Zie ook in gerelateerde artikelen

! februari 2026: zie ook dit artikel: https://kanker-actueel.nl/NL/poeptransplantatie-vergroot-effectiviteit-van-immuuntherapie-en-vermindert-ernstige-bijwerkingen-bij-uitgezaaide-gevorderde-niercelkanker.html

1 februari 2026: Bron: Nature medicine Published: Canbiome2 bij patiënten met gevorderde melanoom moet de verbeterde effectiviteit van een FTM = Fecale Microbiota transplantatie  / poeptransplantatie gecombineerd met immuuntherapie aan gaan tonen.

Hier achtereenvolgens de abstracten van de genoemde studies hierboven:

Fecal microbiota transplantation plus immunotherapy in non-small cell lung cancer and melanoma: the phase 2 FMT-LUMINate trial

Abstract

Immune checkpoint inhibitors (ICI) have improved outcomes for patients with non-small cell lung cancer (NSCLC) and melanoma, yet over half of patients exhibit primary resistance. Fecal microbiota transplantation (FMT) may overcome resistance to anti-programmed cell death protein 1 (PD-1) therapy. The clinical activity and safety of FMT plus anti-PD-1 in NSCLC or anti-PD-1 plus anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) therapy in melanoma have not been evaluated. Here we report results from FMT-LUMINate, a multicenter, open-label, phase 2 trial assessing healthy donor FMT plus anti-PD-1 in NSCLC (n = 20) or anti-PD-1 plus anti-CTLA-4 (dual ICI) in melanoma (n = 20), in the first-line setting. Eligible patients received a single FMT via oral capsules prior to ICI initiation. The primary endpoint was objective response rate (ORR) in NSCLC. Secondary endpoints included ORR in melanoma, safety and donor−host microbiome similarity. In NSCLC, the ORR was 80% (16/20), meeting the study primary endpoint. In melanoma, the ORR was 75% (15/20). FMT was deemed safe in both cohorts by an independent data and safety monitoring committee, with no grade 3 or higher adverse events (AEs) in NSCLC and 13 (65%) patients experiencing grade 3 or higher AEs in melanoma. Shotgun metagenomic sequencing revealed that responders developed a distinct post-FMT gut microbiome composition, independent of acquired donor−recipient similarity or strain-level engraftment. Responders exhibited significantly greater loss of baseline bacterial species compared to non-responders, with frequent depletion of Enterocloster citroniaeE. lavalensis and Clostridium innocuum. This finding was reproduced across three published FMT oncology trials. We recolonized antibiotic-treated, tumor-bearing mice with post-FMT stool from two responder patients, and reintroduction of the specific bacterial species that were lost after FMT abrogated the antitumor effect of ICI. Taken together, these findings confirm the clinical activity of FMT in combination with ICI and suggest that the elimination of deleterious taxa is required for FMT-mediated therapeutic benefit. ClinicalTrials.gov identifier: NCT04951583.






Improved survival in advanced melanoma patients treated with fecal microbiota transplantation using healthy donor stool in combination with anti-PD1

Improved survival in advanced melanoma patients treated with fecal microbiota transplantation using healthy donor stool in combination with anti-PD1:

Abstract

BackgroundMicrobiome manipulation research is focused on developing techniques to modify the gut microbiome and augment responses to immune checkpoint inhibitors (ICI). Fecal microbiota transplantation (FMT) represents a potential strategy to overcome primary or acquired resistance to ICI. 20 patients with advanced melanoma were enrolled in a phase I multicenter trial to evaluate the safety and response to anti-PD1 combined with FMT using healthy donor stool as first-line treatment (MIMic, NCT03772899). Combination therapy was safe, and the objective response rate (ORR) was 65%. We now report survival data based on over 3 years of follow-up. Patients with advanced melanoma and treatment-naïve for advanced disease received a single FMT with healthy donor stool followed by standard anti-PD1 therapy. Progression-free survival (PFS) and overall survival (OS) were measured from the date of FMT to event. Radiographic response was measured using RECIST 1.1 criteria. Both median PFS (mPFS) and median OS (mOS) were determined using the Kaplan-Meier method. Post hoc analyses assessed the impact of specific factors on survival outcomes. Minimum follow-up was 40 months from the date of FMT of the last patient, with the longest surviving patient in complete response at 62.2 months. At the time of data analysis, eight patients were alive and seven patients were without progression. No patients remain on anti-PD1 therapy. Only two patients received additional lines of therapy. The mPFS was 29.6 months and mOS 52.8 months. The 1, 2, and 3 years estimated survival rates were 95%, 74% and 53%, respectively. Post hoc analysis demonstrated significantly improved mPFS in responders and patients with FMT-specific toxicity. Combining first-line anti-PD1 therapy and oral FMT with healthy donor stool in this small cohort was safe and demonstrated an improvement in ORR, mPFS, and mOS, compared with randomized trials. Our sample size was small, and results were only hypothesis generating. The potential benefit of microbiome manipulation using oral FMT from healthy donors prior to ICI in patients with advanced melanoma will be evaluated in the ME.17 randomized phase 2 Canadian study (NCT06623461).

