17 februari 2023: zie ook dit artikel: https://kanker-actueel.nl/hyperbare-zuurstoftherapie-verlicht-bijwerkingen-zoals-pijn-fibrose-lymfoedeem-necrose-en-huidproblemen-arm-en-schoudermobiliteit-bij-patienten-die-worden-of-zijn-bestraald-voor-borstkanker.html

21 januari 2017: Update gemaakt van onderstaande informatie met toevoeging van reviewstudie naar hyperbare zuurstof bij kanker..

In dit studierapport: Hyperbaric oxygen therapy and cancer—a review  dat volledig gratis is in te zien of te downloaden wordt beschreven wat de effecten zijn van hyperbare zuurstof (HBO) in relatie tot kanker of gerelateerd aan behandelingen van verschillende vormen van kanker zoals chemo, bestraling enz. 

Zo worden in dit studierapport beschreven:

Hyperbare zuurstof (HBO), Kanker en hypoxie (zuurstofgebrek)

Hyperbare zuurstof (HBO) en celoverleving

Hyperbare zuurstof (HBO) en angiogenesis - bloedvatenvorming

Hyperbare zuurstof (HBO) en uitzaaiingen - metastases

Hyperbare zuurstof (HBO) en chemo therapie

Hyperbare zuurstof (HBO) en bestraling -  radiotherapie

Hyperbare zuurstof (HBO) bij verschillende vormen van kanker

Hyperbare zuurstof (HBO) en borstkanker

Hyperbare zuurstof (HBO) en hoofd- halstumoren (mond en keelkanker)

Hyperbare zuurstof (HBO) en vormen van darmkanker

Hyperbare zuurstof (HBO) en hersentumoren (glioma's)

Hyperbare zuurstof (HBO) en leukemie

Hyperbare zuurstof (HBO) en prostaatkanker

Hyperbare zuurstof (HBO) en baarmoeederkanker en baarmoederhalskanker en blaaskanker

Hier een tabel van de studies opgenomen in deze reviewstudie bij de verschillende vormen van kanker. Tekst met studieabstract enz. gaat verder onder tabel 1.

Table 1

Studies on the effect of hyperbaric oxygen (HBO) and malignancy, both alone and in combination with conventional treatment, from 2001 to 2012

