-
Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).
Article CAS PubMed Google Scholar
-
Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).
Article CAS PubMed PubMed Central Google Scholar
-
Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).
Article CAS PubMed Google Scholar
-
Elkrief, A. et al. Efficacy of PD-(L)1 blockade monotherapy compared with PD-(L)1 blockade plus chemotherapy in first-line PD-L1-positive advanced lung adenocarcinomas: a cohort study. J. Immunother. Cancer 11, e006994 (2023).
-
Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).
Article CAS PubMed PubMed Central Google Scholar
-
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).
Article CAS PubMed PubMed Central Google Scholar
-
Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).
Article PubMed PubMed Central Google Scholar
-
Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
Article CAS PubMed Google Scholar
-
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
Article CAS PubMed Google Scholar
-
Matson, V. et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
Article CAS PubMed PubMed Central Google Scholar
-
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
Article CAS PubMed Google Scholar
-
Elkrief, A. et al. The gut microbiome as a target in cancer immunotherapy: opportunities and challenges for drug development. Nat. Rev. Drug Discov. 24, 685−704 (2025).
-
Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).
Article CAS PubMed Google Scholar
-
Thomas, A. M. et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 583–603 (2023).
Article PubMed PubMed Central Google Scholar
-
Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).
Article CAS PubMed Google Scholar
-
Elkrief, A. et al. Antibiotics are associated with worse outcomes in lung cancer patients treated with chemotherapy and immunotherapy. npj Precis. Oncol. 8, 143 (2024).
Article CAS PubMed PubMed Central Google Scholar
-
Elkrief, A. et al. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann. Oncol. 30, 1572–1579 (2019).
Article CAS PubMed Google Scholar
-
Elkrief, A. et al. Gut microbiota in immuno-oncology: a practical guide for medical oncologists with a focus on antibiotics stewardship. Am. Soc. Clin. Oncol. Educ. Book 45, e472902 (2025).
Article PubMed Google Scholar
-
Hakozaki, T. et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).
Article CAS PubMed Google Scholar
-
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).
Article CAS PubMed PubMed Central Google Scholar
-
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).
Article CAS PubMed Google Scholar
-
Elkrief, A. & Routy, B. First clinical proof-of-concept that FMT can overcome resistance to ICIs. Nat. Rev. Clin. Oncol. 18, 325–326 (2021).
Article PubMed Google Scholar
-
Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. 29, 2121–2132 (2023).
Article CAS PubMed Google Scholar
-
Seo, Y. D., Ajami, N. & Wargo, J. A. Using gut microorganisms to treat cancer. Nat. Med. 29, 1910–1911 (2023).
Article CAS PubMed Google Scholar
-
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
Article Google Scholar
-
Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).
Article CAS PubMed Google Scholar
-
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Article Google Scholar
-
Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).
Article PubMed Google Scholar
-
Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01688-w (2022).
-
Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389 (2024).
Article CAS PubMed Google Scholar
-
Birebent, R. et al. Surrogate markers of intestinal dysfunction associated with survival in advanced cancers. Oncoimmunology 14, 2484880 (2025).
Article PubMed PubMed Central Google Scholar
-
Goel, A. et al. Toward a health-associated core keystone index for the human gut microbiome. Cell Rep. 44, 115378 (2025).
-
Yonekura, S. et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).
Article CAS PubMed Google Scholar
-
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
Article CAS PubMed Google Scholar
-
Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).
Article CAS PubMed PubMed Central Google Scholar
-
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
Article CAS PubMed Google Scholar
-
Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).
Article CAS PubMed PubMed Central Google Scholar
-
Messaoudene, M. et al. The DAV132 colon-targeted adsorbent does not interfere with plasma concentrations of antibiotics but prevents antibiotic-related dysbiosis: a randomized phase I trial in healthy volunteers. Nat. Commun. 15, 8083 (2024).
Article CAS PubMed PubMed Central Google Scholar
-
Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).
Article CAS PubMed PubMed Central Google Scholar
-
Maria Rain, J., David, M. & John, B. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J. Immunother. Cancer 9, e003013 (2021).
Article Google Scholar
-
Moffett, J. R. & Namboodiri, M. A. Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 (2003).
Article CAS PubMed Google Scholar
-
Kesarwani, P. et al. Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis. Nat. Commun. 14, 1459 (2023).
Article CAS PubMed PubMed Central Google Scholar
-
Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).
Article CAS PubMed Google Scholar
-
Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).