Similar articles

Cited by

References

    1. Tawbi HA, Hodi FS, Lipson EJ, et al. Three-Year Overall Survival With Nivolumab Plus Relatlimab in Advanced Melanoma From RELATIVITY-047. JCO 2025;43:1546–52. 10.1200/JCO.24.01124 - DOI PMC PubMed
    1. Wolchok JD, Chiarion-Sileni V, Rutkowski P, et al. Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med 2025;392:11–22. 10.1056/NEJMoa2407417 - DOI PMC PubMed
    1. Robert C, Carlino MS, McNeil C, et al. Seven-Year Follow-Up of the Phase III KEYNOTE-006 Study: Pembrolizumab Versus Ipilimumab in Advanced Melanoma. JCO 2023;41:3998–4003. 10.1200/JCO.22.01599 - DOI PubMed
    1. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med 2015;373:23–34. 10.1056/NEJMoa1504030 - DOI PMC PubMed
    1. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 2015;372:2521–32. 10.1056/NEJMoa1503093 - DOI PubMed
    1. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359:97–103. 10.1126/science.aan4236 - DOI PMC PubMed
    1. Lee KA, Thomas AM, Bolte LA, et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat Med 2022;28:535–44. 10.1038/s41591-022-01695-5 - DOI PMC PubMed
    1. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018;359:104–8. 10.1126/science.aao3290 - DOI PMC PubMed
    1. Simpson RC, Shanahan ER, Batten M, et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat Med 2022;28:2344–52. 10.1038/s41591-022-01965-2 - DOI PubMed
    1. Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021;371:602–9. 10.1126/science.abb5920 - DOI PubMed
    1. Davar D, Dzutsev AK, McCulloch JA, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021;371:595–602. 10.1126/science.abf3363 - DOI PMC PubMed
    1. Routy B, Lenehan JG, Miller WH, et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med 2023;29:2121–32. 10.1038/s41591-023-02453-x - DOI PubMed
    1. Craven LJ, Nair Parvathy S, Tat-Ko J, et al. Extended Screening Costs Associated With Selecting Donors for Fecal Microbiota Transplantation for Treatment of Metabolic Syndrome-Associated Diseases. Open Forum Infect Dis 2017;4:ofx243. 10.1093/ofid/ofx243 - DOI PMC PubMed
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–9. 10.1038/nmeth.1923 - DOI PMC PubMed
    1. Blanco-Míguez A, Beghini F, Cumbo F, et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023;41:1633–44. 10.1038/s41587-023-01688-w - DOI PMC PubMed
    1. Beghini F, McIver LJ, Blanco-Míguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife 2021;10:e65088. 10.7554/eLife.65088 - DOI PMC PubMed
    1. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature New Biol 2019;565:600–5. 10.1038/s41586-019-0878-z - DOI PubMed
    1. Stocke KS, Lamont RJ. One-carbon metabolism and microbial pathogenicity. Mol Oral Microbiol 2024;39:156–64. 10.1111/omi.12417 - DOI PMC PubMed
    1. Kunst C, Schmid S, Michalski M, et al. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023;11:1388. 10.3390/biomedicines11051388 - DOI PMC PubMed
    1. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017;19:29–41. 10.1111/1462-2920.13589 - DOI PubMed
    1. Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res 2013;69:52–60. 10.1016/j.phrs.2012.10.020 - DOI PubMed
    1. Rey FE, Gonzalez MD, Cheng J, et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A 2013;110:13582–7. 10.1073/pnas.1312524110 - DOI PMC PubMed
    1. Kuzmanovszki D, Kiss N, Tóth B, et al. Anti-PD-1 Monotherapy in Advanced Melanoma-Real-World Data from a 77-Month-Long Retrospective Observational Study. Biomedicines 2022;10:1737. 10.3390/biomedicines10071737 - DOI PMC PubMed
    1. Staeger R, Martínez-Gómez JM, Turko P, et al. Real-World Data on Clinical Outcomes and Treatment Management of Advanced Melanoma Patients: Single-Center Study of a Tertiary Cancer Center in Switzerland. Cancers (Basel) 2024;16:854. 10.3390/cancers16050854 - DOI PMC PubMed
    1. Kirkwood JM, Kottschade LA, McWilliams RR, et al. Real-world outcomes with immuno-oncology therapies in advanced melanoma: final results of the OPTIMIzE registry study. Immunotherapy (Los Angel) 2024;16:29–42. 10.2217/imt-2022-0292 - DOI PubMed