StudyYearType of studyCancer typeHBO protocolAdditional therapyHBO per seCombo therapyMetastasisAngiogenesis
Breast cancer
Stuhr et al. [47] 2004 In vivo DMBA-induced mammary tumors in rats 0.2 MPa, 4 exp at 90 min, 11 days or 7 exp, 23 days 5-FU
Granowitz et al. [18] 2005 In vitro Mammary cells from normal epithelia, primary tumor, and metastatic tumor + human MCF7 cell line 0.24 MPa Melphalan, gemcitabine, and paclitaxel
Heys et al. [28] 2006 Clinical Locally advanced breast carcinoma 0.24/0.2 MPa, 90 min daily (5/week) for 10 days Cyclophosphamide, doxorubicin, and vincristine
Raa et al. [22] 2007 In vivo DMBA-induced mammary tumors in rats Hyperoxia (100 % O2) or 0.15 MPa, 4 exp at 90 min over 11 days 5-FU
Haroon et al. [36] 2007 In vivo Mouse mammary adenocarcinoma 4T1-GFP cell line in nu/nu mice 0.28 MPa for 45 min daily (5/week) up to 5 weeks
Moen et al. [24] 2009 In vivo DMBA-induced mammary tumors in rats 0.2 MPa, 4 exp at 90 min, 11 days
Moen et al. [48] 2009 In vivo DMBA-induced mammary tumors in rats 0.2 MPa, 4 exp at 90 min over 11 days or 1 exp at 90 min 5-FU
Jevne et al. [51] 2011 In vivo Murine 4T1 mammary tumors in NOD/SCID mice 0.25 MPa, 3 exp at 90 min over 8 days 5-FU
Moen et al. [37] 2012 In vivo Murine 4T1 mammary tumors in NOD/SCID mice 0.25 MPa, 90 min exp, 3 intermittent or 7 daily exp over 8 days (↔/↑) ↓/↔
Prostate cancer
Chong et al. [29] 2004 In vivo Human prostate (LNCaP) cells in immunodeficient mice 0.236 MPa, 20 exp at 90 min, 5/week for 4 weeks ↔ (↓)
Tang et al. [31] 2009 In vivo Human prostate PC-3 cells in immunodeficient mice 0.2 MPa, 20 exp at 90 min, 5/week for 4 weeks
Tang et al. [32] 2009 In vivo Human prostate cancer LNCaP cells in immunodeficient mice 0.2 MPa, 20 exp at 90 min, 5/week for 4 weeks
Colorectal cancer
Hjelde et al. [66] 2005 In vitro Traditional cell carcinoma (AY-27), Human primary colonadenocarcinoma (WiDr) and human colonadenocarcinoma cell line (SW480) 0.1, 0.2, 0.3, and 0.4 MPa O2 for 30 min Photodynamic therapy
Daruwalla et al. [38] 2006 In vivo Dimethylhydrazine induced primary colon carcinoma cell line in mice 0.24 MPa, 90 min daily exp for 7, 13, 19, and 25 days ↓/↑ (↔)
Daruwalla et al. [39] 2007 In vivo Primary colon carcinoma cell line in mice 0.24 MPa, 5 times à 90 min over 9 days SMA–pirarubicin
Gliomas
Ogawa et al. [76] 2006 Clinical Patients with high grade gliomas 0.28 MPa, 30-60 min Radiotherapy and procarbazine, nimustine, and vincristine ↔/↓
Stuhr et al. [23] 2007 In vivo BT4C rat glioma xenografts in nude rats 100 % O2 or 0.2 MPa HBO, 3 exp at 90 min over 8 days
Kohshi et al. [75] 2007 Clinical Patients with anaplastic astrocytoma and glioblastoma multiforme 0.25 MPa, 60 min Radiotherapy (previous chemotherapy) ↔/↓
Suzuki et al. [44] 2009 Clinical Patients with recurrent malignant or brainstem gliomas 0.2 MPa, 60 min during i.v. adm. of carboplatin + 24 h after drug adm Carboplatin
Other
Chen et al. [20] 2007 In vitro Human leukemia (Jurkat), multiple myeloma (NCl-H929), carcinoma (A549) and breast adenocarcinoma (MCF-7) cell lines 0.25 or 0.35 MPa oxygen or air for 2–12 h ↓/↔
Ohgami et al. [43] 2010 In vitro Molt-4 human leukemia cells 0.35 MPa, 90 min Artemisinin
Sun et al. [19] 2004 In vivo Human oral cancer cell line in mice 0.25 MPa, 20 exp. at 90 min
Shi et al. [27] 2005 In vivo Head and neck squamous cell carcinoma (Sq20B and Detroit 562) in mice 0.24 MPa, 90 min 5 times a week for 2–4 weeks Radiotherapy (single dose)
Schönmeyr et al. [30] 2008 In vitro and in vivo Murine squamous cell carcinoma (SCC-VII) cell line in vitro and in mice 0.21 MPa 8 daily exp à 90 min
Ohguri et al. [45] 2009 Clinical Patients with non-small-cell lung cancer (NSCLC) 0.2 MP, 60–90 min, after chemo and HT Paclitaxel and carboplatin ↔/↓
Kawasoe et al. [21] 2009 In vitro and in vivo. Mouse osteosarcoma (LM8) cell line in vitro and implanted in mice 0.25 MPa for 90 min Carboplatin
Selvendiran et al. [46] 2010 In vivo Human ovarian cancer xenograft 0.2 MPa, 90 min daily for up to 21 days Cisplatin
Peng et al. [25] 2010 In vitro Nasopharyngeal carcinoma CNE2Z cells 0.2 MPa, 85 % O2, exp at 90 min (4 h interval) 5-FU ↓/↔

Left–right arrow no effect, down arrow inhibition/reduction, up arrow potentiation (if two symbols are given, the effect is mixed), Combo combination, exp exposure, adm administration, HT hyperthermia

Het abstract van bovengenoemde studie is deze, onderaan artikel staat een interessante referentielijst behorend bij deze studie:

Target Oncol. 2012 Dec; 7(4): 233–242.
Published online 2012 Oct 2. doi:  10.1007/s11523-012-0233-x
PMCID: PMC3510426

Hyperbaric oxygen therapy and cancer—a review

Abstract

Hypoxia is a critical hallmark of solid tumors and involves enhanced cell survival, angiogenesis, glycolytic metabolism, and metastasis. Hyperbaric oxygen (HBO) treatment has for centuries been used to improve or cure disorders involving hypoxia and ischemia, by enhancing the amount of dissolved oxygen in the plasma and thereby increasing O2 delivery to the tissue. Studies on HBO and cancer have up to recently focused on whether enhanced oxygen acts as a cancer promoter or not. As oxygen is believed to be required for all the major processes of wound healing, one feared that the effects of HBO would be applicable to cancer tissue as well and promote cancer growth. Furthermore, one also feared that exposing patients who had been treated for cancer, to HBO, would lead to recurrence. Nevertheless, two systematic reviews on HBO and cancer have concluded that the use of HBO in patients with malignancies is considered safe. To supplement the previous reviews, we have summarized the work performed on HBO and cancer in the period 2004–2012. Based on the present as well as previous reviews, there is no evidence indicating that HBO neither acts as a stimulator of tumor growth nor as an enhancer of recurrence. On the other hand, there is evidence that implies that HBO might have tumor-inhibitory effects in certain cancer subtypes, and we thus strongly believe that we need to expand our knowledge on the effect and the mechanisms behind tumor oxygenation.

