18 juli 2011: ik ben kanker-actueel aan het herzien en kwam een aantal studies tegen over Boron Neutron Capture Therapy - BNCT bij hersentumoren. Nu ben ik zelf al eens in Petten op bezoek geweest, toen daar nog BNCT werd gegeven en toen werd BNCT als veelbelovende nieuwe behandeling gezien. Echter in Nederland is daar nooit meer iets mee gedaan. Nu is recent een laboratorium studie gepubliceerd waarin onderzocht is op welke manier BNCT het meest effectief is, in welke dosis, met welke "vloeistof enz.. Voor leken te ingewikkeld vermoed ik maar voor artsen en wetenschappers wel degelijk interessant. Interessant voor leken aan deze studie is dat dit studierapport volledig vrij is in te zien en er een hele lijst aan referenties bij wordt gegeven van studies die de afgelopen 20 jaar zijn gedaan met BNCT. Die referentielijst staat onderaan dit artikel, evenals het abstract van de laboratorium studie.

19 januari 2008 Bron: 1: Pharm World Sci. 2005 Apr;27(2):92-5.

Enkele jaren geleden waren we in Petten op bezoek en daar werd ons verteld dat Boron Neutron Capture Therapy - BNCT een veelbelovende behandeling voor hersentumoren zou zijn. We zagen gedemonstreerd hoe een patiënt een stofje kreeg ingeïnjecteerd, en daarna voor "een gat in de muur" ging liggen". Zover ik me kan herinneren was dat stofje een vorm van lutetium. Dit stofje zou zich alleen in de tumorcellen nestelen en de 'bestraling' uit "het gat in de muur" zou dan de kankercellen kapot maken. In 2006 bleek uit een studie uitgevoerd aan de VU Amsterdam dat er te weinig controle lijkt over de bijwerkingen. De dosis van de bestraling kon niet hoog genoeg zijn om schade aan gezond weefsel te voorkomen. Echter in december 2005 werd een andere Japanse studie gepubliceerd waar een aangepaste vorm van BNCT wel opmerkelijk goede resultaten laat zien. Meer dan 50% van de tumoren bij 8 van de 12 patienten verdween na een eenmalige behandeling. Zie hieronder beide abstracten.

Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

Bron: BMC Cancer. 2010; 10: 661.

Published online 2010 December 2. doi:  10.1186/1471-2407-10-661
 
Peng Wang,#1 Haining Zhen,#1 Xinbiao Jiang,#2 Wei Zhang,1 Xin Cheng,3 Geng Guo,1 Xinggang Mao,1 and Xiang Zhang1
1Department of Neurosurgery of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R.China
2Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, PR China
3Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
Corresponding author.
#Contributed equally.
Peng Wang: wangpeng@fmmu.eud.cn ; Haining Zhen: zhenhn@fmmu.eud.cn ; Xinbiao Jiang: jiangxb67@yahoo.com.cn ; Wei Zhang: nuomi_weiwei@126.com ; Xin Cheng: 15991708409@139.com ; Geng Guo: hainingzhen@yahoo.cn ; Xinggang Mao: jingbowang_fmmu@yahoo.cn ; Xiang Zhang: xzhang@fmmu.edu.cn
Received February 8, 2010; Accepted December 2, 2010.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background
Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation.

Methods
The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis.

Results
Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P < 0.01). The clonogenicity of glioma cells was reduced by BPA-BNCT compared with cells treated in the reactor (Group F, G, H, I), and with the control cells (P < 0.01). Upon BPA-BNCT treatment, the Bax level increased in glioma cells, whereas Bcl-2 expression decreased.

Conclusions
Compared with γ-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by BNCT may be related to activation of Bax and downregulation of Bcl-2.

