature. 2016; 533: 493–498
Cheung, K.J., Gabrielson, E., Werb, Z., and Ewald, A.J. Collective invasion in breast cancer requires a conserved basal epithelial program.
Cell. 2013; 155: 1639–1651
Cheung, K.J., Padmanaban, V., Silvestri, V., Schipper, K., Cohen, J.D., Fairchild, A.N., Gorin, M.A., Verdone, J.E., Pienta, K.J., Bader, J.S., and Ewald, A.J. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters.
Proc. Natl. Acad. Sci. USA. 2016; 113: E854–E863
Chung, Y.C., Wei, W.C., Hung, C.N., Kuo, J.F., Hsu, C.P., Chang, K.J., and Chao, W.T. Rab11 collaborates E-cadherin to promote collective cell migration and indicates a poor prognosis in colorectal carcinoma.
Eur. J. Clin. Invest. 2016; 46: 1002–1011
Clever, D., Roychoudhuri, R., Constantinides, M.G., Askenase, M.H., Sukumar, M., Klebanoff, C.A., Eil, R.L., Hickman, H.D., Yu, Z., Pan, J.H. et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche.
Cell. 2016; 166: 1117–1131
Coffelt, S.B., Kersten, K., Doornebal, C.W., Weiden, J., Vrijland, K., Hau, C.S., Verstegen, N.J., Ciampricotti, M., Hawinkels, L.J., Jonkers, J., and de Visser, K.E. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis.
Nature. 2015; 522: 345–348
Coffelt, S.B., Wellenstein, M.D., and de Visser, K.E. Neutrophils in cancer: neutral no more.
Nat. Rev. Cancer. 2016; 16: 431–446
Cools-Lartigue, J., Spicer, J., McDonald, B., Gowing, S., Chow, S., Giannias, B., Bourdeau, F., Kubes, P., and Ferri, L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis.
J. Clin. Invest. 2013; 123: 3446–3458
Costa-Silva, B., Aiello, N.M., Ocean, A.J., Singh, S., Zhang, H., Thakur, B.K., Becker, A., Hoshino, A., Mark, M.T., Molina, H. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.
Nat. Cell Biol. 2015; 17: 816–826
Cox, T.R. and Erler, J.T. Molecular pathways: connecting fibrosis and solid tumor metastasis.
Clin. Cancer Res. 2014; 20: 3637–3643
de Boer, M., van Dijck, J.A., Bult, P., Borm, G.F., and Tjan-Heijnen, V.C. Breast cancer prognosis and occult lymph node metastases, isolated tumor cells, and micrometastases.
J. Natl. Cancer Inst. 2010; 102: 410–425
De Cock, J.M., Shibue, T., Dongre, A., Keckesova, Z., Reinhardt, F., and Weinberg, R.A. Inflammation triggers Zeb1-dependent escape from tumor latency.
Cancer Res. 2016; 76: 6778–6784
De Craene, B. and Berx, G. Regulatory networks defining EMT during cancer initiation and progression.
Nat. Rev. Cancer. 2013; 13: 97–110
Del Pozo Martin, Y., Park, D., Ramachandran, A., Ombrato, L., Calvo, F., Chakravarty, P., Spencer-Dene, B., Derzsi, S., Hill, C.S., Sahai, E., and Malanchi, I. Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization.
Cell Rep. 2015; 13: 2456–2469
Denny, S.K., Yang, D., Chuang, C.H., Brady, J.J., Lim, J.S., Grüner, B.M., Chiou, S.H., Schep, A.N., Baral, J., Hamard, C. et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility.
Cell. 2016; 166: 328–342
Ding, L., Ellis, M.J., Li, S., Larson, D.E., Chen, K., Wallis, J.W., Harris, C.C., McLellan, M.D., Fulton, R.S., Fulton, L.L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft.
Nature. 2010; 464: 999–1005
Douma, S., Van Laar, T., Zevenhoven, J., Meuwissen, R., Van Garderen, E., and Peeper, D.S. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB.
Nature. 2004; 430: 1034–1039
El Touny, L.H., Vieira, A., Mendoza, A., Khanna, C., Hoenerhoff, M.J., and Green, J.E. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells.
J. Clin. Invest. 2014; 124: 156–168
Erler, J.T., Bennewith, K.L., Nicolau, M., Dornhöfer, N., Kong, C., Le, Q.T., Chi, J.T., Jeffrey, S.S., and Giaccia, A.J. Lysyl oxidase is essential for hypoxia-induced metastasis.
Nature. 2006; 440: 1222–1226
Erler, J.T., Bennewith, K.L., Cox, T.R., Lang, G., Bird, D., Koong, A., Le, Q.T., and Giaccia, A.J. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche.
Cancer Cell. 2009; 15: 35–44
Eyles, J., Puaux, A.-L., Wang, X., Toh, B., Prakash, C., Hong, M., Tan, T.G., Zheng, L., Ong, L.C., Jin, Y. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma.
J. Clin. Invest. 2010; 120: 2030–2039
Fan, F., Samuel, S., Evans, K.W., Lu, J., Xia, L., Zhou, Y., Sceusi, E., Tozzi, F., Ye, X.C., Mani, S.A., and Ellis, L.M. Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells.
Cancer Med. 2012; 1: 5–16
Fearon, E.R. and Vogelstein, B. A genetic model for colorectal tumorigenesis.
Cell. 1990; 61: 759–767
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited.
Nat. Rev. Cancer. 2003; 3: 453–458
Fischer, K.R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S.T., Choi, H., El Rayes, T., Ryu, S., Troeger, J. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.
Nature. 2015; 527: 472–476
Franco, A.T., Corken, A., and Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer.
Blood. 2015; 126: 582–588
Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G.S., and Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN.