Mocht u kanker-actueel de moeite waard vinden en ons willen ondersteunen om kanker-actueel online te houden dan kunt u ons machtigen voor een periodieke donatie via donaties: https://kanker-actueel.nl/NL/donaties.html of doneer al of niet anoniem op - rekeningnummer NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel in Amersfoort. Onze IBANcode is NL79 RABO 0372 9311 38   
Elk bedrag is welkom. En we zijn een ANBI instelling dus uw donatie of gift is in principe aftrekbaar voor de belasting.

5 april 2016: Bron: Adv Skin Wound Care. 2016 Jan;29(1):12-19 en IVHG - Instituut voor Hyperbare geneeskunde.

Met dank aan arts drs. H.A. Hilhorst verbonden aan het Instituut voor Hyperbare Geneeskunde waarmee ik vandaag heb gesproken en mij onderstaande studie doorstuurde. 

Maar drs. Hilhorst vertelde mij ook nog veel meer over de ontwikkelingen van de hyperbare zuurstof therapie. Bv. in juni wordt in Maarssen een nieuw centrum voor hyperbare zuurstof geopend. Dan zijn er inmiddels 10 centra in Nederland waar u deze therapie kunt volgen.

Ik ga de informatie die drs. Hilhorst mij vertelde niet allemaal herhalen, als ik het al allemaal heb kunnen onthouden en hier opschrijven maar op hun website staat alle benodigde informatie denk ik. Zie ook de gerelateerde artikelen. Op deze pagina staat een literatuurlijst: http://www.ivhg.nl/zorgverleners/publicatie-database/

Hier staan de adresgegevens van de vier vestigingen tot nu toe die vallen onder het Instituut voor hyperbare geneeskunde: http://www.ivhg.nl/het-ivhg/ 

Daarnaast zijn er nog centra voor hyperbare zuurstof in Sneek, Rijswijk, Waalwijk, Goes en Geldrop die onder een andere organisatie vallen.

Belangrijk is wel dat nog te weinig oncologen, radiologen, chirurgen en huisartsen met name weten van deze aanpak met hyperbare zuurstof als bevordering van herstel en pijnverlichting bij weefselschade veroorzaakt door radiotherapie - bestraling, maar ook als herstel van bv. open wonden veroorzaakt door diabetes.

Een ander punt van aandacht: Ik dacht dat de kosten voor zo'n behandeling wel erg duur zouden zijn maar wordt wanneer een patient wordt verwezen door een arts volledig vergoed vanuit de basisverzekering. En de kosten per behandeling vallen mee denk ik: €   200,-- excl. reiskosten. Zeker als je dat vergelijkt wat de kosten zijn voor iemand die chronische pijn overhoudt aan een bestraling of een blijvende open wond veroorzaakt door diabetes.

hyperbare zuurstof met patienten 2

Foto is van IVHG van een hyperbaar zuurstof unit in Nederland

Resultaten:

De gegevens van totaal 2538 patiënten met 10 verschillende typen van bestralingsschade zijn geanalyseerd. De 5 meest voorkomende beschadigingen / letsel waren osteoradionecrosis (botafsterving)  (33.4%), huid en zacht weefsel afsterving (27.5%), blaasontstekingen (18.6%), endeldarmontstekingen (9.2%), en beschadigingen van afstervend weefsel in de keel, verlies van stem enz. (4.8%). 

Kliniche resultaten van een Hyperbare zuurstof behandeling bleken over het algemeen allemaal postief, maar de mate van therapeutische effect variëerde per aard van de beschadiging. Maar pijnverlichting en kwaliteit van leven verbeterde algemeen van 76.7 to 92.6 procent.

Wie het volledige studierapport, wat uitgebreid beschrijft hoe er te werk is gegaan en met gedetailleerde resultaten en grafieken wilt van deze studie: Outcomes of Radiation Injuries Using Hyperbaric Oxygen Therapy: An Observational Cohort Study kan ons een mailtje sturen. In principe sturen we dit alleen aan onze donateurs: redactie@kanker-actueel.nl .

Anderen kunnen dit via de website van Wolters Kluwen kopen of via deze link: 

 http://www.ncbi.nlm.nih.gov/pubmed/26650092.