Data availability

Raw FASTQ files are publicly available on the National Center for Biotechnology Information biorepository with accession number PRJNA1289847. Study-level clinical data from this study (including the protocol) will be made available upon reasonable request from a qualified medical or research professional for the specific purpose laid out in that request and may include deidentified individual participant data. A response to this data request will be made within approximately 14 days. The data for this request will be available after a data transfer agreement has been signed. Requests should be sent to the corresponding author. Patient-related data not included in the paper were generated as part of a clinical trial and are subject to patient confidentiality.

References

  1. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article CAS PubMed Google Scholar 

  2. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  3. Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    Article CAS PubMed Google Scholar 

  4. Elkrief, A. et al. Efficacy of PD-(L)1 blockade monotherapy compared with PD-(L)1 blockade plus chemotherapy in first-line PD-L1-positive advanced lung adenocarcinomas: a cohort study. J. Immunother. Cancer 11, e006994 (2023).

  5. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article CAS PubMed PubMed Central Google Scholar 

  6. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article CAS PubMed PubMed Central Google Scholar 

  7. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article PubMed PubMed Central Google Scholar 

  8. Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article CAS PubMed Google Scholar 

  9. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article CAS PubMed Google Scholar 

  10. Matson, V. et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article CAS PubMed PubMed Central Google Scholar 

  11. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article CAS PubMed Google Scholar 

  12. Elkrief, A. et al. The gut microbiome as a target in cancer immunotherapy: opportunities and challenges for drug development. Nat. Rev. Drug Discov. 24, 685−704 (2025).

  13. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article CAS PubMed Google Scholar 

  14. Thomas, A. M. et al. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 583–603 (2023).

    Article PubMed PubMed Central Google Scholar 

  15. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    Article CAS PubMed Google Scholar 

  16. Elkrief, A. et al. Antibiotics are associated with worse outcomes in lung cancer patients treated with chemotherapy and immunotherapy. npj Precis. Oncol. 8, 143 (2024).

    Article CAS PubMed PubMed Central Google Scholar 

  17. Elkrief, A. et al. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann. Oncol. 30, 1572–1579 (2019).

    Article CAS PubMed Google Scholar 

  18. Elkrief, A. et al. Gut microbiota in immuno-oncology: a practical guide for medical oncologists with a focus on antibiotics stewardship. Am. Soc. Clin. Oncol. Educ. Book 45, e472902 (2025).

    Article PubMed Google Scholar 

  19. Hakozaki, T. et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).

    Article CAS PubMed Google Scholar 

  20. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article CAS PubMed PubMed Central Google Scholar 

  21. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article CAS PubMed Google Scholar 

  22. Elkrief, A. & Routy, B. First clinical proof-of-concept that FMT can overcome resistance to ICIs. Nat. Rev. Clin. Oncol. 18, 325–326 (2021).

    Article PubMed Google Scholar 

  23. Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. 29, 2121–2132 (2023).

    Article CAS PubMed Google Scholar 

  24. Seo, Y. D., Ajami, N. & Wargo, J. A. Using gut microorganisms to treat cancer. Nat. Med. 29, 1910–1911 (2023).

    Article CAS PubMed Google Scholar 

  25. Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).

    Article Google Scholar 

  26. Schneider, B. J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 39, 4073–4126 (2021).

    Article CAS PubMed Google Scholar 

  27. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article Google Scholar 

  28. Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    Article PubMed Google Scholar 

  29. Blanco-Miguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01688-w (2022).

  30. Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389 (2024).

    Article CAS PubMed Google Scholar 

  31. Birebent, R. et al. Surrogate markers of intestinal dysfunction associated with survival in advanced cancers. Oncoimmunology 14, 2484880 (2025).

    Article PubMed PubMed Central Google Scholar 

  32. Goel, A. et al. Toward a health-associated core keystone index for the human gut microbiome. Cell Rep. 44, 115378 (2025).

