Wie advies wilt over hoe het microbioom te verbeteren zou contact op kunnen nemen met deze website: Www.microbiome-Center.nl Voor zowel artsen als individuele burgers staat een groep van artsen en wetenschappers klaar om u een persoonlijk advies te geven.

26 juli 2019: Bron: . 2019; 12: 3619–3624. Published online 2019 May 13

In de darmen leven miljoenen bacterien die een grote rol spelen in het menselijk immuunsysteem. Deze bacterien worden het microbioom van de darmen genoemd. De laatste jaren wordt steeds duidelijker dat door het microbioom van de darmen aandacht te geven en te verbeteren ook behandelingen van ziektes als kanker kunnen worden beinvloed. 

In een goed gedocumenteerde reviewstudie: Novel cancer therapy targeting microbiome wordt een overzicht gegeven hoe via het microbioom preventief kanker kan worden voorkomen maar ook hoe behandelingen van verschillende vormen van kanker gunstig of ongunstig worden beinvloed door bepaalde bacterien en wat je daar aan zou kunnen doen.

Zo weten we al veel langer dat blaaskanker goed kan worden behandeld met aanvullend BCC - bacillus Calmette-Guerin.

Several studies showed that bladder microbiome was related to urothelial cell carcinoma pathogenesis or progression. Bladder microbiome act as a noninvasive biomarker and can be a target of immunotherapy agents such as intravesical bacillus Calmette-Guerin.

Ook probiotica - bepaalde melkzuurbacterien hebben bewezen positief te kunnen werken bij blaaskanker:

Moreover, a randomized controlled trial of postoperative bladder cancer patients showed a significantly higher 3-year relapse-free survival rate in the epirubicin plus L. casei Shirota group than the epirubicin-only group (74.6% vs 59.9%, P=0.0234).

Ook alvleesklierkanker wordt beinvloed door bacterien, zowel in positieve zin als in negatieve zin:

The association between the salivary microbiota and pancreatic cancer has been analyzed using the Human Oral Microbe Identification Microarray, and two out of six bacterial candidates (Neisseria elongate and Streptococcus mitis) had significantly lower levels in pancreatic cancer patients than in the control group (P<0.05).

Another prospective cohort study analyzed 361 patients with incident pancreatic cancer and 371 matched controls and revealed that Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were associated with a higher risk of pancreatic cancer (odds ratio: 2.20, 95% confidence interval: 1.16 to 4.18).

In contrast, the genus Leptotrichia and its phylum Fusobacteria were associated with a lower risk of pancreatic cancer (odds ratio: 0.87, 95% confidence interval: 0.79 to 0.95).

Bovenstaande zijn zo maar enkele citaten uit een veel groter studierapport.

Een andere studie waarvan het volledige studierapport gratis is in te zien: Beyond Head and Neck Cancer: The Relationship Between Oral Microbiota and Tumour Development in Distant Organs beschrijft hoe het mondmicrobioom invloed heeft op het wel of niet uitzaaien van hoofd- halstumoren naar andere organen.

An increasing number of studies have shown that oral microbiota plays a role in the development of oral diseases, such as dental caries, periodontal disease, and oral stomatitis (Santarelli et al., ; Zhang et al., ). Poor oral hygiene and periodontal disease have been linked to oral cancer, and increasing evidences suggest that oral microbiota have a role in oral cancer development (García-Castillo et al., ). More broadly, is becoming evident that oral dysbiosis is associated with head and neck cancer development. Head and neck tumours originate from several anatomical sites, each associated with its own microbiota. Therefore, is possible that the crosstalk between microbial populations, combined with known risk factors, could drive head and neck carcinogenesis (Hayes et al., ). Oral dysbiosis has been also involved in the pathogenesis of systemic diseases. Indeed, recent studies indicate that oral microbiota seems to be involved in the tumours of distant organs, in particular “non-head and neck tumours” (Table 1; Klimesova et al., ).

In datzelfde studierapport een kleine grafiek van welke bacterien een gunstige invloed hebben en welke een ongunstige invloed:

Table 2

Comparison of microbial composition at the genus level in cancer patients.