Outcomes from a large patient registry of radiation-induced injuries support the continued therapeutic use of Hyperbaric Oxygen Therapy for radiation injuries.

Adv Skin Wound Care. 2016 Jan;29(1):12-19.

Outcomes of Radiation Injuries Using Hyperbaric Oxygen Therapy: An Observational Cohort Study.

Abstract

BACKGROUND:

The late effects of radiation therapy following the treatment of cancer are a well-known consequence. Evidence increasingly supports the use of hyperbaric oxygen (HBO) as an adjunctive treatment in a variety of radiation injuries.

OBJECTIVE:

To present the findings of a new registry of radiation injuries that was developed to evaluate the outcomes and treatment parameters of HBO treatment (HBOT) when applied to patients experiencing the late effects of radiation therapy.

DESIGN:

Observational cohort.

SETTING:

Hyperbaric oxygen clinical treatment facilities in the United States.

PATIENTS:

A total of 2538 patients with radiation-induced injuries.

MEASUREMENTS:

Injury type, patient age, gender, diabetes, end-stage renal disease, collagen vascular disease, coronary artery disease/peripheral vascular disease, on anticoagulant medication, on systemic steroid medication, patient is current smoker, patient abuses alcohol, symptoms reported, duration of symptoms, symptom progression prior to HBOT, transfusion units, HBOT time, HBOT count, HBO chamber pressure, HBO time in chamber, and patient outcomes.

RESULTS:

A total of 2538 patient entries with 10 types of radiation injuries were analyzed. The 5 most common injuries were osteoradionecrosis (33.4%), dermal soft tissue radionecrosis (27.5%), radiation cystitis (18.6%), radiation proctitis (9.2%), and laryngeal radionecrosis (4.8%). Clinical outcomes following HBOT were positive with symptoms that improved or resolved varying from 76.7% to 92.6%, depending on injury type. Overall, although the mean symptom improvement score between some groups is statistically significant, the differences are probably not clinically meaningful. Patients with osteoradionecrosis had the highest mean symptom improvement score (3.24) compared with a mean of 3.04 for laryngeal radionecrosis.

LIMITATIONS:

Limited data were available on patient comorbidities and symptom severity.

CONCLUSIONS:

Outcomes from a large patient registry of radiation-induced injuries support the continued therapeutic use of HBOT for radiation injuries.

PMID:
26650092
[PubMed - as supplied by publisher]