Referentielijst van studies uitgevoerd met BNCT - Boron Neutron Capture Therapy bij hersentumoren

References
  • Barth RF, Joensuu H. Boron neutron capture therapy for the treatment of glioblastomas and extracranial tumours: as effective, more effective or less effective than photon irradiation? Radiother Oncol. 2007;82:119–122. doi: 10.1016/j.radonc.2007.01.010. [PubMed] [Cross Ref]
  • Yang W, Barth RF, Wu G, Huo T, Tjarks W, Ciesielski M, Fenstermaker RA, Ross BD, Wikstrand CJ, Riley KJ, Binns PJ. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors. J Neurooncol. 2009;95:355–365. doi: 10.1007/s11060-009-9945-x. [PMC free article] [PubMed] [Cross Ref]
  • Barth RF, Coderre JA, Vicente MG, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005;11:3987–4002. doi: 10.1158/1078-0432.CCR-05-0035. [PubMed] [Cross Ref]
  • Yang W, Barth RF, Wu G, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W, Binns PJ, Riley K, Patel H, Coderre JA, Ciesielski MJ, Fenstermaker RA. Boronated epidermal growth factor as a delivery agent for neutron capture therapy of EGF receptor positive gliomas. Appl Radiat Isot. 2004;61:981–985. doi: 10.1016/j.apradiso.2004.05.071. [PubMed] [Cross Ref]
  • Barth RF, Yang W, Coderre JA. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol. 2003;62:61–74. [PubMed]
  • Barth RF. Boron neutron capture therapy at the crossroads: challenges and opportunities. Appl Radiat Isot. 2009;67:S3–S6. doi: 10.1016/j.apradiso.2009.03.102. [PubMed] [Cross Ref]
  • Yang W, Barth RF, Carpenter DE, Moeschberger ML, Goodman JH. Enhanced delivery of boronophenylalanine for neutron capture therapy by means of intracarotid injection and blood-brain barrier disruption. Neurosurgery. 1996;38:985–992. doi: 10.1097/00006123-199605000-00027. [PubMed] [Cross Ref]
  • Barth RF, Yang W, Rotaru JH, Moeschberger ML, Boesel CP, Soloway AH, Joel DD, Nawrocky MM, Ono K, Goodman JH. Boron neutron capture therapy of brain tumors: enhanced survival and cure following blood-brain barrier disruption and intracarotid injection of sodium borocaptate and boronophenylalanine. Int J Radiat Oncol Biol Phys. 2000;47:209–218. doi: 10.1016/S0360-3016(00)00421-1. [PubMed] [Cross Ref]
  • Barth RF, Yang W, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, Goodman JH, Soloway AH. Boron neutron capture therapy of brain tumors: enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood-brain barrier disruption. Cancer Res. 1997;57:1129–1136. [PubMed]
  • Yang W, Barth RF, Adams DM, Ciesielski MJ, Fenstermaker RA, Shukla S, Tjarks W, Caligiuri MA. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res. 2002;62:6552–6558. [PubMed]
  • Kato I, Fujita Y, Maruhashi A, Kumada H, Ohmae M, Kirihata M, Imahori Y, Suzuki M, Sakrai Y, Sumi T, Iwai S, Nakazawa M, Murata I, Miyamaru H, Ono K. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies. Appl Radiat Isot. 2009;67:S37–S42. doi: 10.1016/j.apradiso.2009.03.103. [PubMed] [Cross Ref]
  • Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol. 2009;94:299–312. doi: 10.1007/s11060-009-9875-7. [PMC free article] [PubMed] [Cross Ref]