Cancer Cell. 2009; 16: 183–194
Friedl, P., Locker, J., Sahai, E., and Segall, J.E. Classifying collective cancer cell invasion.
Nat. Cell Biol. 2012; 14: 777–783
Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J.F., Harrington, K., and Sahai, E. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells.
Nat. Cell Biol. 2007; 9: 1392–1400
Gao, H., Chakraborty, G., Lee-Lim, A.P., Mo, Q., Decker, M., Vonica, A., Shen, R., Brogi, E., Brivanlou, A.H., and Giancotti, F.G. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites.
Cell. 2012; 150: 764–779
Gao, H., Chakraborty, G., Zhang, Z., Akalay, I., Gadiya, M., Gao, Y., Sinha, S., Hu, J., Jiang, C., Akram, M. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling.
Cell. 2016; 166: 47–62
Garraway, L.A. and Lander, E.S. Lessons from the cancer genome.
Cell. 2013; 153: 17–37
Gasic, G.J., Gasic, T.B., and Stewart, C.C. Antimetastatic effects associated with platelet reduction.
Proc. Natl. Acad. Sci. USA. 1968; 61: 46–52
Gay, L.J. and Felding-Habermann, B. Contribution of platelets to tumour metastasis.
Nat. Rev. Cancer. 2011; 11: 123–134
Gazdar, A.F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors.
Oncogene. 2009; 28: S24–S31
Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing.
N. Engl. J. Med. 2012; 366: 883–892
Ghajar, C.M. Metastasis prevention by targeting the dormant niche.
Nat. Rev. Cancer. 2015; 15: 238–247
Ghajar, C.M., Peinado, H., Mori, H., Matei, I.R., Evason, K.J., Brazier, H., Almeida, D., Koller, A., Hajjar, K.A., Stainier, D.Y. et al. The perivascular niche regulates breast tumour dormancy.
Nat. Cell Biol. 2013; 15: 807–817
Giancotti, F.G. Mechanisms governing metastatic dormancy and reactivation.
Cell. 2013; 155: 750–764
Gilbert, L.A. and Hemann, M.T. DNA damage-mediated induction of a chemoresistant niche.
Cell. 2010; 143: 355–366
Goss, P.E. and Chambers, A.F. Does tumour dormancy offer a therapeutic target?.
Nat. Rev. Cancer. 2010; 10: 871–877
Granot, Z., Henke, E., Comen, E.A., King, T.A., Norton, L., and Benezra, R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung.
Cancer Cell. 2011; 20: 300–314
Grosse-Wilde, A., Fouquier d’Hérouël, A., McIntosh, E., Ertaylan, G., Skupin, A., Kuestner, R.E., del Sol, A., Walters, K.A., and Huang, S. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival.
PLoS ONE. 2015; 10: e0126522
Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L.B., Tubio, J.M., Papaemmanuil, E., Brewer, D.S., Kallio, H.M., Högnäs, G., Annala, M...., and ICGC Prostate UK Group. The evolutionary history of lethal metastatic prostate cancer.
Nature. 2015; 520: 353–357
Gupta, G.P. and Massagué, J. Cancer metastasis: building a framework.
Cell. 2006; 127: 679–695
Gupta, P.B., Kuperwasser, C., Brunet, J.P., Ramaswamy, S., Kuo, W.L., Gray, J.W., Naber, S.P., and Weinberg, R.A. The melanocyte differentiation program predisposes to metastasis after neoplastic transformation.
Nat. Genet. 2005; 37: 1047–1054
Gupta, G.P., Nguyen, D.X., Chiang, A.C., Bos, P.D., Kim, J.Y., Nadal, C., Gomis, R.R., Manova-Todorova, K., and Massagué, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis.
Nature. 2007; 446: 765–770
Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., and Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening.
Cell. 2009; 138: 645–659
Haffner, M.C., Mosbruger, T., Esopi, D.M., Fedor, H., Heaphy, C.M., Walker, D.A., Adejola, N., Gürel, M., Hicks, J., Meeker, A.K. et al. Tracking the clonal origin of lethal prostate cancer.
J. Clin. Invest. 2013; 123: 4918–4922
Hanahan, D. and Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment.
Cancer Cell. 2012; 21: 309–322
Hanahan, D. and Weinberg, R.A. The hallmarks of cancer.
Cell. 2000; 100: 57–70
Hanahan, D. and Weinberg, R.A. Hallmarks of cancer: the next generation.
Cell. 2011; 144: 646–674
Harper, K.L., Sosa, M.S., Entenberg, D., Hosseini, H., Cheung, J.F., Nobre, R., Avivar-Valderas, A., Nagi, C., Girnius, N., Davis, R.J. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer.
Nature. 2016;
Headley, M.B., Bins, A., Nip, A., Roberts, E.W., Looney, M.R., Gerard, A., and Krummel, M.F. Visualization of immediate immune responses to pioneer metastatic cells in the lung.
Nature. 2016; 531: 513–517
Hong, T., Watanabe, K., Ta, C.H., Villarreal-Ponce, A., Nie, Q., and Dai, X. An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states.
PLoS Comput. Biol. 2015; 11: e1004569
Hosseini, H., Obradović, M.M., Hoffmann, M., Harper, K.L., Sosa, M.S., Werner-Klein, M., Nanduri, L.K., Werno, C., Ehrl, C., Maneck, M. et al. Early dissemination seeds metastasis in breast cancer.
Nature. 2016;
Huh, S.J., Liang, S., Sharma, A., Dong, C., and Robertson, G.P. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development.
Cancer Res. 2010; 70: 6071–6082
Hüsemann, Y., Geigl, J.B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., Forni, G., Eils, R., Fehm, T., Riethmüller, G., and Klein, C.A. Systemic spread is an early step in breast cancer.
