16 februari 2025: Bronnen: World Journal of Clinical Oncology 2017 Aug 10;8(4):343–350 en AJR Oncology

Uit een kleine gerandomiseerde studie bij totaal 36 patiënten met gevorderde uitgezaaide borstkanker (N = 19) en patiënten met uitgezaaide darmkanker (N = 18) blijkt dat ook bij uitgezaaide borstkanker een behandeling met TACP - Trans Arteriële Chemo Perfusie betere resultaten geeft op de overall overleving. Nog beter dan bij patiënten met uitgezaaide darmkanker. En vooral belangrijk omdat er nauwelijks bijwerkingen opgtraden bij de deelnemende patiënten.

Resultaten vertaald uit het abstract:

  • TACP - Trans Arteriële Chemo Perfusie met gemcitabine en mitomycine voor metastasen van darmkanker en borstkanker werd uitgevoerd zonder ernstige bijwerkingen. De follow-up MRI toonde een therapeutische respons bij 84,2% van de borstkankerpatiënten - stabiele ziekte 47,4% en gedeeltelijke respons 36,8%. Een ziekteprogressie werd gezien bij 15,8%.
  • Darmkankerpatiënten toonden een therapeutische respons bij 52,9% van de 18 deelnemende patiënten. Een progressie van de ziekte werd gedocumenteerd bij 47,1% van de patiënten met darmkanker.
  • Deze gegevens tonen aan dat TACP bij patiënten met levermetastasen van borstkanker leidt tot een significant betere therapeutische respons vergeleken met darmkankerpatiënten (P = 0,042).
  • De mediane overlevingstijd was 13,2 maanden voor de borstkankerpatiënten, wat statistisch significant langer is dan voor darmkankerpatiënten met 9,3 maanden (P = 0,001).

Ook uit de resultaten van een reviewstudie Locoregional Therapies for Primary and Metastatic Breast Cancer: AJR Expert Panel Narrative Review blijkt dat minimaal invasieve behandelingen ( Radio Frequency Ablation (RFA), cryoablation, microwave ablation (MWA), en high-intensity focused ultrasound en dus TACP - Trans Arteriële Chemo Perfusie ) bij zowel primaire borstkanker als gevorderde borstkanker een grote rol kunnen spelen en meestal een verbeterde controle en overall overleving laten zien. 

Conclusies en aanwijzingen uit deze studie:

  • •Minimaal invasieve locoregionale therapieën spelen een groeiende rol in de multidisciplinaire behandeling van primaire en gemetastaseerde borstkanker.
  • •Factoren die bijdragen aan de groeiende rol van ablatie voor primaire borstkanker zijn onder meer een eerdere diagnose wanneer tumoren klein zijn en een langere levensduur van patiënten wiens aandoening chirurgische behandeling uitsluit.
  • •Cryoablatie is de belangrijkste ablatiemethode voor primaire borstkanker geworden vanwege de brede beschikbaarheid, het ontbreken van de noodzaak voor sedatie en het vermogen om de ablatiezone te bewaken.
  • •Oligometastatische borstkanker wordt geassocieerd met een betere prognose dan borstkanker met gevorderde metastasen, en opkomend bewijs suggereert dat het gebruik van locoregionale therapieën om alle ziekteplekken uit te roeien een overlevingsvoordeel kan opleveren.
  • •De optimale methode om oligometastatische ziekte te behandelen is niet vastgesteld en de selectie van ablatieve methoden is momenteel gebaseerd op de locatie van metastasen en de beschikbaarheid van lokale technologieën en ervaring van de operator. Prospectieve vergelijkende studies zijn nodig om optimale benaderingen te bepalen.
  • •Resultaten van retrospectieve studies suggereren dat transarteriële therapieën nuttig kunnen zijn bij sommige patiënten met gevorderde levermetastasen die hepatische oligoprogressie hebben of die systemische therapie niet kunnen verdragen, hoewel de optimale behandelingsmodaliteit momenteel onbekend is.
  • •Resultaten van voorlopige studies suggereren dat locoregionale therapieën, zoals cryoablatie en radio-embolisatie, tumorantigenen kunnen produceren die, in combinatie met immunotherapie, antitumorimmuniteit stimuleren.
  • •Resultaten van aanvullende prospectieve studies zijn nodig om de opname van interventionele oncologie in maatschappelijke richtlijnen voor borstkanker vast te stellen om de dekking door de betaler te ondersteunen en de patiëntuitkomsten te verbeteren.


Hier achtereenvolgens het abstract van de studie met 36 patiënten en het abstract van de reviewstudie met uitstekende referentielijst als onderbouwing:

. 2017 Aug 10;8(4):343–350. doi: 10.5306/wjco.v8.i4.343

Abstract

AIM

To evaluate the clinical value and efficiency of trans-arterial chemoperfusion (TACP) in patients with liver metastases from breast cancer (BC) and colorectal cancer (CRC).

METHODS

We treated 36 patients with liver metastases of BC (n = 19, 19 females) and CRC (n = 17; 8 females, 9 males) with repeated TACP. The treatment interval was 4 wk. TACP was performed with gemcitabine (1000 mg/m2) and mitomycin (10 mg/m2), administered within 1 h after positioning the catheter tip in the hepatic artery. Before treatment, the size, location, tumour volume, vascularization and number of liver tumours were evaluated using magnetic resonance imaging (MRI). Tumour response was evaluated according to the Response Evaluation Criteria in Solid Tumors guidelines.