  33. Yonekura, S. et al. Cancer induces a stress ileopathy depending on β-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).

    Article CAS PubMed Google Scholar 

  34. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article CAS PubMed Google Scholar 

  35. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  36. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article CAS PubMed Google Scholar 

  37. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    Article CAS PubMed PubMed Central Google Scholar 

  38. Messaoudene, M. et al. The DAV132 colon-targeted adsorbent does not interfere with plasma concentrations of antibiotics but prevents antibiotic-related dysbiosis: a randomized phase I trial in healthy volunteers. Nat. Commun. 15, 8083 (2024).

    Article CAS PubMed PubMed Central Google Scholar 

  39. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  40. Maria Rain, J., David, M. & John, B. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J. Immunother. Cancer 9, e003013 (2021).

    Article Google Scholar 

  41. Moffett, J. R. & Namboodiri, M. A. Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 (2003).

    Article CAS PubMed Google Scholar 

  42. Kesarwani, P. et al. Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis. Nat. Commun. 14, 1459 (2023).

    Article CAS PubMed PubMed Central Google Scholar 

  43. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article CAS PubMed Google Scholar 

  44. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article PubMed PubMed Central Google Scholar 

  45. Ozaki, A. F. et al. Incidence and survival outcomes of myocarditis and pericardial diseases associated with immune checkpoint inhibitor therapy. Cardiooncology 11, 26 (2025).

    PubMed PubMed Central Google Scholar 

  46. Porcari, S. et al. Fecal microbiota transplantation plus pembrolizumab and axitinib in metastatic renal cell carcinoma: the randomized phase 2 TACITO trial. Nat. Med. https://doi.org/10.1038/s41591-025-04189-2 (2026).

  47. Alves Costa Silva, C. et al. Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial. Nat. Commun. 15, 1633 (2024).

    Article CAS PubMed PubMed Central Google Scholar 

  48. Schramme, F. et al. Inhibition of tryptophan-dioxygenase activity increases the antitumor efficacy of immune checkpoint inhibitors. Cancer Immunol. Res. 8, 32–45 (2020).

    Article CAS PubMed Google Scholar 

  49. Liu, Y. et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 33, 480–494 (2018).

    Article CAS PubMed Google Scholar 

  50. Trefny, M. P., Kroemer, G., Zitvogel, L. & Kobold, S. Metabolites as agents and targets for cancer immunotherapy. Nat. Rev. Drug Discov. 24, 764−784 (2025).

  51. Craven, L. J. et al. Extended screening costs associated with selecting donors for fecal microbiota transplantation for treatment of metabolic syndrome-associated diseases. Open Forum Infect. Dis. 4, ofx243 (2017).

    Article PubMed PubMed Central Google Scholar 

  52. Elkrief, A. et al. Immune-related colitis is associated with fecal microbial dysbiosis and can be mitigated by fecal microbiota transplantation. Cancer Immunol. Res. 12, 308–321 (2024).

    Article CAS PubMed PubMed Central Google Scholar 

  53. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article CAS PubMed Google Scholar 

  54. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    Article PubMed PubMed Central Google Scholar 

  55. Freites-Martinez, A., Santana, N., Arias-Santiago, S. & Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE - version 5.0) to evaluate the severity of adverse events of anticancer therapies. Actas Dermosifiliogr. 112, 90–92 (2021).

    Article CAS PubMed Google Scholar 

  56. Prindiville, S. A. et al. Patterns of enrollment in cancer treatment trials during the COVID-19 pandemic at National Cancer Institute-Designated Cancer Centers. Cancer J. 28, 111–117 (2022).

    Article CAS PubMed PubMed Central Google Scholar 

  57. Waterhouse, D. M. et al. Early impact of COVID-19 on the conduct of oncology clinical trials and long-term opportunities for transformation: findings from an American Society of Clinical Oncology Survey. JCO Oncol. Pract. 16, 417–421 (2020).

    Article PubMed Google Scholar 

  58. Upadhaya, S. et al. Impact of COVID-19 on oncology clinical trials. Nat. Rev. Drug Discov. 19, 376–377 (2020).

    Article CAS PubMed Google Scholar 

  59. Plaza Onate, F. et al. Updated Metagenomic Species Pan-genomes (MSPs) of the human gastrointestinal microbiot. Zenodo https://zenodo.org/records/12820832 (2024).