Cancer Cell. 2008; 13: 58–68
Ince, T.A., Richardson, A.L., Bell, G.W., Saitoh, M., Godar, S., Karnoub, A.E., Iglehart, J.D., and Weinberg, R.A. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes.
Cancer Cell. 2007; 12: 160–170
Jacob, L.S., Vanharanta, S., Obenauf, A.C., Pirun, M., Viale, A., Socci, N.D., and Massagué, J. Metastatic competence can emerge with selection of preexisting oncogenic alleles without a need of new mutations.
Cancer Res. 2015; 75: 3713–3719
Jordan, N.V., Johnson, G.L., and Abell, A.N. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer.
Cell Cycle. 2011; 10: 2865–2873
Kalluri, R. and Weinberg, R.A. The basics of epithelial-mesenchymal transition.
J. Clin. Invest. 2009; 119: 1420–1428
Kang, Y. and Pantel, K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients.
Cancer Cell. 2013; 23: 573–581
Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.
Nature. 2005; 438: 820–827
Karaman, S. and Detmar, M. Mechanisms of lymphatic metastasis.
J. Clin. Invest. 2014; 124: 922–928
Kienast, Y., von Baumgarten, L., Fuhrmann, M., Klinkert, W.E., Goldbrunner, R., Herms, J., and Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation.
Nat. Med. 2010; 16: 116–122
Kitamura, T., Qian, B.Z., and Pollard, J.W. Immune cell promotion of metastasis.
Nat. Rev. Immunol. 2015; 15: 73–86
Klein, C.A. Parallel progression of primary tumours and metastases.
Nat. Rev. Cancer. 2009; 9: 302–312
Kobayashi, A., Okuda, H., Xing, F., Pandey, P.R., Watabe, M., Hirota, S., Pai, S.K., Liu, W., Fukuda, K., Chambers, C. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone.
J. Exp. Med. 2011; 208: 2641–2655
Koebel, C.M., Vermi, W., Swann, J.B., Zerafa, N., Rodig, S.J., Old, L.J., Smyth, M.J., and Schreiber, R.D. Adaptive immunity maintains occult cancer in an equilibrium state.
Nature. 2007; 450: 903–907
Köhler, S., Ullrich, S., Richter, U., and Schumacher, U. E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung.
Br. J. Cancer. 2010; 102: 602–609
Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., and Sarkar, F.H. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells.
PLoS ONE. 2010; 5: e12445
Kopp, H.G., Placke, T., and Salih, H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity.
Cancer Res. 2009; 69: 7775–7783
Korpal, M., Ell, B.J., Buffa, F.M., Ibrahim, T., Blanco, M.A., Celià-Terrassa, T., Mercatali, L., Khan, Z., Goodarzi, H., Hua, Y. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization.
Nat. Med. 2011; 17: 1101–1108
Kurrey, N.K., Jalgaonkar, S.P., Joglekar, A.V., Ghanate, A.D., Chaskar, P.D., Doiphode, R.Y., and Bapat, S.A. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells.
Stem Cells. 2009; 27: 2059–2068
Labelle, M. and Hynes, R.O. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination.
Cancer Discov. 2012; 2: 1091–1099
Labelle, M., Begum, S., and Hynes, R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis.
Cancer Cell. 2011; 20: 576–590
Labelle, M., Begum, S., and Hynes, R.O. Platelets guide the formation of early metastatic niches.
Proc. Natl. Acad. Sci. USA. 2014; 111: E3053–E3061
Lamouille, S., Xu, J., and Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition.
Nat. Rev. Mol. Cell Biol. 2014; 15: 178–196
Latil, M., Nassar, D., Beck, B., Boumahdi, S., Wang, L., Brisebarre, A., Dubois, C., Nkusi, E., Lenglez,, S., Checinska, A. et al. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.
Cell Stem Cell. 2016;
Lawson, D.A., Bhakta, N.R., Kessenbrock, K., Prummel, K.D., Yu, Y., Takai, K., Zhou, A., Eyob, H., Balakrishnan, S., Wang, C.Y. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells.
Nature. 2015; 526: 131–135
Lee, H.J., Zhuang, G., Cao, Y., Du, P., Kim, H.J., and Settleman, J. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells.
Cancer Cell. 2014; 26: 207–221
Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F., Csiszar, K., Giaccia, A., Weninger, W. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling.
Cell. 2009; 139: 891–906
Li, W. and Kang, Y. Probing the fifty shades of EMT in metastasis.
Trends Cancer. 2016; 2: 65–67
Li, C.M., Gocheva, V., Oudin, M.J., Bhutkar, A., Wang, S.Y., Date, S.R., Ng, S.R., Whittaker, C.A., Bronson, R.T., Snyder, E.L. et al. Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis.
Genes Dev. 2015; 29: 1850–1862
Lim, E., Vaillant, F., Wu, D., Forrest, N.C., Pal, B., Hart, A.H., Asselin-Labat, M.L., Gyorki, D.E., Ward, T., Partanen, A...., and kConFab. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers.
Nat. Med. 2009; 15: 907–913
Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., Chen, L., Ewing, C.M., Eisenberger, M.A., Carducci, M.A. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer.
Nat. Med. 2009; 15: 559–565
Long, H., Xiang, T., Qi, W., Huang, J., Chen, J., He, L., Liang, Z., Guo, B., Li, Y., Xie, R., and Zhu, B. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition.
Oncotarget. 2015; 6: 5846–5859
Loo, J.M., Scherl, A., Nguyen, A., Man, F.Y., Weinberg, E., Zeng, Z., Saltz, L., Paty, P.B., and Tavazoie, S.F. Extracellular metabolic energetics can promote cancer progression.