References belonging to the study HBO - Hyperbaric Oxygin Therapy and cancer

References

1. Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle. 2009;8:3291–3296. doi: 10.4161/cc.8.20.9741. [PubMed] [Cross Ref]
2. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–239. doi: 10.1007/s10555-007-9055-1. [PubMed] [Cross Ref]
3. Harris AL. Hypoxia—a key regulatory factor in tumor growth. Nat Rev Cancer. 2002;2:38–47. doi: 10.1038/nrc704. [PubMed] [Cross Ref]
4. Holmquist L, Lofstedt T, Pahlman S. Effect of hypoxia on the tumor phenotype: the neuroblastoma and breast cancer models. Adv Exp Med Biol. 2006;587:179–193. doi: 10.1007/978-1-4020-5133-3_16. [PubMed] [Cross Ref]
5. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307. doi: 10.1016/S0305-7372(03)00003-3. [PubMed] [Cross Ref]
6. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–648. doi: 10.1259/0007-1285-26-312-638. [PubMed] [Cross Ref]
7. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck—a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32. doi: 10.1016/j.radonc.2011.03.004. [PubMed] [Cross Ref]
8. Cannito S, Novo E, Compagnone A, Valfre di Bonzo L, Busletta C, Zamara E, Paternostro C, Povero D, Bandino A, Bozzo F, Cravanzola C, Bravoco V, Colombatto S, Parola M. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis. 2008;29:2267–2278. doi: 10.1093/carcin/bgn216. [PubMed] [Cross Ref]
9. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–454. doi: 10.1038/nrc822. [PubMed] [Cross Ref]
10. Gill AL, Bell CNA. Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM. 2004;97:385–395. doi: 10.1093/qjmed/hch074. [PubMed] [Cross Ref]
11. Brizel DM, Lin S, Johnson JL, Brooks J, Dewhirst MW, Piantadosi CA. The mechanisms by which hyperbaric oxygen and carbogen improve tumor oxygenation. Br J Cancer. 1995;72:1120–1124. doi: 10.1038/bjc.1995.474. [PMC free article] [PubMed] [Cross Ref]
12. Kinoshita Y, Kohshi K, Kunugita N, Tosaki T, Yokota A. Preservation of tumor oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging. Br J Cancer. 2000;82:88–92. doi: 10.1054/bjoc.1999.0882. [PMC free article] [PubMed] [Cross Ref]
13. Beppu T, Kamada K, Yoshida Y, Arai H, Ogasawara K, Ogawa A. Change of oxygen pressure in glioblastoma tissue under various conditions. J Neurooncol. 2002;58:47–52. doi: 10.1023/A:1015832726054. [PubMed] [Cross Ref]
14. Hopf HW, Rollins MD. Wounds: an overview of the role of oxygen. Antioxid Redox Signal. 2007;9:1183–1192. doi: 10.1089/ars.2007.1641. [PubMed] [Cross Ref]
15. Feldmeier J, Carl U, Hartmann K, Sminia P. Hyperbaric oxygen: does it promote growth or recurrence of malignancy? Undersea Hyperb Med. 2003;30:1–18. [PubMed]
16. Daruwalla J, Christophi C. Hyperbaric oxygen therapy for malignancy: a review. World J Surg. 2006;30:2112–2131. doi: 10.1007/s00268-006-0190-6. [PubMed] [Cross Ref]
17. Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL. Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol. 2010;7:239–254. doi: 10.3109/1547691X.2010.492254. [PubMed] [Cross Ref]
18. Granowitz EV, Tonomura N, Benson RM, Katz DM, Band V, Makari-Judson GP, Osborne BA. Hyperbaric oxygen inhibits benign and malignant human mammary epithelial cell proliferation. Anticancer Res. 2005;25:3833–3842. [PubMed]
19. Sun TB, Chen RL, Hsu YH. The effect of hyperbaric oxygen on human oral cancer cells. Undersea Hyperb Med. 2004;31:251–260. [PubMed]
20. Chen YC, Chen SY, Ho PS, Lin CH, Cheng YY, Wang JK, Sytwu HK. Apoptosis of T-leukemia and B-myeloma cancer cells induced by hyperbaric oxygen increased phosphorylation of p38 MAPK. Leuk Res. 2007;31:805–815. doi: 10.1016/j.leukres.2006.09.016. [PubMed] [Cross Ref]
21. Kawasoe Y, Yokouchi M, Ueno Y, Iwaya H, Yoshida H, Komiya S. Hyperbaric oxygen as a chemotherapy adjuvant in the treatment of osteosarcoma. Oncol Rep. 2009;22:1045–1050. [PubMed]
22. Raa A, Stansberg C, Steen VM, Bjerkvig R, Reed RK, Stuhr LE. Hyperoxia retards growth and induces apoptosis and loss of glands and blood vessels in DMBA-induced rat mammary tumors. BMC Cancer. 2007;7:23. doi: 10.1186/1471-2407-7-23. [PMC free article] [PubMed] [Cross Ref]