  60. Le Chatelier, E. et al. A catalog of genes and species of the human oral microbiota. Data INRAE https://doi.org/10.15454/WQ4UTV (2021).

  61. Puller, V., Plaza Oñate, F., Prifti, E. & de Lahondès, R. Impact of simulation and reference catalogues on the evaluation of taxonomic profiling pipelines. Microb. Genom. 11, 001330 (2025).

  62. Plaza Oñate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 35, 1544–1552 (2018).

    Article PubMed Central Google Scholar 

  63. Diop, K. et al. Coupling culturomics and metagenomics sequencing to characterize the gut microbiome of patients with cancer treated with immune checkpoint inhibitors. Gut Pathog. 17, 21 (2025).

    Article CAS PubMed PubMed Central Google Scholar 

  64. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging (Albany NY) 13, 6375–6405 (2021).

    Article CAS PubMed Google Scholar 

  65. Durand, S. et al. The intracellular metabolome of starving cells. Methods Cell Biol. 164, 137–156 (2021).

    Article CAS PubMed Google Scholar 

  66. Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med13,eabd7064 (2021).

  67. Anhê, F. F. et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut 68, 453–464 (2019).

    Article PubMed Google Scholar 

  68. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article PubMed PubMed Central Google Scholar 

  69. Blampey, Q. et al. A biology-driven deep generative model for cell-type annotation in cytometry. Brief. Bioinform. 24,bbad260 (2023).

Download references

Acknowledgements

The authors thank the patients, their families and their caregivers. This study was funded by the Canadian Cancer Society Impact Grant. The study was also partially funded by the Weston Family Foundation (Weston Family Foundation Proof-of-Concept Grant). We thank the Unité d’Innovations Thérapeutiques at the CRCHUM. We thank the staff at the CRCHUM animal facility and the immunomonitoring facility. We thank the staff at Génome Québec. A.E. was supported by the Seerave Foundation, the Fonds de recherche Québec–Santé (FRQS) Clinician Scientist Award, the Canadian Cancer Society, the Cancer Research Society Next Generation of Scientists and the Society of Immunotherapy of Cancer−Melanoma Research Alliance Women in Melanoma Award. For the present work, A.E. was also partially supported by the Guy Lafleur Foundation, the Institut de Cancer de Montréal and the ASCO Conquer Cancer Foundation Young Investigator Award. B.R. is supported by the Seerave Foundation, the Canadian Cancer Society and the FRQS Clinician Scientist Award. S.M.V. received salary support from the Ontario Institute of Cancer Research and the London Health Sciences Foundation Helen and Andy Spriet funds. M.S. received grant support for this work from the St. Joseph’s Health Care Foundation. L.D. is supported by the 2025 AACR Career Development Award in Lung Cancer Research and by the Association Robert Debré pour la Recherche Médicale. L.Z. is funded by the European Research Council (ERC) under grant agreement no. 101052444. L.Z. and L.D. are supported by the Seerave Foundation, the European Union’s Horizon Europe research and innovation program under grant agreement no. 101095604 (project acronym: PREVALUNG-EU, project title: Personalized lung cancer risk assessment leading to stratified interception), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 825410 (ONCOBIOME project), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 964590 (project acronym: IHMCSA, project title: International Human Microbiome Coordination and Support Action. ANR Ileobiome - 19-CE15-0029-01, ANR RHU5 ‘ANR-21-5 RHUS-0017’ IMMUNOLIFE, MAdCAM INCA_ 16698 and Ligue contre le cancer). L.D. was also funded by the SIGN’IT ARC Foundation (MICROBIONT-PREDICT (2021)). G.K. is supported by the Ligue contre le Cancer (équipes labellisées); Agence Nationale de la Recherche (ANR) under the France 2030 program (reference no. 21-ESRE-0028, ESR/Equipex+ Onco-Pheno-Screen; program RHU ANR-21-RHUS-0017 IMMUNOLIFE and ANR-23-RHUS-0010 LUCA-pi; ANR-22-CE14-0066 VIVORUSH, ANR-23-CE44-0030 COPPERMAC, ANR-23-R4HC-0006 Ener-LIGHT), an ERC Advanced Investigator Award (ERC-2021-ADG, grant no. 101052444; project acronym: ICD-Cancer); the Hevolution Network on Senescence in Aging (reference HF-E Einstein Network); European Union Horizon 2020 research and innovation programs Oncobiome (grant agreement no. 825410) and Prevalung (grant agreement no. 101095604), Institut National du Cancer (INCa), Institut Universitaire de France; PAIR-Obésité INCa_18713, Seerave Foundation, SIRIC Cancer Research and Personalized Medicine (CARPEM, SIRIC CARPEM INCa-DGOS-Inserm-ITMO Cancer_18006 supported by Institut National du Cancer, Ministère des Solidarités et de la Santé and INSERM). This study (Immuno-Onco) contributes to the IdEx Université de Paris Cité ANR-18-IDEX-0001.