  • Kawabata S, Miyatake S, Nonoguchi N, Hiramatsu R, Iida K, Miyata S, Yokoyama K, Doi A, Kuroda Y, Kuroiwa T, Michiue H, Kumada H, Kirihata M, Imahori Y, Maruhashi A, Sakurai Y, Suzuki M, Masunaga S, Ono K. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl Radiat Isot. 2009;67:S15–S18. doi: 10.1016/j.apradiso.2009.03.015. [PubMed] [Cross Ref]
  • Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, Kumada H, Suzuki M, Maruhashi A, Kirihata M, Ono K. Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas. J Neurooncol. 2009;91:199–206. doi: 10.1007/s11060-008-9699-x. [PubMed] [Cross Ref]
  • Gonzalez SJ, Bonomi MR, Santa CG, Blaumann HR, Calzetta LO, Menendez P, Jimenez RR, Longhino J, Feld DB, Dagrosa MA, Argerich C, Castiglia SG, Batistoni DA, Liberman SJ, Roth BM. First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome. Appl Radiat Isot. 2004;61:1101–1105. doi: 10.1016/j.apradiso.2004.05.060. [PubMed] [Cross Ref]
  • Yoshida F, Matsumura A, Shibata Y, Yamamoto T, Nakauchi H, Okumura M, Nose T. Cell cycle dependence of boron uptake from two boron compounds used for clinical neutron capture therapy. Cancer Lett. 2002;187:135–141. doi: 10.1016/S0304-3835(02)00380-4. [PubMed] [Cross Ref]
  • Masunaga S, Ono K, Takahashi A, Sakurai Y, Ohnishi K, Kobayashi T, Kinashi Y, Takagaki M, Ohnishi T. Impact of the p53 status of the tumor cells on the effect of reactor neutron beam irradiation, with emphasis on the response of intratumor quiescent cells. Jpn J Cancer Res. 2002;93:1366–1377. [PubMed]
  • Masunaga S, Ono K, Sakurai Y, Takagaki M, Kobayashi T, Kinashi Y, Suzuki M. Evaluation of apoptosis and micronucleation induced by reactor neutron beams with two different cadmium ratios in total and quiescent cell populations within solid tumors. Int J Radiat Oncol Biol Phys. 2001;51:828–839. doi: 10.1016/S0360-3016(01)01695-9. [PubMed] [Cross Ref]
  • Busse D, Doughty RS, Ramsey TT, Russell WE, Price JO, Flanagan WM, Shawver LK, Arteaga CL. Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J Biol Chem. 2000;275:6987–6995. doi: 10.1074/jbc.275.10.6987. [PubMed] [Cross Ref]
  • Barth RF, Soloway AH, Goodman JH, Gahbauer RA, Gupta N, Blue TE, Yang W, Tjarks W. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Neurosurgery. 1999;44:433–450. doi: 10.1097/00006123-199903000-00001. 450-451. [PubMed] [Cross Ref]
  • Verheij M, Bartelink H. Radiation-induced apoptosis. Cell Tissue Res. 2000;301:133–142. doi: 10.1007/s004410000188. [PubMed] [Cross Ref]
  • Pathak R, Dey SK, Sarma A, Khuda-Bukhsh AR. Genotoxic effects in M5 cells and Chinese hamster V79 cells after exposure to 7Li-beam (LET = 60 keV/microm) and correlation of their survival dynamics to nuclear damages and cell death. Mutat Res. 2007;628:56–66. [PubMed]
  • Lee HJ, Kim JS, Moon C, Kim JC, Jo SK, Kim SH. Relative biological effectiveness of fast neutrons in a multiorgan assay for apoptosis in mouse. Environ Toxicol. 2008;23:233–239. doi: 10.1002/tox.20328. [PubMed] [Cross Ref]