23. Stuhr LE, Raa A, Oyan AM, Kalland KH, Sakariassen PO, Petersen K, Bjerkvig R, Reed RK. Hyperoxia retards growth and induces apoptosis, changes in vascular density and gene expression in transplanted gliomas in nude rats. J Neurooncol. 2007;85:191–202. doi: 10.1007/s11060-007-9407-2. [PubMed] [Cross Ref]
24. Moen I, Oyan AM, Kalland KH, Tronstad KJ, Akslen LA, Chekenya M, Sakariassen PO, Reed RK, Stuhr LE. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One. 2009;4:e6381. doi: 10.1371/journal.pone.0006381. [PMC free article] [PubMed] [Cross Ref]
25. Peng ZR, Zhong WH, Liu J, Xiao PT. Effects of the combination of hyperbaric oxygen and 5-fluorouracil on proliferation and metastasis of human nasopharyngeal carcinoma CNE-2Z cells. Undersea Hyperb Med. 2010;37:141–150. [PubMed]
26. Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci. 2010;1197:178–183. doi: 10.1111/j.1749-6632.2009.05393.x. [PubMed] [Cross Ref]
27. Shi Y, Lee CS, Wu J, Koch CJ, Thom SR, Maity A, Bernhard EJ. Effects of hyperbaric oxygen exposure on experimental head and neck tumor growth, oxygenation, and vasculature. Head Neck. 2005;27:362–369. doi: 10.1002/hed.20169. [PubMed] [Cross Ref]
28. Heys SD, Smith IC, Ross JA, Gilbert FJ, Brooks J, Semple S, Miller ID, Hutcheon A, Sarkar T, Eremin O. A pilot study with long term follow up of hyperbaric oxygen pretreatment in patients with locally advanced breast cancer undergoing neo-adjuvant chemotherapy. Undersea Hyperb Med. 2006;33:33–43. [PubMed]
29. Chong KT, Hampson NB, Bostwick DG, Vessella RL, Corman JM. Hyperbaric oxygen does not accelerate latent in vivo prostate cancer: implications for the treatment of radiation-induced haemorrhagic cystitis. BJU Int. 2004;94:1275–1278. doi: 10.1111/j.1464-410X.2004.05156.x. [PubMed] [Cross Ref]
30. Schonmeyr BH, Wong AK, Reid VJ, Gewalli F, Mehrara BJ. The effect of hyperbaric oxygen treatment on squamous cell cancer growth and tumor hypoxia. Ann Plast Surg. 2008;60:81–88. doi: 10.1097/SAP.0b013e31804a806a. [PubMed] [Cross Ref]
31. Thom, SR (2011) Hyperbaric oxygen: its mechanisms and efficacy. Plas Recon Surg 127 Suppl 1:131S–141S [PMC free article] [PubMed]
32. Tang H, Zhang ZY, Ge JP, Zhou WQ, Gao JP. Effects of hyperbaric oxygen on tumor growth in the mouse model of LNCaP prostate cancer cell line. Zhonghua Nan Ke Xue. 2009;15:713–716. [PubMed]
33. Johnson R, Lauchlan SC (1966) Epidermoid carcinoma of the cervix treated by 60Co therapy and hyperbaric oxygen. In: Proceedings Int Cong of Hyperb Med, pp. 648–652
34. Feldmeier JJ, Heimbach RD, Davolt DA, Brakora MJ, Sheffield PJ, Porter AT. Does hyperbaric oxygen have a cancer-causing or -promoting effect? A review of the pertinent literature. Undersea Hyperb Med. 1994;21:467–475. [PubMed]
35. Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res. 2011;728:23–34. doi: 10.1016/j.mrrev.2011.05.002. [PMC free article] [PubMed] [Cross Ref]
36. Haroon AT, Patel M, Al-Mehdi AB. Lung metastatic load limitation with hyperbaric oxygen. Undersea Hyperb Med. 2007;34:83–90. [PubMed]
37. Moen I, Jevne C, Wang J, Kalland KH, Chekenya M, Akslen LA, Sleire L, Enger PO, Reed RK, Oyan AM, Stuhr LE. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation. BMC Cancer. 2012;12:21. doi: 10.1186/1471-2407-12-21. [PMC free article] [PubMed] [Cross Ref]
38. Daruwalla J, Christophi C. The effect of hyperbaric oxygen therapy on tumour growth in a mouse model of colorectal cancer liver metastases. Eur J Cancer. 2006;42:3304–3311. doi: 10.1016/j.ejca.2006.08.004. [PubMed] [Cross Ref]
39. Daruwalla J, Greish K, Nikfarjam M, Millar I, Malcontenti-Wilson C, Iyer AK, Christophi C. Evaluation of the effect of SMA-pirarubicin micelles on colorectal cancer liver metastases and of hyperbaric oxygen in CBA mice. J Drug Target. 2007;15:487–495. doi: 10.1080/10611860701499839. [PubMed] [Cross Ref]
40. Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol. 2011;8:393–404. doi: 10.1038/nrclinonc.2011.83. [PubMed] [Cross Ref]
41. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev. 1994;13:139–168. doi: 10.1007/BF00689633. [PubMed] [Cross Ref]
42. Al-Waili NS, Betler G, Beale J, Hamilton RW, Lee BY, Lucas P. Hyperbaric oxygen and malignancies: a potential role in radiotherapy, chemotherapy, tumor surgery and phototherapy. MedSciMonit. 2005;11:RA279–RA289. [PubMed]