Author information

Authors and Affiliations

Contributions

Conceptualization: A.E., B.R. and S.M.V. Methodology: all authors. Investigation: all authors. Formal analysis: S.D., S.H., M.M., M.F., A.D., I.B., D.S., D.R., M.G., G.P., M.P., A.F., V.H., R.L. and V.P. Data curation: A.D., I.B., W.B., N.B., M.T., S.O., K.B., B.S., J.R., J.L., D.B., N.M., D.K.P., N.R., S.N., F.P. and F.A. Resources: all authors. Writing—original draft: A.E., B.R. and S.D. Writing—review and editing: all authors. Visualization: all authors. Supervision: A.E. and B.R. Project administration: A.E., B.R. and S.M.V. Funding acquisition: A.E., B.R. and S.M.V.

Corresponding author

Correspondence to Arielle Elkrief.

Ethics declarations

Competing interests

A.D. received research funding from AstraZeneca, Exelixis, Regeneron and Fondation Saputo; advisory board and consulting fees from Boehringer Ingelheim, EMD Serono, Merck and Johnson & Johnson/Janssen; and speaker honoraria from Boehringer Ingelheim and AstraZeneca. A.E. declares grant support from Kanvas Biosciences, GMT Science, AstraZeneca, Merck and Bristol Myers Squibb. A.E. declares honoraria from AstraZeneca, Merck, Bristol Myers Squibb and EMD Soreno. A.E. declares consulting fees from EverImmune, NECBio and Sanofi-Pasteur. A.E. is inventor on patent 4872-8531-1934.1 regarding the microbiome and immunotherapy response. B.R. declares research funding from Davolterra and Kanvas Biosciences and consulting fees from Merck, AstraZeneca, EverImmune and Bristol Myers Squibb. B.R. is also a co-founder of Curebiota. S.M.V. reports a grant from Microviable Therapeutics outside the submitted work as well as consulting fees from Kanvas Biosciences and FedBio. S.M.V. is a co-founder of LND Therapeutics, Inc., which holds the rights to LND101. S.M.V. reports US Patent Application No. 63/913,940 related to FMT donor screening. M.S. is a co-founder of LND Therapeutics, Inc., which holds the rights to LND101. M.S. reports US Patent Application No. 63/913,940 related to FMT donor screening. S.P. is a co-founder of LND Therapeutics, Inc., which holds the rights to LND101. G.K. has been holding research contracts with Daiichi-Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Sutro, Tollys and Vascage. G.K. is on the Board of Directors of Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of EverImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is on the scientific advisory boards of Hevolution, Institut Servier and Rejuveron Life Sciences/Centenara Labs AG. G.K. is the inventor of patents covering therapeutic targeting of aging, cancer, cystic fibrosis and metabolic disorders. Among these patents, one, ‘Methods for weight reduction’ (US11905330B1), is relevant to this study. A close family member of G.K. was an employee of Sanofi and now consults for Boehringer Ingelheim. J.R. reports participating in advisory boards for Merck, AstraZeneca, Lilly and Novartis. S.O. reports honoraria/consulting fees from AstraZeneca, Amgen, Bristol Myers Squibb, Boehringer Ingelheim, Janssen, Merck, Pfizer and Roche. The other authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Diwakar Davar, Jun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Saheli Sadanand, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Plaats een reactie ...

Reageer op "Poeptransplantatie - Fecale Microbiota Transplantatie (FMT) vergroot effectiviteit van immuuntherapie bij niet-kleincellige longkanker en melanomen copy 1"


Gerelateerde artikelen
 

Gerelateerde artikelen

Poeptransplantatie - Fecale >> TIL - Tumorinfiltrerende Lymfocyten >> mRNA-4157 (V940) in combinatie >> RP1, een gemodificeerd herpes >> Immuuntherapie met pembrolizumab >> Immuuntherapie vooraf aan >> Uitgezaaide oogmelanoom bevat >> Mediterraan dieet stimuleert >> Tumor-infiltrerende lymfocyten >> Vrouw met een progressief >>