RESULTS

TACP using gemcitabine and mitomycin for metastases from CRC and BC was performed without any serious side effects. The follow-up MRI showed a therapeutic response in 84.2% of the BC patients - stable disease 47.4% and partial response 36.8%. A progression was seen in 15.8%. CRC patients showed a therapeutic response in 52.9% of cases. A progression of the disease was documented in 47.1% of the patients with CRC. These data show that TACP in patients with liver metastases of BC leads to a significantly better therapeutic response compared with CRC patients (P = 0.042). The median survival time was 13.2 mo for the BC patients, which is significantly longer than for CRC patients at 9.3 mo (P = 0.001).

CONCLUSION

TACP for liver metastases of BC appears to be a safe and effective palliative treatment with improved outcomes in comparison to patients with CRC.

Footnotes

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Goethe University Hospital, Frankfurt, Germany.

Conflict-of-interest statement: The authors have no financial relationships to disclose.

Data sharing statement: No additional data are available.

Manuscript source: Unsolicited manuscript

Specialty type: Oncology

Country of origin: Germany

Peer-review report classification

Grade A (Excellent): 0

Grade B (Very good): B

Grade C (Good): 0

Grade D (Fair): 0

Grade E (Poor): 0

Peer-review started: October 23, 2016

First decision: January 14, 2017

Article in press: May 5, 2017

P- Reviewer: Stanojevic GZ S- Editor: Kong JX L- Editor: A E- Editor: Lu YJ

References

  • 1.Bechstein WO, Golling M. [Standard surgical resection of colorectal liver metastases] Chirurg. 2005;76:543–551. doi: 10.1007/s00104-005-1045-7. [DOI] [PubMed] [Google Scholar]
  • 2.de Jong KP. Review article: Multimodality treatment of liver metastases increases suitability for surgical treatment. Aliment Pharmacol Ther. 2007;26 Suppl 2:161–169. doi: 10.1111/j.1365-2036.2007.03484.x. [DOI] [PubMed] [Google Scholar]
  • 3.Vogl TJ, Zangos S, Balzer JO, Thalhammer A, Mack MG. [Transarterial chemoembolization of liver metastases: Indication, technique, results] Rofo. 2002;174:675–683. doi: 10.1055/s-2002-32228. [DOI] [PubMed] [Google Scholar]
  • 4.Vogl TJ, Zangos S, Eichler K, Yakoub D, Nabil M. Colorectal liver metastases: regional chemotherapy via transarterial chemoembolization (TACE) and hepatic chemoperfusion: an update. Eur Radiol. 2007;17:1025–1034. doi: 10.1007/s00330-006-0372-5. [DOI] [PubMed] [Google Scholar]
  • 5.Vogl TJ, Zangos S, Eichler K, Selby JB, Bauer RW. Palliative hepatic intraarterial chemotherapy (HIC) using a novel combination of gemcitabine and mitomycin C: results in hepatic metastases. Eur Radiol. 2008;18:468–476. doi: 10.1007/s00330-007-0781-0. [DOI] [PubMed] [Google Scholar]
  • 6.Grundmann RT, Hermanek P, Merkel S, Germer CT, Grundmann RT, Hauss J, Henne-Bruns D, Herfarth K, Hermanek P, Hopt UT, et al. [Diagnosis and treatment of colorectal liver metastases - workflow] Zentralbl Chir. 2008;133:267–284. doi: 10.1055/s-2008-1076796. [DOI] [PubMed] [Google Scholar]
  • 7.Lehnert T, Golling M. [Indications and outcome of liver metastases resection] Radiologe. 2001;41:40–48. doi: 10.1007/s001170050925. [DOI] [PubMed] [Google Scholar]
  • 8.Ott R, Wein A, Hohenberger W. [Liver metastases--primary or multimodal therapy?] Chirurg. 2001;72:887–897. doi: 10.1007/s001040170084. [DOI] [PubMed] [Google Scholar]
  • 9.Vogl T, Mack M, Straub R, Zangos S, Woitaschek D, Eichler K, Engelmann K. [Thermal ablation of liver metastases. Current status and prospects] Radiologe. 2001;41:49–55. doi: 10.1007/s001170050926. [DOI] [PubMed] [Google Scholar]
  • 10.Stangl R, Altendorf-Hofmann A, Charnley RM, Scheele J. Factors influencing the natural history of colorectal liver metastases. Lancet. 1994;343:1405–1410. doi: 10.1016/s0140-6736(94)92529-1. [DOI] [PubMed] [Google Scholar]
  • 11.Nordlinger B, Peschaud F, Malafosse R. Resection of liver metastases from colorectal cancer--how can we improve results? Colorectal Dis. 2003;5:515–517. doi: 10.1046/j.1463-1318.2003.00514.x. [DOI] [PubMed] [Google Scholar]
  • 12.Wyld L, Gutteridge E, Pinder SE, James JJ, Chan SY, Cheung KL, Robertson JF, Evans AJ. Prognostic factors for patients with hepatic metastases from breast cancer. Br J Cancer. 2003;89:284–290. doi: 10.1038/sj.bjc.6601038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Selzner M, Morse MA, Vredenburgh JJ, Meyers WC, Clavien PA. Liver metastases from breast cancer: long-term survival after curative resection. Surgery. 2000;127:383–389. doi: 10.1067/msy.2000.103883. [DOI] [PubMed] [Google Scholar]
  • 14.Schlag PM, Benhidjeb T, Kilpert B. [Principles of curative resection of liver metastases] Chirurg. 1999;70:123–132. doi: 10.1007/pl00002588. [DOI] [PubMed] [Google Scholar]
  • 15.Scheele J, Altendorf-Hofmann A, Grube T, Hohenberger W, Stangl R, Schmidt K. [Resection of colorectal liver metastases. What prognostic factors determine patient selection?] Chirurg. 2001;72:547–560. doi: 10.1007/s001040051345. [DOI] [PubMed] [Google Scholar]
  • 16.Tanaka K, Shimada H, Ohta M, Togo S, Saitou S, Yamaguchi S, Endo I, Sekido H. Procedures of choice for resection of primary and recurrent liver metastases from colorectal cancer. World J Surg. 2004;28:482–487. doi: 10.1007/s00268-004-7214-x. [DOI] [PubMed] [Google Scholar]
  • 17.Antoniou A, Lovegrove RE, Tilney HS, Heriot AG, John TG, Rees M, Tekkis PP, Welsh FK. Meta-analysis of clinical outcome after first and second liver resection for colorectal metastases. Surgery. 2007;141:9–18. doi: 10.1016/j.surg.2006.07.045. [DOI] [PubMed] [Google Scholar]
  • 18.Portier G, Elias D, Bouche O, Rougier P, Bosset JF, Saric J, Belghiti J, Piedbois P, Guimbaud R, Nordlinger B, et al. Multicenter randomized trial of adjuvant fluorouracil and folinic acid compared with surgery alone after resection of colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin Oncol. 2006;24:4976–4982. doi: 10.1200/JCO.2006.06.8353. [DOI] [PubMed] [Google Scholar]