43. Ohgami Y, Elstad CA, Chung E, Shirachi DY, Quock RM, Lai HC. Effect of hyperbaric oxygen on the anticancer effect of artemisinin on molt-4 human leukemia cells. Anticancer Res. 2010;30:4467–4470. [PubMed]
44. Suzuki Y, Tanaka K, Negishi D, Shimizu M, Yoshida Y, Hashimoto T, Yamazaki H. Pharmacokinetic investigation of increased efficacy against malignant gliomas of carboplatin combined with hyperbaric oxygenation. Neurol Med Chir (Tokyo) 2009;49:193–197. doi: 10.2176/nmc.49.193. [PubMed] [Cross Ref]
45. Ohguri T, Imada H, Narisada H, Yahara K, Morioka T, Nakano K, Miyaguni Y, Korogi Y. Systemic chemotherapy using paclitaxel and carboplatin plus regional hyperthermia and hyperbaric oxygen treatment for non-small cell lung cancer with multiple pulmonary metastases: preliminary results. Int J Hyperthermia. 2009;25:160–167. doi: 10.1080/02656730802610357. [PubMed] [Cross Ref]
46. Selvendiran K, Kuppusamy ML, Ahmed S, Bratasz A, Meenakshisundaram G, Rivera BK, Khan M, Kuppusamy P. Oxygenation inhibits ovarian tumor growth by downregulating STAT3 and cyclin-D1 expressions. Cancer Biol Ther. 2010;10:386–390. doi: 10.4161/cbt.10.4.12448. [PubMed] [Cross Ref]
47. Stuhr LE, Iversen VV, Straume O, Maehle BO, Reed RK. Hyperbaric oxygen alone or combined with 5-FU attenuates growth of DMBA-induced rat mammary tumors. Cancer Lett. 2004;210:35–40. doi: 10.1016/j.canlet.2004.02.012. [PubMed] [Cross Ref]
48. Moen I, Tronstad KJ, Kolmannskog O, Salvesen GS, Reed RK, Stuhr LE. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma. BMC Cancer. 2009;9:446. doi: 10.1186/1471-2407-9-446. [PMC free article] [PubMed] [Cross Ref]
49. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. [PMC free article] [PubMed] [Cross Ref]
50. Perou CM, Sorlie T, Eisen MB, Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093. [PubMed] [Cross Ref]
51. Jevne CMI, Salvesen G, Reed RK, Stuhr LEB. A reduction in the interstitial fluid pressure per se, does not enhance the uptake of the small molecule weight compound 5-fluorouracil into 4T1 mammary tumours. Drug Ther Stud. 2011;1:10–14.
52. Suzuki Y, Tanaka K, Neghishi D, Shimizu M, Murayama N, Hashimoto T, Yamazaki H. Increased distribution of carboplatin, an anti-cancer agent, to rat brains with the aid of hyperbaric oxygenation. Xenobiotica. 2008;38:1471–1475. doi: 10.1080/00498250802478313. [PubMed] [Cross Ref]
53. Mayer R, Hamilton-Farrell MR, Kleij AJ, Schmutz J, Granstrom G, Sicko Z, Melamed Y, Carl UM, Hartmann KA, Jansen EC, Ditri L, Sminia P. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181:113–123. doi: 10.1007/s00066-005-1277-y. [PubMed] [Cross Ref]
54. Kindwall E. Hyperb medicine practice. 2. Flagstaff: Best; 2002.
55. Bennett MH, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev. 2012;4:CD005007. [PubMed]
56. Kohshi K, Kinoshita Y, Imada H, Kunugita N, Abe H, Terashima H, Tokui N, Uemura S. Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas. Br J Cancer. 1999;80:236–241. doi: 10.1038/sj.bjc.6690345. [PMC free article] [PubMed] [Cross Ref]
57. Boyle P., Levin B. (eds) (2008) World cancer report. IARC, Lyon
58. Suit HD, Maeda M. Hyperbaric oxygen and radiobiology of a C3H mouse mammary carcinoma. J Natl Cancer Inst. 1967;39:639–652. [PubMed]
59. McCredie JA, Inch WR, Kruuv J, Watson TA. Effects of hyperbaric oxygen on growth and metastases of the C3HBA tumor in the mouse. Cancer. 1966;19:1537–1542. doi: 10.1002/1097-0142(196611)19:11<1537::AID-CNCR2820191113>3.0.CO;2-S. [PubMed] [Cross Ref]
60. Shewell J, Thompson SC. The effect of hyperbaric oxygen treatment on pulmonary metastasis in the C3H mouse. Eur J Cancer. 1980;16:253–259. doi: 10.1016/0014-2964(80)90157-7. [PubMed] [Cross Ref]
61. Kluft O. Hyperbaric oxygen in experimental cancer in mice. Amsterdam: Universiteit van Amsterdam; 1965.
62. National Cancer Institute (2011). Available from http://www.cancer.gov/cancertopics/types/head-and-neck
63. National Cancer Institute (2011). Available from http://www.cancer.gov/cancertopics/types/colon-and-rectal
64. Watson AJ, Collins PD. Colon cancer: a civilization disorder. Dig Dis. 2011;29:222–228. doi: 10.1159/000323926. [PubMed] [Cross Ref]