Cell. 2015; 160: 393–406
Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B.J., Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors.
Cancer Cell. 2011; 20: 701–714
Lundgren, K., Nordenskjöld, B., and Landberg, G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer.
Br. J. Cancer. 2009; 101: 1769–1781
Luzzi, K.J., MacDonald, I.C., Schmidt, E.E., Kerkvliet, N., Morris, V.L., Chambers, A.F., and Groom, A.C. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases.
Am. J. Pathol. 1998; 153: 865–873
Malanchi, I., Santamaria-Martínez, A., Susanto, E., Peng, H., Lehr, H.A., Delaloye, J.F., and Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization.
Nature. 2011; 481: 85–89
Malladi, S., Macalinao, D.G., Jin, X., He, L., Basnet, H., Zou, Y., de Stanchina, E., and Massagué, J. Metastatic latency and immune evasion through autocrine inhibition of WNT.
Cell. 2016; 165: 45–60
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells.
Cell. 2008; 133: 704–715
Marusyk, A., Almendro, V., and Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer?.
Nat. Rev. Cancer. 2012; 12: 323–334
McAllister, S.S. and Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis.
Nat. Cell Biol. 2014; 16: 717–727
Miyamoto, D.T., Zheng, Y., Wittner, B.S., Lee, R.J., Zhu, H., Broderick, K.T., Desai, R., Fox, D.B., Brannigan, B.W., Trautwein, J. et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance.
Science. 2015; 349: 1351–1356
Molyneux, G., Geyer, F.C., Magnay, F.A., McCarthy, A., Kendrick, H., Natrajan, R., Mackay, A., Grigoriadis, A., Tutt, A., Ashworth, A. et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells.
Cell Stem Cell. 2010; 7: 403–417
Morel, A.P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., and Puisieux, A. Generation of breast cancer stem cells through epithelial-mesenchymal transition.
PLoS ONE. 2008; 3: e2888
Mouw, J.K., Yui, Y., Damiano, L., Bainer, R.O., Lakins, J.N., Acerbi, I., Ou, G., Wijekoon, A.C., Levental, K.R., Gilbert, P.M. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression.
Nat. Med. 2014; 20: 360–367
Müller-Hermelink, N., Braumüller, H., Pichler, B., Wieder, T., Mailhammer, R., Schaak, K., Ghoreschi, K., Yazdi, A., Haubner, R., Sander, C.A. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis.
Cancer Cell. 2008; 13: 507–518
Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities.
Nat. Rev. Cancer. 2002; 2: 584–593
Naxerova, K. and Jain, R.K. Using tumour phylogenetics to identify the roots of metastasis in humans.
Nat. Rev. Clin. Oncol. 2015; 12: 258–272
Nguyen, D.X., Bos, P.D., and Massagué, J. Metastasis: from dissemination to organ-specific colonization.
Nat. Rev. Cancer. 2009; 9: 274–284
Nieswandt, B., Hafner, M., Echtenacher, B., and Männel, D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets.
Cancer Res. 1999; 59: 1295–1300
Nieto, M.A., Huang, R.Y., Jackson, R.A., and Thiery, J.P. EMT: 2016.
Cell. 2016; 166: 21–45
Nowell, P.C. The clonal evolution of tumor cell populations.
Science. 1976; 194: 23–28
Obenauf, A.C. and Massague, J. Surviving at a distance: organ specific metastasis.
Trends Cancer. 2015; 1: 76–91
Obenauf, A.C., Zou, Y., Ji, A.L., Vanharanta, S., Shu, W., Shi, H., Kong, X., Bosenberg, M.C., Wiesner, T., Rosen, N. et al. Therapy-induced tumour secretomes promote resistance and tumour progression.
Nature. 2015; 520: 368–372
Ocaña, O.H., Córcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., Barrallo-Gimeno, A., Cano, A., and Nieto, M.A. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1.
Cancer Cell. 2012; 22: 709–724
Oskarsson, T., Acharyya, S., Zhang, X.H., Vanharanta, S., Tavazoie, S.F., Morris, P.G., Downey, R.J., Manova-Todorova, K., Brogi, E., and Massagué, J. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs.
Nat. Med. 2011; 17: 867–874
Oskarsson, T., Batlle, E., and Massagué, J. Metastatic stem cells: sources, niches, and vital pathways.
Cell Stem Cell. 2014; 14: 306–321
Ozturk, S., Papageorgis, P., Wong, C.K., Lambert, A.W., Abdolmaleky, H.M., Thiagalingam, A., Cohen, H.T., and Thiagalingam, S. SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis.
Proc. Natl. Acad. Sci. USA. 2016; 113: 638–643
Padua, D., Zhang, X.H., Wang, Q., Nadal, C., Gerald, W.L., Gomis, R.R., and Massagué, J. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4.
Cell. 2008; 133: 66–77
Palumbo, J.S., Talmage, K.E., Massari, J.V., La Jeunesse, C.M., Flick, M.J., Kombrinck, K.W., Jirousková, M., and Degen, J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells.
Blood. 2005; 105: 178–185
Palumbo, J.S., Talmage, K.E., Massari, J.V., La Jeunesse, C.M., Flick, M.J., Kombrinck, K.W., Hu, Z., Barney, K.A., and Degen, J.L. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms.
Blood. 2007; 110: 133–141
Pang, R., Law, W.L., Chu, A.C., Poon, J.T., Lam, C.S., Chow, A.K., Ng, L., Cheung, L.W., Lan, X.R., Lan, H.Y. et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer.
Cell Stem Cell. 2010; 6: 603–615
Peinado, H., Alečković, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., García-Santos, G., Ghajar, C. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.