  • Dahlstrom M, Capala J, Lindstrom P, Wasteson A, Lindstrom A. Accumulation of boron in human malignant glioma cells in vitro is cell type dependent. J Neurooncol. 2004;68:199–205. doi: 10.1023/B:NEON.0000033489.54011.6b. [PubMed] [Cross Ref]
  • Fujita Y, Kato I, Iwai S, Ono K, Suzuki M, Sakurai Y, Ohnishi K, Ohnishi T, Yura Y. Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma. Radiat Oncol. 2009;4:63. doi: 10.1186/1748-717X-4-63. [PMC free article] [PubMed] [Cross Ref]
  • Aromando RF, Heber EM, Trivillin VA, Nigg DW, Schwint AE, Itoiz ME. Insight into the mechanisms underlying tumor response to boron neutron capture therapy in the hamster cheek pouch oral cancer model. J Oral Pathol Med. 2009;38:448–454. doi: 10.1111/j.1600-0714.2008.00720.x. [PubMed] [Cross Ref]
  • Kamida A, Obayashi S, Kato I, Ono K, Suzuki M, Nagata K, Sakurai Y, Yura Y. Effects of boron neutron capture therapy on human oral squamous cell carcinoma in a nude mouse model. Int J Radiat Biol. 2006;82:21–29. doi: 10.1080/09553000600570453. [PubMed] [Cross Ref]
  • Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:1126–1132. doi: 10.1158/1078-0432.CCR-08-0144. [PubMed] [Cross Ref]
  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–681. doi: 10.1038/nature03579. [PubMed] [Cross Ref]
  • Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361:1570–1583. doi: 10.1056/NEJMra0901217. [PubMed] [Cross Ref]
  • Zerp SF, Stoter R, Kuipers G, Yang D, Lippman ME, van Blitterswijk WJ, Bartelink H, Rooswinkel R, Lafleur V, Verheij M. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis. Radiat Oncol. 2009;4:47. doi: 10.1186/1748-717X-4-47. [PMC free article] [PubMed] [Cross Ref]
  • Ciardiello F, Tortora G. Inhibition of bcl-2 as cancer therapy. Ann Oncol. 2002;13:501–502. doi: 10.1093/annonc/mdf191. [PubMed] [Cross Ref]
  • Kim KW, Moretti L, Mitchell LR, Jung DK, Lu B. Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in non-small cell lung tumor xenograft model. Clin Cancer Res. 2009;15:6096–6105. doi: 10.1158/1078-0432.CCR-09-0589. [PMC free article] [PubMed] [Cross Ref]
  • Snyder CM, Shroff EH, Liu J, Chandel NS. Nitric oxide induces cell death by regulating anti-apoptotic BCL-2 family members. PLoS One. 2009;4:e7059. doi: 10.1371/journal.pone.0007059. [PMC free article] [PubMed] [Cross Ref]
  • Capuani S, Gili T, Bozzali M, Russo S, Porcari P, Cametti C, Muolo M, D'Amore E, Maraviglia B, Lazzarino G, Pastore FS. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading. Appl Radiat Isot. 2009;67:S34–S36. doi: 10.1016/j.apradiso.2009.03.017. [PubMed] [Cross Ref]
  • Barth RF, Yang W, Wu G, Swindall M, Byun Y, Narayanasamy S, Tjarks W, Tordoff K, Moeschberger ML, Eriksson S, Binns PJ, Riley KJ. Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proc Natl Acad Sci USA. 2008;105:17493–17497. doi: 10.1073/pnas.0809569105. [PMC free article] [PubMed] [Cross Ref]
  • Coderre JA, Gavin PR, Capala J, Ma R, Morris GM, Button TM, Aziz T, Peress NS. Tolerance of the normal canine brain to epithermal neutron irradiation in the presence of p-boronophenylalanine. J Neurooncol. 2000;48:27–40. doi: 10.1023/A:1006419210584. [PubMed] [Cross Ref]