  • 19.Parks R, Gonen M, Kemeny N, Jarnagin W, D’Angelica M, DeMatteo R, Garden OJ, Blumgart LH, Fong Y. Adjuvant chemotherapy improves survival after resection of hepatic colorectal metastases: analysis of data from two continents. J Am Coll Surg. 2007;204:753–761; discussion 761-763. doi: 10.1016/j.jamcollsurg.2006.12.036. [DOI] [PubMed] [Google Scholar]
  • 20.André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343–2351. doi: 10.1056/NEJMoa032709. [DOI] [PubMed] [Google Scholar]
  • 21.Kollmar O, Moussavian MR, Richter S, Bolli M, Schilling MK. Surgery of liver metastasis in gynecological cancer - indication and results. Onkologie. 2008;31:375–379. doi: 10.1159/000135516. [DOI] [PubMed] [Google Scholar]
  • 22.Schmid P, Possinger K. [Chemotherapy for metastatic breast cancer] Zentralbl Gynakol. 2006;128:318–326. doi: 10.1055/s-2006-921561. [DOI] [PubMed] [Google Scholar]
  • 23.Schmid P, Krocker J, Schulz CO, Michniewicz K, Dieing A, Eggemann H, Heilmann V, Blohmer JU, Sezer O, Elling D, et al. Primary chemotherapy with gemcitabine, liposomal doxorubicin and docetaxel in patients with locally advanced breast cancer: results of a phase I trial. Anticancer Drugs. 2005;16:21–29. doi: 10.1097/00001813-200501000-00003. [DOI] [PubMed] [Google Scholar]
  • 24.Sledge GW, Neuberg D, Bernardo P, Ingle JN, Martino S, Rowinsky EK, Wood WC. Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193) J Clin Oncol. 2003;21:588–592. doi: 10.1200/JCO.2003.08.013. [DOI] [PubMed] [Google Scholar]
  • 25.Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol. 1984;2:498–504. doi: 10.1200/JCO.1984.2.5.498. [DOI] [PubMed] [Google Scholar]
  • 26.Lubienski A, Simon M, Lubienski K, Gellissen J, Hoffmann RT, Jakobs TF, Helmberger T. [Update on chemoinfusion and chemoembolization treatments] Radiologe. 2007;47:1097–1106, 1108. doi: 10.1007/s00117-007-1587-4. [DOI] [PubMed] [Google Scholar]
  • 27.Vogl TJ, Schwarz W, Eichler K, Hochmuth K, Hammerstingl R, Jacob U, Scheller A, Zangos S, Heller M. Hepatic intraarterial chemotherapy with gemcitabine in patients with unresectable cholangiocarcinomas and liver metastases of pancreatic cancer: a clinical study on maximum tolerable dose and treatment efficacy. J Cancer Res Clin Oncol. 2006;132:745–755. doi: 10.1007/s00432-006-0138-0. [DOI] [PubMed] [Google Scholar]
  • 28.Link KH, Kornmann M, Formentini A, Leder G, Sunelaitis E, Schatz M, Pressmar J, Beger HG. Regional chemotherapy of non-resectable liver metastases from colorectal cancer - literature and institutional review. Langenbecks Arch Surg. 1999;384:344–353. doi: 10.1007/s004230050212. [DOI] [PubMed] [Google Scholar]
  • 29.Kemeny NE, Niedzwiecki D, Hollis DR, Lenz HJ, Warren RS, Naughton MJ, Weeks JC, Sigurdson ER, Herndon JE, Zhang C, et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481) J Clin Oncol. 2006;24:1395–1403. doi: 10.1200/JCO.2005.03.8166. [DOI] [PubMed] [Google Scholar]
  • 30.Del Freo A, Fiorentini G, Sanguinetti F, Muttini MP, Pennucci C, Mambrini A, Pacetti P, Della Seta R, Lombardi M, Torri T, et al. Hepatic arterial chemotherapy with oxaliplatin, folinic acid and 5-fluorouracil in pre-treated patients with liver metastases from colorectal cancer. In Vivo. 2006;20:743–746. [PubMed] [Google Scholar]
  • 31.Vogl TJ, Zangos S, Heller M, Hammerstingl RM, Böcher E, Jacob U, Bauer RW. [Transarterial chemoperfusion with gemcitabine and mitomycin C in pancreatic carcinoma: results in locally recurrent tumors and advanced tumor stages] Rofo. 2007;179:1181–1188. doi: 10.1055/s-2007-963568. [DOI] [PubMed] [Google Scholar]
  • 32.Kelly RJ, Kemeny NE, Leonard GD. Current strategies using hepatic arterial infusion chemotherapy for the treatment of colorectal cancer. Clin Colorectal Cancer. 2005;5:166–174. doi: 10.3816/ccc.2005.n.027. [DOI] [PubMed] [Google Scholar]
  • 33.Kemeny N. Management of liver metastases from colorectal cancer. Oncology (Williston Park) 2006;20:1161–1176, 1179; discussion 1179-1180, 1185-1186. [PubMed] [Google Scholar]
  • 34.Hildebrandt B, Pech M, Nicolaou A, Langrehr JM, Kurcz J, Bartels B, Miersch A, Felix R, Neuhaus P, Riess H, et al. Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with colorectal liver metastases: a Phase II-study and historical comparison with the surgical approach. BMC Cancer. 2007;7:69. doi: 10.1186/1471-2407-7-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Camacho LH, Kurzrock R, Cheung A, Barber DF, Gupta S, Madoff DC, Wallace MJ, Kim EE, Curley SA, Hortobagyi GN, et al. Pilot study of regional, hepatic intra-arterial paclitaxel in patients with breast carcinoma metastatic to the liver. Cancer. 2007;109:2190–2196. doi: 10.1002/cncr.22672. [DOI] [PubMed] [Google Scholar]
  • 36.Spangenberg HC, Mohr L, Blum HE. [Regional therapy of liver tumors] Internist (Berl) 2007;48:40–45. doi: 10.1007/s00108-006-1771-z. [DOI] [PubMed] [Google Scholar]
  • 37.Hoffmann RT, Jakobs TF, Kubisch CH, Stemmler HJ, Trumm C, Tatsch K, Helmberger TK, Reiser MF. Radiofrequency ablation after selective internal radiation therapy with Yttrium90 microspheres in metastatic liver disease-Is it feasible? Eur J Radiol. 2010;74:199–205. doi: 10.1016/j.ejrad.2009.02.001. [DOI] [PubMed] [Google Scholar]
  • 38.Sato KT, Lewandowski RJ, Mulcahy MF, Atassi B, Ryu RK, Gates VL, Nemcek AA, Barakat O, Benson A, Mandal R, et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres--safety, efficacy, and survival. Radiology. 2008;247:507–515. doi: 10.1148/radiol.2472062029. [DOI] [PubMed] [Google Scholar]
  • 39.Vogl TJ, Mack MG, Balzer JO, Engelmann K, Straub R, Eichler K, Woitaschek D, Zangos S. Liver metastases: neoadjuvant downsizing with transarterial chemoembolization before laser-induced thermotherapy. Radiology. 2003;229:457–464. doi: 10.1148/radiol.2292021329. [DOI] [PubMed] [Google Scholar]
  • 40.Jakobs TF, Hoffmann RT, Tatsch K, Trumm C, Reiser MF, Helmberger TK. [Developments and perspectives in radioablative techniques] Radiologe. 2007;47:1083–1088. doi: 10.1007/s00117-007-1572-y. [DOI] [PubMed] [Google Scholar]