Nat. Med. 2012; 18: 883–891
Piskounova, E., Agathocleous, M., Murphy, M.M., Hu, Z., Huddlestun, S.E., Zhao, Z., Leitch, A.M., Johnson, T.M., DeBerardinis, R.J., and Morrison, S.J. Oxidative stress inhibits distant metastasis by human melanoma cells.
Nature. 2015; 527: 186–191
Podsypanina, K., Du, Y.C., Jechlinger, M., Beverly, L.J., Hambardzumyan, D., and Varmus, H. Seeding and propagation of untransformed mouse mammary cells in the lung.
Science. 2008; 321: 1841–1844
Proia, T.A., Keller, P.J., Gupta, P.B., Klebba, I., Jones, A.D., Sedic, M., Gilmore, H., Tung, N., Naber, S.P., Schnitt, S. et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate.
Cell Stem Cell. 2011; 8: 149–163
Psaila, B. and Lyden, D. The metastatic niche: adapting the foreign soil.
Nat. Rev. Cancer. 2009; 9: 285–293
Qian, B., Deng, Y., Im, J.H., Muschel, R.J., Zou, Y., Li, J., Lang, R.A., and Pollard, J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth.
PLoS ONE. 2009; 4: e6562
Qian, B.Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L.R., Kaiser, E.A., Snyder, L.A., and Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 2011; 475: 222–225
Quail, D.F. and Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis.
Nat. Med. 2013; 19: 1423–1437
Rankin, E.B. and Giaccia, A.J. Hypoxic control of metastasis.
Science. 2016; 352: 175–180
Rasheed, Z.A., Yang, J., Wang, Q., Kowalski, J., Freed, I., Murter, C., Hong, S.M., Koorstra, J.B., Rajeshkumar, N.V., He, X. et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma.
J. Natl. Cancer Inst. 2010; 102: 340–351
Revenu, C. and Gilmour, D. EMT 2.0: shaping epithelia through collective migration.
Curr. Opin. Genet. Dev. 2009; 19: 338–342
Reymond, N., d’Água, B.B., and Ridley, A.J. Crossing the endothelial barrier during metastasis.
Nat. Rev. Cancer. 2013; 13: 858–870
Rhim, A.D., Mirek, E.T., Aiello, N.M., Maitra, A., Bailey, J.M., McAllister, F., Reichert, M., Beatty, G.L., Rustgi, A.K., Vonderheide, R.H. et al. EMT and dissemination precede pancreatic tumor formation.
Cell. 2012; 148: 349–361
Ross, J.B., Huh, D., Noble, L.B., and Tavazoie, S.F. Identification of molecular determinants of primary and metastatic tumour re-initiation in breast cancer.
Nat. Cell Biol. 2015; 17: 651–664
Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R.V. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer.
Cell Rep. 2015; 10: 562–573
Sampson, V.B., David, J.M., Puig, I., Patil, P.U., de Herreros, A.G., Thomas, G.V., and Rajasekaran, A.K. Wilms’ tumor protein induces an epithelial-mesenchymal hybrid differentiation state in clear cell renal cell carcinoma.
PLoS ONE. 2014; 9: e102041
Schliekelman, M.J., Taguchi, A., Zhu, J., Dai, X., Rodriguez, J., Celiktas, M., Zhang, Q., Chin, A., Wong, C.H., Wang, H. et al. Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival.
Cancer Res. 2015; 75: 1789–1800
Schumacher, D., Strilic, B., Sivaraj, K.K., Wettschureck, N., and Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor.
Cancer Cell. 2013; 24: 130–137
Sethi, N. and Kang, Y. Unravelling the complexity of metastasis - molecular understanding and targeted therapies.
Nat. Rev. Cancer. 2011; 11: 735–748
Sevenich, L., Bowman, R.L., Mason, S.D., Quail, D.F., Rapaport, F., Elie, B.T., Brogi, E., Brastianos, P.K., Hahn, W.C., Holsinger, L.J. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S.
Nat. Cell Biol. 2014; 16: 876–888
Sharma, P. and Allison, J.P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential.
Cell. 2015; 161: 205–214
Shibue, T. and Weinberg, R.A. Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs.
Proc. Natl. Acad. Sci. USA. 2009; 106: 10290–10295
Shibue, T., Brooks, M.W., Inan, M.F., Reinhardt, F., and Weinberg, R.A. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions.
Cancer Discov. 2012; 2: 706–721
Shibue, T., Brooks, M.W., and Weinberg, R.A. An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization.
Cancer Cell. 2013; 24: 481–498
Shiozawa, Y., Pedersen, E.A., Havens, A.M., Jung, Y., Mishra, A., Joseph, J., Kim, J.K., Patel, L.R., Ying, C., Ziegler, A.M. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow.
J. Clin. Invest. 2011; 121: 1298–1312
Singh, A. and Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer.
Oncogene. 2010; 29: 4741–4751
Skobe, M., Hawighorst, T., Jackson, D.G., Prevo, R., Janes, L., Velasco, P., Riccardi, L., Alitalo, K., Claffey, K., and Detmar, M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis.
Nat. Med. 2001; 7: 192–198
Sosa, M.S., Avivar-Valderas, A., Bragado, P., Wen, H.C., and Aguirre-Ghiso, J.A. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease.
Clin. Cancer Res. 2011; 17: 5850–5857
Sosa, M.S., Bragado, P., and Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field.
Nat. Rev. Cancer. 2014; 14: 611–622
Spicer, J.D., McDonald, B., Cools-Lartigue, J.J., Chow, S.C., Giannias, B., Kubes, P., and Ferri, L.E. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells.