CancerIncreased microbes (genus)Reduced microbes (genus)References
EC Streptococcus, Veillonella Neisseria, Rothia, Haemophilus Chen et al., ; Peters et al., ; Snider et al., 
GC Streptococcus, Veillonella Neisseria, Rothia, Leptotrichia Sun et al., ; Wu et al., 
PC Streptococcus Neisseria, Haemophilus, Leptotrichia Torres et al., ; Olson et al., ; Fan et al., 
CRC Rothia, Actinomyces, Lactobacillus Streptococcus, Neisseria, Haemophilus Han et al., ; Kato et al., ; Flemer et al., ; Yang et al., 
ALL/AML Veillonella, Streptococcus Leptotrichia Wang et al., ; Galloway-Peña et al., 
LC Veillonella Neisseria Yan et al., 
HC Leptotrichia Streptococcus, Haemophilus Lu et al., 

Only main microbial species were reported (for further details, see Supplementary Table 1). Interestingly, expression levels of genus Streptococcus change significantly depending on tumour type. EC, oesophageal cancer; GC, gastric cancer; PC, Pancreatic cancer; CRC, colorectal cancer; ALL/AML, Acute lymphoblastic leukaemia/acute myeloid leukaemia; LC, lung cancer; HC, hepatic cancer.

Het volledige studierapport: Novel cancer therapy targeting microbiome is ook gratis in te zien.

Hier het abstract plus referentielijst:

In this review, we focused on this relationship between the microbiota and cancer, and considered how to prevent cancer using strategies involving the gut microbiota.

. 2019; 12: 3619–3624.
Published online 2019 May 13. doi: 10.2147/OTT.S207546
PMCID: PMC6526180
PMID: 31190864

Novel cancer therapy targeting microbiome

Abstract

In the human intestinal tract, there are more than 100 trillion symbiotic bacteria, which form the gut microbiota. Approximately 70% of the human immune system is in the intestinal tract, which prevents infection by pathogenic bacteria. When the intestinal microbiota is disturbed, causing dysbiosis, it can lead to obesity, diabetes mellitus, inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, autism spectrum disorder and cancer. Recent metabolomics analyses have also made the association between the microbiota and carcinogenesis clear. Here, we review the current evidence on the association between the microbiota and gastric, bladder, hepatobiliary, pancreatic, lung and colorectal cancer. Moreover, several animal studies have revealed that probiotics seem to be effective for the prevention of carcinogenesis to some extent. In this review, we focused on this relationship between the microbiota and cancer, and considered how to prevent cancer using strategies involving the gut microbiota.