Articles from World Journal of Clinical Oncology are provided here courtesy of Baishideng Publishing Group Inc







Evidence also suggests that transarterial therapies—including chemoembolization, chemoperfusion, and radioembolization—may be helpful to some patients with advanced liver metastases from breast cancer, such as those with hepatic oligoprogression or those who cannot tolerate systemic therapy.

AJR Expert Panel Narrative Review
Interventional Radiology
June 28, 2023

Locoregional Therapies for Primary and Metastatic Breast Cancer: AJR Expert Panel Narrative Review

https://doi.org/10.2214/AJR.23.29454  

Abstract

Minimally invasive locoregional therapies have a growing role in the multidisciplinary treatment of primary and metastatic breast cancer. Factors contributing to the expanding role of ablation for primary breast cancer include earlier diagnosis, when tumors are small, and increased longevity of patients whose condition precludes surgery. Cryoablation has emerged as the leading ablative modality for primary breast cancer owing to its wide availability, the lack of need for sedation, and the ability to monitor the ablation zone. Emerging evidence suggests that in patients with oligometastatic breast cancer, use of locoregional therapies to eradicate all disease sites may confer a survival advantage. Evidence also suggests that transarterial therapies—including chemoembolization, chemoperfusion, and radioembolization—may be helpful to some patients with advanced liver metastases from breast cancer, such as those with hepatic oligoprogression or those who cannot tolerate systemic therapy. However, the optimal modalities for treatment of oligometastatic and advanced metastatic disease remain unknown. Finally, locoregional therapies may produce tumor antigens that in combination with immunotherapy drive anti-tumor immunity. Although key trials are ongoing, additional prospective studies are needed to establish the inclusion of interventional oncology in societal breast cancer guidelines to support further clinical adoption and improved patient outcomes.