Cancer Res. 2012; 72: 3919–3927
Spiegel, A., Brooks, M.W., Houshyar, S., Reinhardt, F., Ardolino, M., Fessler, E., Chen, M.B., Krall, J.A., DeCock, J., Zervantonakis, I.K. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells.
Cancer Discov. 2016; 6: 630–649
Steeg, P.S. Metastasis suppressors alter the signal transduction of cancer cells.
Nat. Rev. Cancer. 2003; 3: 55–63
Steeg, P.S. Targeting metastasis.
Nat. Rev. Cancer. 2016; 16: 201–218
Straussman, R., Morikawa, T., Shee, K., Barzily-Rokni, M., Qian, Z.R., Du, J., Davis, A., Mongare, M.M., Gould, J., Frederick, D.T. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
Nature. 2012; 487: 500–504
Strilic, B., Yang, L., Albarrán-Juárez, J., Wachsmuth, L., Han, K., Müller, U.C., Pasparakis, M., and Offermanns, S. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis.
Nature. 2016; 536: 215–218
Sun, Y., Campisi, J., Higano, C., Beer, T.M., Porter, P., Coleman, I., True, L., and Nelson, P.S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B.
Nat. Med. 2012; 18: 1359–1368
Talmadge, J.E. and Fidler, I.J. AACR centennial series: the biology of cancer metastasis: historical perspective.
Cancer Res. 2010; 70: 5649–5669
Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression.
Nat. Rev. Cancer. 2002; 2: 442–454
Trimboli, A.J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S.M., Creasap, N., Rosol, T.J., Robinson, M.L., Eng, C. et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer.
Cancer Res. 2008; 68: 937–945
Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S., and Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis.
Cancer Cell. 2012; 22: 725–736
Turajlic, S. and Swanton, C. Metastasis as an evolutionary process.
Science. 2016; 352: 169–175
Valiente, M., Obenauf, A.C., Jin, X., Chen, Q., Zhang, X.H., Lee, D.J., Chaft, J.E., Kris, M.G., Huse, J.T., Brogi, E., and Massagué, J. Serpins promote cancer cell survival and vascular co-option in brain metastasis.
Cell. 2014; 156: 1002–1016
Vanharanta, S. and Massagué, J. Origins of metastatic traits.
Cancer Cell. 2013; 24: 410–421
Veracini, L., Grall, D., Schaub, S., Beghelli-de la Forest Divonne, S., Etienne-Grimaldi, M.C., Milano, G., Bozec, A., Babin, E., Sudaka, A., Thariat, J., and Van Obberghen-Schilling, E. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas.
Oncotarget. 2015; 6: 7570–7583
Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A. Jr., and Kinzler, K.W. Cancer genome landscapes.
Science. 2013; 339: 1546–1558
Wan, L., Pantel, K., and Kang, Y. Tumor metastasis: moving new biological insights into the clinic.
Nat. Med. 2013; 19: 1450–1464
Wculek, S.K. and Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells.
Nature. 2015; 528: 413–417
Weilbaecher, K.N., Guise, T.A., and McCauley, L.K. Cancer to bone: a fatal attraction.
Nat. Rev. Cancer. 2011; 11: 411–425
Weng, D., Penzner, J.H., Song, B., Koido, S., Calderwood, S.K., and Gong, J. Metastasis is an early event in mouse mammary carcinomas and is associated with cells bearing stem cell markers.
Breast Cancer Res. 2012; 14: R18
Westcott, J.M., Prechtl, A.M., Maine, E.A., Dang, T.T., Esparza, M.A., Sun, H., Zhou, Y., Xie, Y., and Pearson, G.W. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion.
J. Clin. Invest. 2015; 125: 1927–1943
Winslow, M.M., Dayton, T.L., Verhaak, R.G., Kim-Kiselak, C., Snyder, E.L., Feldser, D.M., Hubbard, D.D., DuPage, M.J., Whittaker, C.A., Hoersch, S. et al. Suppression of lung adenocarcinoma progression by Nkx2-1.
Nature. 2011; 473: 101–104
Wolf, M.J., Hoos, A., Bauer, J., Boettcher, S., Knust, M., Weber, A., Simonavicius, N., Schneider, C., Lang, M., Stürzl, M. et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway.
Cancer Cell. 2012; 22: 91–105
Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R.H., Eshleman, J.R., Nowak, M.A. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer.
Nature. 2010; 467: 1114–1117
Yates, L.R., Gerstung, M., Knappskog, S., Desmedt, C., Gundem, G., Van Loo, P., Aas, T., Alexandrov, L.B., Larsimont, D., Davies, H. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing.
Nat. Med. 2015; 21: 751–759
Ye, X., Tam, W.L., Shibue, T., Kaygusuz, Y., Reinhardt, F., Ng Eaton, E., and Weinberg, R.A. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells.
Nature. 2015; 525: 256–260
Yu, M., Ting, D.T., Stott, S.L., Wittner, B.S., Ozsolak, F., Paul, S., Ciciliano, J.C., Smas, M.E., Winokur, D., Gilman, A.J. et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis.
Nature. 2012; 487: 510–513
Yu, M., Bardia, A., Wittner, B.S., Stott, S.L., Smas, M.E., Ting, D.T., Isakoff, S.J., Ciciliano, J.C., Wells, M.N., Shah, A.M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition.
Science. 2013; 339: 580–584
Yu, M., Bardia, A., Aceto, N., Bersani, F., Madden, M.W., Donaldson, M.C., Desai, R., Zhu, H., Comaills, V., Zheng, Z. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility.
Science. 2014; 345: 216–220
Zhang, X.H., Wang, Q., Gerald, W., Hudis, C.A., Norton, L., Smid, M., Foekens, J.A., and Massagué, J. Latent bone metastasis in breast cancer tied to Src-dependent survival signals.