Article PubMed PubMed Central Google Scholar
-
Ozaki, A. F. et al. Incidence and survival outcomes of myocarditis and pericardial diseases associated with immune checkpoint inhibitor therapy. Cardiooncology 11, 26 (2025).
PubMed PubMed Central Google Scholar
-
Porcari, S. et al. Fecal microbiota transplantation plus pembrolizumab and axitinib in metastatic renal cell carcinoma: the randomized phase 2 TACITO trial. Nat. Med. https://doi.org/10.1038/s41591-025-04189-2 (2026).
-
Alves Costa Silva, C. et al. Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat. Commun. 15, 1633 (2024).
Article CAS PubMed PubMed Central Google Scholar
-
Schramme, F. et al. Inhibition of tryptophan-dioxygenase activity increases the antitumor efficacy of immune checkpoint inhibitors. Cancer Immunol. Res. 8, 32–45 (2020).
Article CAS PubMed Google Scholar
-
Liu, Y. et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 33, 480–494 (2018).
Article CAS PubMed Google Scholar
-
Trefny, M. P., Kroemer, G., Zitvogel, L. & Kobold, S. Metabolites as agents and targets for cancer immunotherapy. Nat. Rev. Drug Discov. 24, 764−784 (2025).
-
Craven, L. J. et al. Extended screening costs associated with selecting donors for fecal microbiota transplantation for treatment of metabolic syndrome-associated diseases. Open Forum Infect. Dis. 4, ofx243 (2017).
Article PubMed PubMed Central Google Scholar
-
Elkrief, A. et al. Immune-related colitis is associated with fecal microbial dysbiosis and can be mitigated by fecal microbiota transplantation. Cancer Immunol. Res. 12, 308–321 (2024).
Article CAS PubMed PubMed Central Google Scholar
-
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
Article CAS PubMed Google Scholar
-
Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).
Article PubMed PubMed Central Google Scholar
-
Freites-Martinez, A., Santana, N., Arias-Santiago, S. & Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE - version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas Dermosifiliogr. 112, 90–92 (2021).
Article CAS PubMed Google Scholar
-
Prindiville, S. A. et al. Patterns of enrollment in cancer treatment trials during the COVID-19 pandemic at National Cancer Institute-Designated Cancer Centers. Cancer J. 28, 111–117 (2022).
Article CAS PubMed PubMed Central Google Scholar
-
Waterhouse, D. M. et al. Early impact of COVID-19 on the conduct of oncology clinical trials and long-term opportunities for transformation: findings from an American Society of Clinical Oncology Survey. JCO Oncol. Pract. 16, 417–421 (2020).
Article PubMed Google Scholar
-
Upadhaya, S. et al. Impact of COVID-19 on oncology clinical trials. Nat. Rev. Drug Discov. 19, 376–377 (2020).
Article CAS PubMed Google Scholar
-
Plaza Onate, F. et al. Updated Metagenomic Species Pan-genomes (MSPs) of the human gastrointestinal microbiot. Zenodo https://zenodo.org/records/12820832 (2024).
-
Le Chatelier, E. et al. A catalog of genes and species of the human oral microbiota. Data INRAE https://doi.org/10.15454/WQ4UTV (2021).
-
Puller, V., Plaza Oñate, F., Prifti, E. & de Lahondès, R. Impact of simulation and reference catalogues on the evaluation of taxonomic profiling pipelines. Microb. Genom. 11, 001330 (2025).
-
Plaza Oñate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 35, 1544–1552 (2018).
Article PubMed Central Google Scholar
-
Diop, K. et al. Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors. Gut Pathog. 17, 21 (2025).
Article CAS PubMed PubMed Central Google Scholar
-
Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging (Albany NY) 13, 6375–6405 (2021).
Article CAS PubMed Google Scholar
-
Durand, S. et al. The intracellular metabolome of starving cells. Methods Cell Biol. 164, 137–156 (2021).
Article CAS PubMed Google Scholar
-
Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. 13,eabd7064 (2021).
-
Anhê, F. F. et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68, 453–464 (2019).
Article PubMed Google Scholar
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
Article PubMed PubMed Central Google Scholar
-
Blampey, Q. et al. A biology-driven deep generative model for cell-type annotation in cytometry. Brief. Bioinform. 24,bbad260 (2023).
Plaats een reactie ...
Reageer op "Poeptransplantatie - Fecale Microbiota Transplantatie (FMT) vergroot effectiviteit van immuuntherapie bij niet-kleincellige longkanker en melanomen copy 1"