Breast cancer is the second most common cancer in women, after skin cancer; the second most common cause of cancer death in the United States, after lung cancer; and a leading cause of cancer death worldwide [1]. As the result of population-based screening and increased awareness, the incidence of breast cancer increased 0.5% per year from 1975 to 2018 [2]. Despite the increase in incidence, breast cancer death rates decreased 43% from 1989 to 2020 because of earlier diagnosis and improved treatments [23].
As of the end of 2022, there were 3.8 million breast cancer survivors in the United States, including people with active cancer and cancer survivors [1]. Breast cancer has a 5-year overall survival rate of 90% with 5-year survival rates of 99%, 86%, and 29% for localized, regional, and distant metastatic disease, respectively [1]. However, survival rates vary across populations, because age, overall health, treatment response, tumor grade, presence of hormone receptors, and HER2/neu status all impact outcome. Triple-negative breast cancer comprises 10–15% of breast cancer diagnoses, occurring more commonly in patients younger than 40 years and patients with BRCA1 mutation [4]. Among patients with breast cancer, those with triple-negative breast cancer have a worse prognosis, including a 5-year overall survival rate of 77% and 5-year survival rates of 91%, 65% and 12% for localized, regional, and distant metastatic disease, respectively [45].
The NCCN Clinical Practice Guidelines in Oncology (hereafter, NCCN guidelines) are established in a dynamic and iterative developmental process based on critical review of the best available evidence and derivation of recommendations from multidisciplinary panels. Though NCCN guidelines categorize the role of interventional oncology (i.e., oncologic subspecialization in interventional radiology) for certain cancers, such as hepatocellular carcinoma, renal cell carcinoma, and colon cancer, they do not recognize the role of interventional oncology in breast cancer, stating that data are limited [6]. The version of the NCCN guidelines written for patients [7], however, describes the role of interventional radiologists in breast cancer management, including performing biopsies for diagnosis and genetic profiling and performing locoregional therapies, highlighting growing involvement of interventional oncology despite the NCCN practice guidelines. An increase in the incidence of small breast cancers due to screening and increased longevity of patients whose condition precludes surgery have led to a growing role of cryoablation in the treatment of primary breast cancer [8]. Moreover, a spectrum of minimally invasive ablation therapies are increasingly used to treat patients with breast cancer oligometastases or oligoprogression (to control metastatic disease and to extend and preserve treatment options) and to provide salvage treatment (i.e., care of patients who have exhausted treatment options or who have experienced significant toxicity from systemic therapy) [9]. Ultimately, multidisciplinary and multiinstitutional expert panel consensus and supporting clinical trials are needed to achieve inclusion of interventional oncology in breast cancer guidelines from the NCCN and other organizations.


Footnotes

Provenance and review: Solicited; externally peer reviewed.
Peer reviewers: Naveen K. Gowda, St. Luke's Hospital; Sidhartha Tavri, Oregon Health and Science University; Thomas B. Kinney, Naval Medical Center San Diego; additional individual(s) who chose not to disclose their identity.