Cancer Cell. 2009; 16: 67–78
Zheng, X., Carstens, J.L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Wu, C.C., LeBleu, V.S., and Kalluri, R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer.
Nature. 2015; 527: 525–530
Zhou, D., Kannappan, V., Chen, X., Li, J., Leng, X., Zhang, J., and Xuan, S. RBP2 induces stem-like cancer cells by promoting EMT and is a prognostic marker for renal cell carcinoma.
biologische proces van uitzaaien van kankercellen, ziekteprogressie remmen, preventie, in bloed cuirculrende tumorcellen, bestrlaing, radiotherapie
Gerelateerde artikelen
- 6 nieuwe doorbraken in de strijd tegen kanker worden gepresenteerd door het World Economic Forum met bijbehorende video
- 90 procent van mensen met uitgezaaide kanker heeft meerdere DNA afwijkingen. Slechts 5 procent kreeg ook optimale behandeling daarvoor.
- Antibiotica binnen een maand vooraf aan immuuntherapie met anti-PD medicijnen geeft veel slechtere resultaten op overall overleving dan zonder antibiotica bij verschillende vormen van primaire kanker.
- Anti-PD medicijnen zoals nivolumab, Pembrolizumab en atezolizumab gegeven als immuuntherapie geven zeer goede resultaten bij verschillende vormen van kanker met solide tumoren, zelfs zonder Ligand-1 receptorstatus copy 1
- Bacterien in uitzaaiingen van kankerpatienten zijn door Nederlandse onderzoekers in beeld gebracht en in een gedetailleerde catalogus opgeslagen
- Behandelen van kanker verschuift steeds meer van chemotherapie naar biologische behandelingen, gerichte therapie waaronder immuuntherapie met gemoduleerde virussen die de minste bijwerkingen geven
- Biomarkers zoals PD-L1, CD163+ en NRAS mutaties en gegevens zoals uitzaaiingen later ontstaan bepalen kans van effectiviteit van immuuntherapie met anti PD medicijnen bij melanomen
- Bloedtest, uitgevoerd op in bloed circulerend DNA (ctDNA) op DNA mutaties afwijkingen, kan heel nauwkeurig nagenoeg alle vormen van kanker ontdekken.
- CHRISPR-CAS9 infuus blijkt genezende behandeling voor erfelijke aandoening angio-oedeem, aldus tussenresultaten van internationale studie met Nederlandse deelname.
- De biologische processen waarom en hoe kankercellen uitzaaien wordt beter begrepen, tumorcellen vroeger ontdekt en lijkt ook steeds beter te behandelen
- De huidige staat van moleculair testen in het behandelen van kankerpatienten met solide tumoren. Een uitstekend overzichtsartikel met de nieuwste ontwikkelingen over RNA, DNA en eiwitten anno 2019
- Diagnosetest PERCEPTION via AI - Kunstmatige Intelligentie ontwikkeld en met hulp van single-cell RNA-sequencing voorspelt nauwkeurig of een specifiek medicijn van de kankerpatient zal aanslaan of resistent zal zijn.
- DRUP studie geeft bij 37 procent van de patienten alsnog een therapeutisch effect met 6 procent CR en 14 procent PR en 17 procent stabiele ziekte
- EMA: Veel nieuwe kankermedicijnen in de EU hebben geen bewezen toegevoegde waarde blijkt uit Nederlandse studie naar goedgekeurde kankermedicijnen door het Europees Geneesmiddelenbureau (EMA).
- ESMO - European Society for Medical Oncology heeft een gids uitgegeven voor patienten over hoe personalised medicine werkt en stand van zaken
- FDA ondersteunt onderzoek naar personalised medicine op basis van mutaties ongeacht in welk lichaamsdeel de kanker zich het eerst openbaart.
- Genetisch onderzoek via Germline testen (kiembaan testen) werd in periode 2013 tot 2019 in Georgie en Californie bij slechts 7 procent gedaan onder 1 369 602 patienten met twee jaar kanker.
- Geneesmiddel (ARS1620) verandert kankergen (KRAS mutatie) dat kwaadaardige tumoren beschermt tegen immuunsysteem in een doelwit voor immuunsysteem en helpt immuuntherapie kankercellen te elimineren
- Gentherapie zoals Chrispr-cas en base-editors zijn zeer succesvol bij erfelijke ziekten waaronder ook vormen van kanker zoals sikkelcelziekte
- Gerichte behandelingen met Aurora kinaseremmers geven soms uitstekende resultaten bij veel vormen van kanker. Een reviewstudie
- Immuuntherapie met HER2-gerichte CT-0508 (CAR-Macrofaag therapie) geeft bij solide tumoren van verschillende vormen van kanker met HER2 positieve expressie hoopvolle resultaten
- Immuuntherapie met pembrolizumab bij patiënten met verschillende vormen van uitgezaaide kanker met hoge microsatellietinstabiliteit (MSI-H) en DNA-mismatch-reparatie-deficiënte (dMMR) geeft uitstekende en duurzame resultaten op overall overleving
- Immuuntherapie met nivolumab zorgt voor duurzame en sterk verbeterde overall overleving bij verschillende vormen van kanker, melanomen, longkanker en nierkanker copy 1
- Internationale groep van 180 wetenschappers stelt rapport op hoe en met welke niet-toxische middelen - voedingsstoffen de effectiviteit te verbeteren, recidieven te voorkomen en de bijwerkingen te verminderen van personalised medicine
- Irina Kareva gebruikt wiskundige modellen die de dynamiek van kanker beschrijven, met het doel nieuwe geneesmiddelen te ontwikkelen die gericht zijn op tumoren.