References

1. Chen J, Domingue JC, Sears CL. Microbiota dysbiosis in select human cancers: evidence of association and causalitySemin Immunol. 2017;32:25–34. doi:10.1016/j.smim.2017.08.001 [PMC free article][PubMed] [CrossRef[]
2. Zhu Q, Gao R, Wu W, Qin H. The role of gut microbiota in the pathogenesis of colorectal cancerTumour Biol. 2013;34(3):1285–1300. doi:10.1007/s13277-013-0684-4 [PubMed] [CrossRef[]
3. Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligandsInfect Immun. 2014;82(11):4596–4606. doi:10.1128/IAI.02212-14 [PMC free article] [PubMed] [CrossRef[]
4. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteriaCell. 2009;139(3):485–498. doi:10.1016/j.cell.2009.09.033 [PMC free article] [PubMed] [CrossRef[]
5. Atarashi K, Tanoue T, Ando M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cellsCell. 2015;163(2):367–380. doi:10.1016/j.cell.2015.08.058 [PMC free article] [PubMed] [CrossRef[]
6. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium speciesScience. 2011;331(6015):337–341. doi:10.1126/science.1198469 [PMC free article] [PubMed] [CrossRef[]
7. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiotaNature. 2013;500(7461):232–236. doi:10.1038/nature12331 [PubMed] [CrossRef[]
8. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cellsNature. 2013;504(7480):446–450. doi:10.1038/nature12721 [PubMed] [CrossRef[]
9. Kimura I, Inoue D, Maeda T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)Proc Natl Acad Sci U S A. 2011;108(19):8030–8035. doi:10.1073/pnas.1016088108 [PMC free article] [PubMed] [CrossRef[]
10. Honda K, Littman DR. The microbiome in infectious disease and inflammationAnnu Rev Immunol. 2012;30:759–795. doi:10.1146/annurev-immunol-020711-074937 [PMC free article] [PubMed] [CrossRef[]
11. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune systemScience. 2012;336(6086):1268–1273. doi:10.1126/science.1223490 [PMC free article] [PubMed] [CrossRef[]
12. Abt MC, Artis D. The dynamic influence of commensal bacteria on the immune response to pathogensCurr Opin Microbiol. 2013;16(1):4–9. doi:10.1016/j.mib.2012.12.002 [PMC free article] [PubMed] [CrossRef[]
13. Berer K, Krishnamoorthy G. Microbial view of central nervous system autoimmunityFEBS Lett. 2014;588(22):4207–4213. doi:10.1016/j.febslet.2014.04.007 [PubMed] [CrossRef[]
14. Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosisNat Immunol. 2013;14(7):668–675. doi:10.1038/ni.2635 [PMC free article] [PubMed] [CrossRef[]
15. Erturk-Hasdemir D, Kasper DL. Resident commensals shaping immunityCurr Opin Immunol. 2013;25(4):450–455. doi:10.1016/j.coi.2013.06.001 [PMC free article] [PubMed] [CrossRef[]
16. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironmentScience. 2013;342(6161):967–970. doi:10.1126/science.1240527 [PubMed] [CrossRef[]
17. Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infectionsCurr Opin Microbiol. 2013;16(2):221–227. doi:10.1016/j.mib.2013.03.009 [PMC free article] [PubMed] [CrossRef[]
18. Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responsesSemin Immunol. 2012;24(1):58–66. doi:10.1016/j.smim.2011.11.008 [PMC free article][PubMed] [CrossRef[]
19. Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensalsScience. 2012;337(6098):1115–1119. doi:10.1126/science.1225152 [PMC free article][PubMed] [CrossRef[]
20. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88Science. 2007;317(5834):124–127. doi:10.1126/science.1140488 [PubMed] [CrossRef[]
21. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and diseaseNat Rev Immunol. 2009;9(5):313–323. doi:10.1038/nri2515 [PMC free article] [PubMed] [CrossRef[]
22. Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cellsImmunity. 2010;32(6):815–827. doi:10.1016/j.immuni.2010.06.001 [PMC free article][PubMed] [CrossRef[]
23. Rakoff-Nahoum S, Hao L, Medzhitov R. Role of toll-like receptors in spontaneous commensal-dependent colitisImmunity. 2006;25(2):319–329. doi:10.1016/j.immuni.2006.06.010 [PubMed] [CrossRef[]
24. Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunityImmunity. 2012;37(1):158–170. doi:10.1016/j.immuni.2012.04.011 [PMC free article] [PubMed] [CrossRef[]
25. Brandl K, Plitas G, Mihu CN, et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficitsNature. 2008;455(7214):804–807. doi:10.1038/nature07250 [PMC free article] [PubMed] [CrossRef[]
26. Deshmukh HS, Liu Y, Menkiti OR, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal miceNat Med. 2014;20(5):524–530. doi:10.1038/nm.3542 [PMC free article] [PubMed] [CrossRef[]
27. Didierlaurent A, Goulding J, Patel S, et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infectionJ Exp Med. 2008;205(2):323–329. doi:10.1084/jem.20070891 [PMC free article] [PubMed] [CrossRef[]