65. Dische S, Senanayake F. Radiotherapy using hyperbaric oxygen in the palliation of carcinoma of colon and rectum. Clin Radiol. 1972;23:512–518. doi: 10.1016/S0009-9260(72)80032-1. [PubMed] [Cross Ref]
66. Hjelde A, Gederaas OA, Krokan HE, Brubakk AO. Lack of effect of hyperoxia on photodynamic therapy and lipid peroxidation in three different cancer cell lines. Med Sci Monit. 2005;11:BR351–BR356. [PubMed]
67. Maier A, Anegg U, Fell B, Rehak P, Ratzenhofer B, Tomaselli F, Sankin O, Pinter H, Smolle-Juttner FM, Friehs GB. Hyperbaric oxygen and photodynamic therapy in the treatment of advanced carcinoma of the cardia and the esophagus. Lasers Surg Med. 2000;26:308–315. doi: 10.1002/(SICI)1096-9101(2000)26:3<308::AID-LSM9>3.0.CO;2-B. [PubMed] [Cross Ref]
68. Dong GC, Hu SX, Zhao GY, Gao SZ, Wu LR. Experimental study on cytotoxic effects of hyperbaric oxygen and photodynamic therapy on mouse transplanted tumor. Chin Med J (Engl) 1987;100:697–702. [PubMed]
69. Maier A, Tomaselli F, Anegg U, Rehak P, Fell B, Luznik S, Pinter H, Smolle-Juttner FM. Combined photodynamic therapy and hyperbaric oxygenation in carcinoma of the esophagus and the esophago-gastric junction. Eur J Cardiothorac Surg. 2000;18:649–654. doi: 10.1016/S1010-7940(00)00592-3. [PubMed] [Cross Ref]
70. Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol. 2002;76:197–203. doi: 10.1562/0031-8655(2002)076<0197:IOTRBM>2.0.CO;2. [PubMed] [Cross Ref]
71. Jirsa M, Jr, Pouckova P, Dolezal J, Pospisil J, Jirsa M. Hyperbaric oxygen and photodynamic therapy in tumour-bearing nude mice. Eur J Cancer. 1991;27:109. doi: 10.1016/0277-5379(91)90075-O. [PubMed] [Cross Ref]
72. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 2002;4:278–299. [PMC free article] [PubMed]
73. Ferguson SD. Malignant gliomas: diagnosis and treatment. Dis Mon. 2011;57:558–569. doi: 10.1016/j.disamonth.2011.08.020. [PubMed] [Cross Ref]
74. Beppu T, Tanaka K, Kohshi K. Hyperbaric oxygenation for treatment of glioma. Gan To Kagaku Ryoho. 2011;38:933–936. [PubMed]
75. Kohshi K, Yamamoto H, Nakahara A, Katoh T, Takagi M. Fractionated stereotactic radiotherapy using gamma unit after hyperbaric oxygenation on recurrent high-grade gliomas. J Neurooncol. 2007;82:297–303. doi: 10.1007/s11060-006-9283-1. [PubMed] [Cross Ref]
76. Ogawa K, Yoshii Y, Inoue O, Toita T, Saito A, Kakinohana Y, Adachi G, Iraha S, Tamaki W, Sugimoto K, Hyodo A, Murayama S. Phase II trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas. Brit J of Cancer. 2006;95:862–868. doi: 10.1038/sj.bjc.6603342. [PMC free article] [PubMed] [Cross Ref]
77. National Cancer Institute. Available from http://www.cancer.gov/cancertopics/types/leukemia
78. Tonomura N, Granowitz EV. Hyperbaric oxygen: a potential new therapy for leukemia? Leuk Res. 2007;31:745–746. doi: 10.1016/j.leukres.2006.11.020. [PubMed] [Cross Ref]
79. Johnson RJ, Wiseman N, Lauchlan SC. The effect of hyperbaric oxygen on tumour metastases in mice. Clin Radiol. 1971;22:538–540. doi: 10.1016/S0009-9260(71)80131-9. [PubMed] [Cross Ref]
80. Johnson RE, Kagan AR, Bryant TL. Hyperbaric oxygen effect on experimental tumor growth. Radiology. 1967;88:775–777. [PubMed]
81. Tang H, Sun Y, Xu C, Zhou T, Gao X, Wang L. Effects of hyperbaric oxygen therapy on tumor growth in murine model of PC-3 prostate cancer cell line. Urology. 2009;73:205–208. doi: 10.1016/j.urology.2008.04.057. [PubMed] [Cross Ref]
82. Kalns J, Krock L, Piepmeier E., Jr The effect of hyperbaric oxygen on growth and chemosensitivity of metastatic prostate cancer. Anticancer Res. 1998;18:363–367. [PubMed]
83. Kalns JE, Piepmeier EH. Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cell Dev Biol Anim. 1999;35:98–101. doi: 10.1007/s11626-999-0008-6. [PubMed] [Cross Ref]

Plaats een reactie ...

Reageer op "Hyperbare zuurstof geeft uitstekende resultaten op het herstel van beschadigingen door bestralingen en geeft ook veel pijnverlichting. 76.7 tot 92.6 procent betere kwaliteit van leven"


Gerelateerde artikelen
 

Gerelateerde artikelen

hyperbare zuurstoftherapie >> hyperbare zuurstof geeft geen >> Hyperbare zuurstoftherapie >> Hyperbare zuurstoftherapie >>