- Kanker-actueel kan en wil helpen - begeleiden bij aanvragen van een volledig biomoleculair receptorenonderzoek en genenonderzoek
- Kankermedicijnen geven in de klinische praktijk veel minder effect dan uit de studies van farmaceutische bedrijven is aangetoond. Maar zijn wel ontzettend duur.
- Kankerremmende eiwitten kunnen bij mutatie die gen uitschakelt veranderen van kankerremmend in stimulerend, ontdekten Nederlandse onderzoekers
- Larotrectinib geeft bijzonder goede resultaten (76 procent respons met 12 procent complete remissies) bij alle vormen van solide tumoren met een positieve TRK Fusion mutatie
- Larotrectinib: Met de goedkeuring van Larotrectinib op basis van 1 specifieke afwijking en niet op basis van primaire tumor zorgt de FDA voor een doorbraak in het behandelen van kanker
- Lenvatinib Plus Pembrolizumab bij patiënten met inoperabele gevorderde nierkanker, buikvlieskanker, melanomen en andere gevorderde kanker met solide tumoren geeft uitstekende resultaten met meer dan de helft remissies van 50 procent of meer copy 1
- Medicijnen voorschrijven op basis van DNA profiel van de patient voorkomt 30 procent minder bijwerkingen blijkt uit internationale studie onder leiding van LUMC Leiden
- MSC-1 een medicijn dat de groei van de kankerstamcellen afremt door LIF blokkade en immuunsysteem activeert laat spectaculair goede resultaten zien in fase I studie.
- Mytomorrows breidt aanbod aan experimentele medicijnen voor kankerpatienten uit met 11 nieuwe nog niet geregistreerde medicijnen en stelt deze beschikbaar voor uitbehandelde kankerpatienten
- Nederland betaalt veel meer voor kankermedicijnen, soms tot 50 procent of meer, dan andere landen blijkt uit vergelijkend onderzoek tussen 18 landen copy 1
- NCI-MATCH-studie toont aan dat een biomoleculaire analyse - DNA en receptorenonderzoek - belangrijk is in hoe een kankerpatient te behandelen.
- Nieuw medicijn - PD-0332991 - stopt groei hersentumoren Glioblastoom in dierproeven. Zodra gestopt werd met dit medicijn gingen de tumoren weer groeien. Fase I studie bij 33 patienten met nierkanker en lymfklierkanker bevestigt veiligheid van dit middel
- Nieuwe, dure kankermedicijnen zijn voortaan sneller beschikbaar door het Drug Access Protocol (DAP) dat is ontwikkeld door oncologen, verzekeraars en Zorginstituut Nederland
- Overzicht van alle wereldwijd geregistreerde medicijnen binnen immuuntherapie en lopende studies met immuuntherapie copy 1
- Overzicht van studies met medicijnen en behandelingen om tumoren met KRAS mutaties aan te pakken. Vooral combinatiebehandelingen zijn veelbelovend.
- PI3K/AKT/mTOR pathway speelt cruciale rol in apoptose proces, DNA herstel, metabolisme in de cel en angiogenese.
- Pembrolizumab - Keytruda geeft bij solide tumoren van verschillende oorsprong 21 procent complete remissies en 53 procent gedeeltelijke remissies.
- Personalised medicine door receptorenonderzoek geeft veel betere resultaten in fase 1 studies dan experimenteel onderzoek zonder receptorenonderzoek
- Prof. Bernards over de doorbraak bij darmkanker met Kras mutatie en bij melanomen met BRAF mutatie in DWDD van donderdag 27 maart 2014
- POLE mutatie: veel kankerpatienten met erfelijke vormen van kanker hebben naast een P1-ligand een POLE mutatie en reageren goed op immuuntherapie met anti-PD medicijnen - checkpointremmers als pembrolizumab en nivolumab
- Radiotherapeutisch stimulerend middel NBTXR3 geeft in combinatie met anti-PD-1 medicijnen alsnog uitstekende resultaten bij patiënten die ziekteprogressie lieten zien ongeacht eerdere behandeling met anti-PD-1 medicijnen
- Rozlytrek (entrectinib), een tyrosine kinase remmer, goedgekeurd door FDA als medicijn voor solide tumoren met NTRK (neurotrophic tyrosine receptor kinase) gene fusion. Dit is 3e goedgekeurde medicijn op basis van mutatie.
- Tweede primaire vorm van kanker bij een kankerpatient wordt steeds vaker bekend bij de diagnose (2 tot 17 procent) door betere diagnose technieken en verfijnder biomoleculair onderzoek
- Tumorindeling mede aan de hand van biomarkers - biomoleculaire profielen is nodig en zal behandelingen sterk veranderen voor veel kankerpatiënten. Van 10 procent nu tot 50 procent straks. Aldus grote studie van het TOGA
- Vaccin tegen KRAS positief gemuteerde vormen van kanker - darmkankers en longkanker o.a. - wordt gecombineerd met trametinib een anti-PD medicijn in fase I studie na hoopvolle resultaten.
- Voorbeeldrapporten van receptoren en DNA testen - biomoleculaire profielen uitgevoerd door Caris Lifesciences - van alvleesklierkanker, hersentumoren, melanomen en longkanker
- Vroege diagnose van kanker is de toekomst en is vaak al mogelijk: zie TED talk
- Ziekte van Parkinson: prasinezumab, een monoklonaal antilichaam dat alfa-synucleïne bindt, vertraagt sterk de progressie van de ziekte van Parkinson in vergelijking met patienten die beste zorg kregen
- Algemeen: overzicht van artikelen waarin personal medicine een rol speelt.
Plaats een reactie ...
Reageer op "De biologische processen waarom en hoe kankercellen uitzaaien wordt beter begrepen, tumorcellen vroeger ontdekt en lijkt ook steeds beter te behandelen"