The BNCT is a promising and possibly curative method of treating GBM, but at present this procedure is far from perfect.

Boron neutron capture therapy for glioblastoma multiforme.van Rij CM, Wilhelm AJ, Sauerwein WA, van Loenen AC.

Department of Pharmacy, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands. katja.van.rij@ghz.nl

AIM: Glioblastoma multiforme (GBM) is an incurable disease that can only be managed in a palliative way. The GBM accounts for approximately half of all newly diagnosed primary brain tumors with an incidence of 2-3 cases per 100,000 people each year. Surgery and radiation are the standard options for palliation, and whether there is a place for chemotherapy is still discussed. Boron neutron capture therapy (BNCT) is a promising and possibly curative method of treating GBM. The purpose of this article is to provide an updated review on the current management and future possibilities of treating GBM with BNCT.

METHOD: Use was made of computerized searches and of checking cross-references of articles and book chapters.

RESULTS: The principle of BNCT uses the high ability of 10B to capture thermal neutrons and to disintegrate immediately into a He nucleus (alpha-particle) and a Li nucleus. To reach a sufficient concentration of 10B in the malignant cells compared to the surrounding healthy tissue, 10B-carriers must be highly tumor-selective. At present, the 10B carriers boronophenylalanine (BPA) and sodium borocaptate (BSH) are used in clinical trials to perform BNCT.

CONCLUSION: The BNCT is a promising and possibly curative method of treating GBM, but at present this procedure is far from perfect. Because of the lack of selectivity of the boron carriers, it appears so far that radiation toxicity limits the radiation dose, so that tumor damage is modest. Current investigations and developments are aimed at targeting the boron carriers to the tumor, in order to limit the damage to the healthy, surrounding tissue.

PMID: 15999918 [PubMed - indexed for MEDLINE]

Modified BNCT produced a good improvement in malignant gliomas, as seen on neuroimages

J Neurosurg. 2005 Dec;103(6):1000-9
Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages.Miyatake S, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M, Sakurai Y, Masunaga S, Nagata K, Maruhashi A, Ono K. Department of Neurosurgery, Osaka Medical College, Takatsuki City, Japan. neu070@poh.osaka-med.ac.jp

OBJECT: To improve the effectiveness of boron neutron capture therapy (BNCT) for malignant gliomas, the authors used epithermal rather than thermal neutrons for deep penetration and two boron compounds-sodium borocaptate (BSH) and boronophenylalanine (BPA)-with different accumulation mechanisms to increase the boron level in tumors while compensating for each other's faults.

METHODS: Thirteen patients, 10 of whom harbored a glioblastoma multiforme (GBM), one a gliosarcoma, one an anaplastic astrocytoma, and one an anaplastic oligoastrocytoma, were treated using this modified BNCT between January 2002 and December 2003. Postoperatively, neuroimaging revealed that only one patient with a GBM had no lesion enhancement postoperatively. The patients underwent 18F-BPA positron emission tomography, if available, to assess the accumulation and distribution of BPA before neutron radiotherapy. The neutron fluence rate was estimated using the Simulation Environments for Radiotherapy Applications dose-planning system before irradiation. The patients' volume assessments were performed using magnetic resonance (MR) imaging or computerized tomography (CT) scanning. Improvements in the disease as seen on neuroimages were assessed between 2 and 7 days after irradiation to determine the initial effects of BNCT; its maximal effects were also analyzed on serial neuroimages. The mean tumor volume before BNCT was 42.3 cm3. Regardless of the pre-BNCT tumor volume, in every patient harboring an assessable lesion, improvements on MR or CT images were recognized both at the initial assessment (range of volume reduction rate 17.4-71%, mean rate 46.4%) and at follow-up assessments (range of volume reduction rates 30.3-87.6%, mean rate 58.5%). More than 50% of the contrast-enhanced lesions disappeared in eight of the 12 patients during the follow-up period.

CONCLUSIONS: This modified BNCT produced a good improvement in malignant gliomas, as seen on neuroimages. PMID: 16381186 [PubMed - indexed for MEDLINE]


Plaats een reactie ...

Reageer op "Boron neutron capture therapy BNCT behandeling voor Glioblastoom multiforme lijkt een veelbelovende behandeling maar volgens studie aan de VU Amsterdam nog te experimenteel. In Japan wordt BNCT wel succesvol ingezet"


Gerelateerde artikelen
 

Gerelateerde artikelen

Boron Neutron Capture Therapy >> Boron neutron capture therapy >> Boron neutron capture therapy >> Ervaringsverhaal van man met >> Boron neutron capture therapy >>