28. Duarte R, Silva AM, Vieira LQ, Afonso LC, Nicoli JR. Influence of normal microbiota on some aspects of the immune response during experimental infection with Trypanosoma cruzi in miceJ Med Microbiol. 2004;53(Pt 8):741–748. doi:10.1099/jmm.0.45657-0 [PubMed] [CrossRef[]
29. Fagundes CT, Amaral FA, Vieira AT, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree miceJ Immunol. 2012;188(3):1411–1420. doi:10.4049/jimmunol.1101682 [PubMed] [CrossRef[]
30. Ganal SC, Sanos SL, Kallfass C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiotaImmunity. 2012;37(1):171–186. doi:10.1016/j.immuni.2012.05.020 [PubMed] [CrossRef[]
31. Inagaki H, Suzuki T, Nomoto K, Yoshikai Y. Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammationInfect Immun. 1996;64(8):3280–3287. [PMC free article] [PubMed[]
32. Khosravi A, Yáñez A, Price JG, et al. Gut microbiota promote hematopoiesis to control bacterial infectionCell Host Microbe. 2014;15(3):374–381. doi:10.1016/j.chom.2014.02.006 [PMC free article][PubMed] [CrossRef[]
33. Lofgren JL, Whary MT, Ge Z, et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasiaGastroenterology. 2011;140(1):210–220. doi:10.1053/j.gastro.2010.09.048 [PMC free article] [PubMed] [CrossRef[]
34. Baxter NT, Zackular JP, Chen GY, Schloss PD. Structure of the gut microbiome following colonization with human feces determines colonic tumor burdenMicrobiome. 2014;2:20. doi:10.1186/2049-2618-2-20 [PMC free article] [PubMed] [CrossRef[]
35. Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal CancerMicrobiol Spectr. 2017;5(3). [PubMed[]
36. Sears CL, Islam S, Saha A, et al. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrheaClin Infect Dis. 2008;47(6):797–803. doi:10.1086/591130 [PMC free article][PubMed] [CrossRef[]
37. Guo S, Li L, Xu B, et al. A simple and novel fecal biomarker for colorectal cancer: ratio ofClin Chem. 2018;64(9):1327–1337. doi:10.1373/clinchem.2018.289728 [PubMed] [CrossRef[]
38. Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacteriumNat Rev Microbiol. 2019;17(3):156–166. doi:10.1038/s41579-018-0129-6 [PMC free article] [PubMed] [CrossRef[]
39. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancerNat Rev Microbiol. 2014;12(10):661–672. doi:10.1038/nrmicro3344 [PubMed] [CrossRef[]
40. Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretomeNature. 2013;499(7456):97–101. doi:10.1038/nature12347 [PubMed] [CrossRef[]
41. Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGECancer Discov. 2017;7(5):522–538. doi:10.1158/2159-8290.CD-16-0932 [PubMed] [CrossRef[]
42. Okumura Y, Yamagishi T, Nukui S, Nakao K. Discovery of AAT-008, a novel, potent, and selective prostaglandin EP4 receptor antagonistBioorg Med Chem Lett. 2017;27(5):1186–1192. doi:10.1016/j.bmcl.2017.01.067 [PubMed] [CrossRef[]
43. Bajic P, Wolfe AJ, Gupta GN. The Urinary Microbiome: implications in Bladder Cancer Pathogenesis and TherapeuticsUrology. 2019. [PubMed[]
44. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiomeJ Bacteriol. 2010;192(19):5002–5017. doi:10.1128/JB.00542-10 [PMC free article] [PubMed] [CrossRef[]
45. Farrell JJ, Zhang L, Zhou H, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancerGut. 2012;61(4):582–588. doi:10.1136/gutjnl-2011-300784 [PMC free article][PubMed] [CrossRef[]
46. Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control studyGut. 2018;67(1):120–127. doi:10.1136/gutjnl-2016-312580 [PMC free article] [PubMed] [CrossRef[]
47. Bingula R, Filaire M, Radosevic-Robin N, et al. Desired turbulence? Gut-lung axis, immunity, and lung cancerJ Oncol. 2017;2017:5035371. doi:10.1155/2017/5035371 [PMC free article] [PubMed] [CrossRef[]
48. Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axisNat Rev Microbiol. 2017;15(1):55–63. doi:10.1038/nrmicro.2016.142 [PubMed] [CrossRef[]
49. Marsland BJ, Trompette A, Gollwitzer ES. The gut-lung axis in respiratory diseaseAnn Am Thorac Soc. 2015;12(Suppl 2):S150–S156. doi:10.1513/AnnalsATS.201503-133AW [PubMed] [CrossRef[]
50. Shukla SD, Budden KF, Neal R, Hansbro PM. Microbiome effects on immunity, health and disease in the lungClin Transl Immunol. 2017;6(3):e133. doi:10.1038/cti.2017.6 [PMC free article] [PubMed] [CrossRef[]
51. Liu HX, Tao LL, Zhang J, et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjectsInt J Cancer. 2018;142(4):769–778. doi:10.1002/ijc.31098 [PubMed] [CrossRef[]
52. Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancerAm J Cancer Res. 2015;5(10):3111–3122. [PMC free article] [PubMed[]
53. Mao Q, Jiang F, Yin R, et al. Interplay between the lung microbiome and lung cancerCancer Lett. 2018;415:40–48. doi:10.1016/j.canlet.2017.11.036 [PubMed] [CrossRef[]
54. Hosgood HD, Sapkota AR, Rothman N, et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposuresEnviron Mol Mutagen. 2014;55(8):643–651. doi:10.1002/em.21878 [PMC free article] [PubMed] [CrossRef[]