References

1.
American Cancer Society. Cancer facts & figures 2022. American Cancer Society, 2022
2.
National Cancer Institute website. SEER cancer statistics review (CSR) 1975–2018. seer.cancer.gov/csr/1975_2018/. Published Apr 15, 2021. Accessed May 1, 2023
3.
American Cancer Society. Breast cancer facts & figures 2019–2020. American Cancer Society, 2020
4.
Anders CK, Carey LA. ER/PR negative, HER2-negative (triple-negative) breast cancer. UpToDate website. www.uptodate.com/contents/er-pr-negative-her2-negative-triple-negative-breast-cancer#. Updated Jan 18, 2023. Accessed May 1, 2023
5.
Li X, Yang J, Peng L, et al. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat 2017; 161:279–287
6.
NCCN website. Breast cancer: version 4.2023. www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Published Mar 23, 2023. Accessed May 1, 2023
7.
NCCN website. NCCN guidelines for patients: metastatic breast cancer. www.nccn.org/patients/guidelines/content/PDF/stage_iv_breast-patient.pdf. Published 2023. Accessed May 1, 2023
8.
Pusceddu C, Paliogiannis P, Nigri G, Fancellu A. Cryoablation in the management of breast cancer: evidence to date. Breast Cancer (Dove Med Press) 2019; 11:283–292
9.
Filippiadis DK, Efthymiou E, Palialexis K, Brountzos E, Kelekis N. Interventional oncology procedures for breast cancer metastatic disease: current role and clinical applications. Diagn Interv Radiol 2022; 28:249–256
10.
Roknsharifi S, Wattamwar K, Fishman MDC, et al. Image-guided microinvasive percutaneous treatment of breast lesions: where do we stand? Radio-Graphics 2021; 41:945–966
11.
Sag AA, Maybody M, Comstock C, Solomon SB. Percutaneous image-guided ablation of breast tumors: an overview. Semin Intervent Radiol 2014; 31:193–202
12.
Littrup PJ, Jallad B, Chandiwala-Mody P, D'Agostini M, Adam BA, Bouwman D. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol 2009; 20:1329–1341
13.
Simmons RM, Ballman KV, Cox C, et al.; ACOSOG Investigators. A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma: results from ACOSOG (Alliance) Z1072. Ann Surg Oncol 2016; 23:2438–2445
14.
Fine RE, Gilmore RC, Dietz JR, et al. Cryoablation without excision for low-risk early-stage breast cancer: 3-year interim analysis of ipsilateral breast tumor recurrence in the ICE3 trial. Ann Surg Oncol 2021; 28:5525–5534
15.
Sabel MS, Kaufman CS, Whitworth P, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol 2004; 11:542–549
16.
Patel IJ, Rahim S, Davidson JC, et al. Society of Interventional Radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions. Part II. Recommendations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol 2019; 30:1168–1184
17.
Ward RC, Lourenco AP, Mainiero MB. Ultrasound-guided breast cancer cryoablation. AJR 2019; 213:716–722
18.
Cazzato RL, Garnon J, Ramamurthy N, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol 2016; 33:140
19.
Poplack SP, Levine GM, Henry L, et al. A pilot study of ultrasound-guided cryoablation of invasive ductal carcinomas up to 15 mm with MRI follow-up and subsequent surgical resection. AJR 2015; 204:1100–1108
20.
Littrup PJ, Jallad B, Vorugu V, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol 2009; 20:1343–1351
21.
Kaufman CS, Bachman B, Littrup PJ, et al. Cryoablation treatment of benign breast lesions with 12-month follow-up. Am J Surg 2004; 188:340–348
22.
Machida Y, Shimauchi A, Igarashi T, Fukuma E. MRI findings after cryoablation of primary breast cancer without surgical resection. Acad Radiol 2019; 26:744–751
23.
Kwapisz D. Oligometastatic breast cancer. Breast Cancer 2019; 26:138–146
24.
Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol 2020; 31:1623–1649
25.
Gennari A, André F, Barrios CH, et al.; ESMO Guidelines Committee. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol 2021; 32:1475–1495
26.
Palma DA, Olson R, Harrow S, et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 2019; 393:2051–2058
27.
Zinser JW, Hortobagyi GN, Buzdar AU, Smith TL, Fraschini G. Clinical course of breast cancer patients with liver metastases. J Clin Oncol 1987; 5:773–782
28.
Bale R, Putzer D, Schullian P. Local treatment of breast cancer liver metastasis. Cancers (Basel) 2019; 11:1341
29.
Meloni MF, Andreano A, Laeseke PF, Livraghi T, Sironi S, Lee FT Jr. Breast cancer liver metastases: US-guided percutaneous radiofrequency ablation—intermediate and long-term survival rates. Radiology 2009; 253:861–869
30.
Jakobs TF, Hoffmann RT, Schrader A, et al. CT-guided radiofrequency ablation in patients with hepatic metastases from breast cancer. Cardiovasc Intervent Radiol 2009; 32:38–46
31.
Bhardwaj N, Strickland AD, Ahmad F, Atanesyan L, West K, Lloyd DM. A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver. Pathology 2009; 41:168–172
32.
Ridouani F, Solomon SB, Bryce Y, Bromberg JF, Sofocleous CT, Deipolyi AR. Predictors of progression-free survival and local tumor control after percutaneous thermal ablation of oligometastatic breast cancer: retrospective study. J Vasc Interv Radiol 2020; 31:1201–1209
33.
Glazer DI, Tatli S, Shyn PB, Vangel MG, Tuncali K, Silverman SG. Percutaneous image-guided cryoablation of hepatic tumors: single-center experience with intermediate to long-term outcomes. AJR 2017; 209:1381–1389
34.
Mack MG, Straub R, Eichler K, Söllner O, Lehnert T, Vogl TJ. Breast cancer metastases in liver: laser-induced interstitial thermotherapy—local tumor control rate and survival data. Radiology 2004; 233:400–409
35.
Gabr A, Riaz A, Johnson GE, et al. Correlation of Y90-absorbed radiation dose to pathological necrosis in hepatocellular carcinoma: confirmatory multicenter analysis in 45 explants. Eur J Nucl Med Mol Imaging 2021; 48:580–583
36.
Meiers C, Taylor A, Geller B, Toskich B. Safety and initial efficacy of radiation segmentectomy for the treatment of hepatic metastases. J Gastrointest Oncol 2018; 9:311–315
37.
McMenomy BP, Kurup AN, Johnson GB, et al. Percutaneous cryoablation of musculoskeletal oligometastatic disease for complete remission. J Vasc Interv Radiol 2013; 24:207–213