55. Cameron SJS, Lewis KE, Huws SA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancerPLoS One. 2017;12(5):e0177062. doi:10.1371/journal.pone.0177062 [PMC free article] [PubMed] [CrossRef[]
56. Lee SH, Sung JY, Yong D, et al. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesionsLung Cancer. 2016;102:89–95. doi:10.1016/j.lungcan.2016.10.016 [PubMed] [CrossRef[]
57. Pitt JM, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factorsImmunity. 2016;44(6):1255–1269. doi:10.1016/j.immuni.2016.06.001 [PubMed] [CrossRef[]
58. Schulz MD, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesityNature. 2014;514(7523):508–512. doi:10.1038/nature13398 [PMC free article] [PubMed] [CrossRef[]
59. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiotaScience. 2015;350(6264):1079–1084. doi:10.1126/science.aad1329 [PMC free article] [PubMed] [CrossRef[]
60. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacyScience. 2015;350(6264):1084–1089. doi:10.1126/science.aac4255 [PMC free article] [PubMed] [CrossRef[]
61. Kim SW, Kim HM, Yang KM, et al. Bifidobacterium lactis inhibits NF-kappaB in intestinal epithelial cells and prevents acute colitis and colitis-associated colon cancer in miceInflamm Bowel Dis. 2010;16(9):1514–1525. doi:10.1002/ibd.21262 [PubMed] [CrossRef[]
62. Le Leu RK, Brown IL, Hu Y, et al. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colonJ Nutr. 2005;135(5):996–1001. doi:10.1093/jn/135.5.996 [PubMed] [CrossRef[]
63. Kumar M, Verma V, Nagpal R, et al. Effect of probiotic fermented milk and chlorophyllin on gene expressions and genotoxicity during AFB₁-induced hepatocellular carcinomaGene. 2011;490(1–2):54–59. doi:10.1016/j.gene.2011.09.003 [PubMed] [CrossRef[]
64. Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, De Simone C. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancerAm J Physiol Gastrointest Liver Physiol. 2011;301(6):G1004–G1013. doi:10.1152/ajpgi.00167.2011 [PMC free article] [PubMed] [CrossRef[]
65. Zhang HL, Yu LX, Yang W, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in ratsJ Hepatol. 2012;57(4):803–812. doi:10.1016/j.jhep.2012.06.011 [PubMed] [CrossRef[]
66. Li J, Sung CY, Lee N, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in miceProc Natl Acad Sci U S A. 2016;113(9):E1306–E1315. doi:10.1073/pnas.1518189113 [PMC free article] [PubMed] [CrossRef[]
67. Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cellsCell. 2014;158(2):288–299. doi:10.1016/j.cell.2014.04.051 [PubMed] [CrossRef[]
68. Pala V, Sieri S, Berrino F, et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohortInt J Cancer. 2011;129(11):2712–2719. doi:10.1002/ijc.26193 [PubMed] [CrossRef[]
69. Toi M, Hirota S, Tomotaki A, et al. Probiotic beverage with soy isoflavone consumption for breast cancer prevention: a case-control studyCurr Nutr Food Sci. 2013;9(3):194–200. doi:10.2174/15734013113099990001 [PMC free article] [PubMed] [CrossRef[]
70. Naito S, Koga H, Yamaguchi A, et al. Prevention of recurrence with epirubicin and lactobacillus casei after transurethral resection of bladder cancerJ Urol. 2008;179(2):485–490. doi:10.1016/j.juro.2007.09.031 [PubMed] [CrossRef[]
71. Hibberd AA, Lyra A, Ouwehand AC, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic interventionBMJ Open Gastroenterol. 2017;4(1):e000145. doi:10.1136/bmjgast-2017-000145 [PMC free article] [PubMed] [CrossRef[]
72. Zheng C, Chen T, Wang Y, et al. A randomised trial of probiotics to reduce severity of physiological and microbial disorders induced by partial gastrectomy for patients with gastric cancerJ Cancer. 2019;10(3):568–576. doi:10.7150/jca.29072 [PMC free article] [PubMed] [CrossRef[]
73. Jiang C, Wang H, Xia C, et al. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinomaCancer. 2019;125(7):1081–1090. doi:10.1002/cncr.31907 [PubMed] [CrossRef[]
74. Redman MG, Ward EJ, Phillips RS. The efficacy and safety of probiotics in people with cancer: a systematic reviewAnn Oncol. 2014;25(10):1919–1929. doi:10.1093/annonc/mdu106 [PubMed] [CrossRef[]

Articles from OncoTargets and therapy are provided here courtesy of Dove Press


Plaats een reactie ...

Reageer op "Microbioom van de darmen speelt grote rol in de werking van het menselijke immuunsysteem. Verbeteren van het microbioom kan positief uitpakken bij verschillende vormen van kanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

Microbioom van de darmen speelt >> probiotica vooraf en na operatie >> Probiotica gebruik in de ouderenzorg >> Dieet - voedingspatroon dat >> Probiotica verbetert kwaliteit >> Waarvoor dient probiotica >> Probiotica - melkzuurbacterien >> Synbiotica vooraf en na operatie >> Synbiotica pre operatief voorkomt >> Probiotica - melkzuurbacterien >>