38.
Barral M, Auperin A, Hakime A, et al. Percutaneous thermal ablation of breast cancer metastases in oligometastatic patients. Cardiovasc Intervent Radiol 2016; 39:885–893
39.
Luigi Cazzato R, Auloge P, De Marini P, et al. Percutaneous image-guided ablation of bone metastases: local tumor control in oligometastatic patients. Int J Hyperthermia 2018; 35:493–499
40.
Deib G, Deldar B, Hui F, Barr JS, Khan MA. Percutaneous microwave ablation and cementoplasty: clinical utility in the treatment of painful extraspinal osseous metastatic disease and myeloma. AJR 2019; 212:1377–1384
41.
Meng M, Han X, Li W, et al. CT-guided microwave ablation in patients with lung metastases from breast cancer. Thorac Cancer 2021; 12:3380–3386
42.
Abbott DE, Brouquet A, Mittendorf EA, et al. Resection of liver metastases from breast cancer: estrogen receptor status and response to chemotherapy before metastasectomy define outcome. Surgery 2012; 151:710–716
43.
Adam R, Aloia T, Krissat J, et al. Is liver resection justified for patients with hepatic metastases from breast cancer? Ann Surg 2006; 244:897–907; discussion, 907–908
44.
Margonis GA, Buettner S, Sasaki K, et al. The role of liver-directed surgery in patients with hepatic metastasis from primary breast cancer: a multi-institutional analysis. HPB (Oxford) 2016; 18:700–705
45.
Liberchuk AN, Deipolyi AR. Hepatic metastasis from breast cancer. Semin Intervent Radiol 2020; 37:518–526
46.
Olson R, Senan S, Harrow S, et al. Quality of life outcomes after stereotactic ablative radiation therapy (SABR) versus standard of care treatments in the oligometastatic setting: a secondary analysis of the SABR-COMET randomized trial. Int J Radiat Oncol Biol Phys 2019; 105:943–947
47.
Hagemeister FB Jr, Buzdar AU, Luna MA, Blumenschein GR. Causes of death in breast cancer: a clinicopathologic study. Cancer 1980; 46:162–167
48.
Hoe AL, Royle GT, Taylor I. Breast liver metastases: incidence, diagnosis and outcome. J R Soc Med 1991; 84:714–716
49.
Gruber-Rouh T, Langenbach M, Naguib NNN, et al. Trans-arterial chemoperfusion for the treatment of liver metastases of breast cancer and colorectal cancer: clinical results in palliative care patients. World J Clin Oncol 2017; 8:343–350
50.
Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365:1687–1717
51.
Eichler K, Jakobi S, Gruber-Rouh T, Hammerstingl R, Vogl TJ, Zangos S. Transarterial chemoembolisation (TACE) with gemcitabine: phase II study in patients with liver metastases of breast cancer. Eur J Radiol 2013; 82:e816–e822
52.
Nielsen DL, Nørgaard H, Vestermark LW, et al. Intrahepatic and systemic therapy with oxaliplatin combined with capecitabine in patients with hepatic metastases from breast cancer. Breast 2012; 21:556–561
53.
Fu S, Naing A, Moulder SL, et al. Phase I trial of hepatic arterial infusion of nanoparticle albumin-bound paclitaxel: toxicity, pharmacokinetics, and activity. Mol Cancer Ther 2011; 10:1300–1307
54.
Tewes M, Peis MW, Bogner S, et al. Hepatic arterial infusion chemotherapy for extensive liver metastases of breast cancer: efficacy, safety and prognostic parameters. J Cancer Res Clin Oncol 2017; 143:2131–2141
55.
Tsimberidou AM, Vaklavas C, Fu S, et al. Hepatic arterial infusion therapy in advanced cancer and liver-predominant disease: the MD Anderson experience. Hepatogastroenterology 2013; 60:1611–1623
56.
Aarts BM, Klompenhouwer EG, Dresen RC, et al. Intra-arterial mitomycin C infusion in a large cohort of advanced liver metastatic breast cancer patients: safety, efficacy and factors influencing survival. Breast Cancer Res Treat 2019; 176:597–605
57.
Vogl TJ, Naguib NN, Nour-Eldin NE, Eichler K, Zangos S, Gruber-Rouh T. Transarterial chemoembolization (TACE) with mitomycin C and gemcitabine for liver metastases in breast cancer. Eur Radiol 2010; 20:173–180
58.
Vogl TJ, Mack MG, Balzer JO, et al. Liver metastases: neoadjuvant downsizing with transarterial chemoembolization before laser-induced thermo-therapy. Radiology 2003; 229:457–464
59.
Vogl TJ, Freichel J, Gruber-Rouh T, et al. Interventional oncological treatment of breast cancer liver metastasis (BCLM): single center long-term evaluation over 26 years using thermoablation techniques like LITT, MWA and TACE in a multimodal application. Int J Hyperthermia 2023; 40:2200582
60.
Duan XF, Dong NN, Zhang T, Li Q. Treatment outcome of patients with liver-only metastases from breast cancer after mastectomy: a retrospective analysis. J Cancer Res Clin Oncol 2011; 137:1363–1370
61.
Farshid P, Darvishi A, Naguib N, et al. Repetitive chemoembolization of hypovascular liver metastases from the most common primary sites. Future Oncol 2013; 9:419–426
62.
Lin YT, Médioni J, Amouyal G, Déan C, Sapoval M, Pellerin O. Doxorubicin-loaded 70-150 μm microspheres for liver-dominant metastatic breast cancer: results and outcomes of a pilot study. Cardiovasc Intervent Radiol 2017; 40:81–89
63.
Lindgaard SC, Brinch CM, Jensen BK, et al. Hepatic arterial therapy with oxaliplatin and systemic capecitabine for patients with liver metastases from breast cancer. Breast 2019; 43:113–119
64.
Martin RC, Robbins K, Fagés JF, et al. Optimal outcomes for liver-dominant metastatic breast cancer with transarterial chemoembolization with drug-eluting beads loaded with doxorubicin. Breast Cancer Res Treat 2012; 132:753–763
65.
Rivera K, Jeyarajah DR, Washington K. Hepatectomy, RFA, and other liver directed therapies for treatment of breast cancer liver metastasis: a systematic review. Front Oncol 2021; 11:643383
66.
Wang M, Zhang J, Ji S, et al. Transarterial chemoembolisation for breast cancer with liver metastasis: a systematic review. Breast 2017; 36:25–30
67.
Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007; 68:13–23
68.
Mahnken AH. Current status of transarterial radioembolization. World J Radiol 2016; 8:449–459
69.
Cheng B, Sethi I, Davisson N, et al. Yttrium-90 dosimetry and implications on tumour response and survival after radioembolisation of chemo-refractory hepatic metastases from breast cancer. Nucl Med Commun 2021; 42:402–409
70.
Ridouani F, Soliman MM, England RW, et al. Relationship of radiation dose to efficacy of radioembolization of liver metastasis from breast cancer. Eur J Radiol 2021; 136:109539
71.
Pieper CC, Willinek WA, Thomas D, et al. Incidence and risk factors of early arterial blood flow stasis during first radioembolization of primary and secondary liver malignancy using resin microspheres: an initial single-center analysis. Eur Radiol 2016; 26:2779–2789
72.
Ahmadzadehfar H, Meyer C, Pieper CC, et al. Evaluation of the delivered activity of yttrium-90 resin microspheres using sterile water and 5% glucose during administration. EJNMMI Res 2015; 5:54
73.
Cianni R, Pelle G, Notarianni E, et al. Radioembolisation with (90)Y-labelled resin microspheres in the treatment of liver metastasis from breast cancer. Eur Radiol 2013; 23:182–189
74.
Fendler WP, Lechner H, Todica A, et al. Safety, efficacy, and prognostic factors after radioembolization of hepatic metastases from breast cancer: a large single-center experience in 81 patients. J Nucl Med 2016; 57:517–523
75.
Haug AR, Tiega Donfack BP, Trumm C, et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med 2012; 53:371–377
76.
Pieper CC, Meyer C, Wilhelm KE, et al. Yttrium-90 radioembolization of advanced, unresectable breast cancer liver metastases: a single-center experience. J Vasc Interv Radiol 2016; 27:1305–1315
77.
Saxena A, Kapoor J, Meteling B, Morris DL, Bester L. Yttrium-90 radioembolization for unresectable, chemoresistant breast cancer liver metastases: a large single-center experience of 40 patients. Ann Surg Oncol 2014; 21:1296–1303
78.
Liu C, Tadros G, Smith Q, et al. Selective internal radiation therapy of meta-static breast cancer to the liver: a meta-analysis. Front Oncol 2022; 12:887653
79.
Davisson NA, Bercu ZL, Friend SC, et al. Predictors of survival after yttrium-90 radioembolization of chemotherapy-refractory hepatic metastases from breast cancer. J Vasc Interv Radiol 2020; 31:925–933
80.
Chang J, Charalel R, Noda C, et al. Liver-dominant breast cancer metastasis: a comparative outcomes study of chemoembolization versus radioembolization. Anticancer Res 2018; 38:3063–3068
81.
Deipolyi AR, Johnson CB, Erinjeri JP, Bryce YC. Combination therapies with Y90: immunoradiation. Dig Dis Interv 2020; 4:382–388
82.
Regen-Tuero HC, Ward RC, Sikov WM, Littrup PJ. Cryoablation and immunotherapy for breast cancer: overview and rationale for combined therapy. Radiol Imaging Cancer 2021; 3:e200134
83.
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348:69–74
84.
Pusztai L, Karn T, Safonov A, Abu-Khalaf MM, Bianchini G. New strategies in breast cancer: immunotherapy. Clin Cancer Res 2016; 22:2105–2110
85.
Baust JG, Gage AA. The molecular basis of cryosurgery. BJU Int 2005; 95:1187–1191
86.
Mehta A, Oklu R, Sheth RA. Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterol Res Pract 2016; 2016:92513752016
87.
Ward RC, Kaufman HL. Targeting costimulatory pathways for tumor immunotherapy. Int Rev Immunol 2007; 26:161–196
88.
Ho AY, Tabrizi S, Dunn SA, McArthur HL. Current advances in immune checkpoint inhibitor combinations with radiation therapy or cryotherapy for breast cancer. Breast Cancer Res Treat 2022; 191:229–241
89.
McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res 2016; 22:5729–5737
90.
ClinicalTrials.gov website. Peri-operative ipilimumab+nivolumab and cryoablation in women with triple-negative breast cancer. clinicaltrials.gov/ct2/show/NCT03546686. First posted Jun 6, 2018. Last updated Sep 30, 2022. Accessed May 1, 2023
91.
ClinicalTrials.gov website. A study of pre-operative treatment with cryoablation and immune therapy in early stage breast cancer. clinicaltrials.gov/ct2/show/NCT02833233. First posted Jul 14, 2016. Accessed May 1, 2023
92.
Deipolyi AR, Bromberg JF, Erinjeri JP, Solomon SB, Brody LA, Riedl CC. Abscopal effect after radioembolization for metastatic breast cancer in the setting of immunotherapy. J Vasc Interv Radiol 2018; 29:432–433
93.
Deipolyi AR, Johnson CB, Riedl CC, et al. Prospective evaluation of immune activation associated with response to radioembolization assessed with PET/CT in women with breast cancer liver metastasis. Radiology 2023; 306:279–287
94.
Veltri A, Gazzera C, Barrera M, et al. Radiofrequency thermal ablation (RFA) of hepatic metastases (METS) from breast cancer (BC): an adjunctive tool in the multimodal treatment of advanced disease. Radiol Med (Torino) 2014; 119:327–333
95.
Bai XM, Yang W, Zhang ZY, et al. Long-term outcomes and prognostic analysis of percutaneous radiofrequency ablation in liver metastasis from breast cancer. Int J Hyperthermia 2019; 35:183–193
96.
Gordon AC, Gradishar WJ, Kaklamani VG, et al. Yttrium-90 radioembolization stops progression of targeted breast cancer liver metastases after failed chemotherapy. J Vasc Interv Radiol 2014; 25:1523–1532
Special Series ReviewCardiothoracic Imaging

Imaging of Pulmonary Fibrosis: An Update, From the AJR Special Series on Imaging of Fibrosis

Clinical PerspectiveBreast Imaging

The Role of Contrast-Enhanced Mammography After Cryoablation of Breast Cancer

Original ResearchBreast Imaging

Screening in Patients With Dense Breasts: Comparison of Mammography, Artificial Intelligence, and Supplementary Ultrasound

ReviewBreast Imaging

Update on DWI for Breast Cancer Diagnosis and Treatment Monitoring

Original ResearchEvidence Synthesis and Decision Analysis

Cost-Effectiveness of CT, CTA, MRI, and Specialized MRI for Evaluation of Patients Presenting to the Emergency Department With Dizziness


Plaats een reactie ...

Reageer op "TACP - Trans Arteriële Chemo Perfusie geeft bij gevorderde uitgezaaide borstkanker nog betere resultaten dan bij darmkanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

TACP - Trans Arteriële Chemo >> Borstkanker: LITT behandeling >> Borstkanker: TACE - Transarteriële >> Borstkanker: TACE - Trans >>