Disclosures provided by the authors and data availability statement (if applicable) are available with this article at DOI https://doi.org/10.1200/EDBK_350946.
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc.
Employment: Ascend Imaging (I)
Consulting or Advisory Role: AIM Specialty Health; Syncona; Progenics; Global Medical Solutions
Research Funding: Blue Earth Diagnostics (Inst); Nihon Medi-Physics (Inst); Advanced Accelerator Applications (Inst); Telix Pharmaceuticals (Inst); FUJIFILM (Inst); Amgen (Inst)
Patents, Royalties, Other Intellectual Property: Inventor(s): Miller, Matthew (Oxford, GB), Gauden, David (Oxford, GB), Schuster, David (Atlanta, GA), Fanti, Stefano (Bologna, IT), Nanni, Cristina (Bologna, IT), Zanoni, Lucia (Bologna, IT), Willoch, Frode (Oslo, NO), Bogsrud, Trond Velde (Oslo, NO), Bach-Gansmo, Tore (Oslo, NO), Musto, Title: Imaging of metastatic or recurrent cancer Publication Number: US 20200316228 A1 Assignee: Blue Earth Diagnostics Limited (Oxford, GB) Filing Date: June 22, 2020 Granted: April 6, 2021
Honoraria: Radiomedix; Progenics; Advanced Accelerator Applications; EXINI Diagnostics
Consulting or Advisory Role: Blue Earth Diagnostics; Janssen; Progenics; Curium Pharma; GE Healthcare; Telix Pharmaceuticals; POINT Biopharma; Lantheus Medical Imaging
Speakers' Bureau: Telix Pharmaceuticals; IBA RadioPharma Solutions
Research Funding: Progenics
Consulting or Advisory Role: Endocyte; Janssen; POINT Biopharma
Speakers' Bureau: Janssen; Mundipharma; Astellas Pharma; AstraZeneca
Research Funding: Endocyte (Inst); Advanced Accelerator Applications/Novartis (Inst)
Travel, Accommodations, Expenses: Ipsen; Genzyme; Janssen
No other potential conflicts of interest were reported.
1. | Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81-85. Medline, Google Scholar |
2. | Eiber M, Fendler WP, Rowe SP, et al. Prostate-specific membrane antigen ligands for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):67S-76S. Crossref, Medline, Google Scholar |
3. | Fendler WP, Calais J, Eiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856-863. Crossref, Medline, Google Scholar |
4. | Morris MJ, Rowe SP, Gorin MA, et al; CONDOR Study Group. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res. 2021;27:3674-3682. Crossref, Medline, Google Scholar |
5. | Sartor O, de Bono J, Chi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091-1103. Crossref, Medline, Google Scholar |
6. | Chi KN, Metser U, Czernin J, et al. Study evaluating metastatic castrate resistant prostate cancer (mCRPC) treatment using 177Lu-PNT2002 PSMA therapy after second-line hormonal treatment (SPLASH) - Trial in progress. Clin Cancer Res. 2021;27:8s (suppl; abstr PO-077). Crossref, Medline, Google Scholar |
7. | Tagawa ST, Milowsky MI, Morris M, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182-5191. Crossref, Medline, Google Scholar |
8. | Tagawa ST, Osborne J, Niaz MJ, et al. Dose-escalation results of a phase I study of 225Ac-J591 for progressive metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38:6s (suppl; abstr 114). Google Scholar |
9. | Hofman MS, Emmett L, Sandhu S, et al; TheraP Trial Investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397:797-804. Crossref, Medline, Google Scholar |
10. | U.S. Food and Drug Administration. FDA approves Pluvicto for metastatic castration-resistant prostate cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pluvicto-metastatic-castration-resistant-prostate-cancer. Accessed March 23, 2022. Google Scholar |
11. | Manafi-Farid R, Harsini S, Saidi B, et al. Factors predicting biochemical response and survival benefits following radioligand therapy with [177Lu]Lu-PSMA in metastatic castrate-resistant prostate cancer: a review. Eur J Nucl Med Mol Imaging. 2021;48:4028-4041. Crossref, Medline, Google Scholar |
12. | Gafita A, Calais J, Grogan TR, et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 2021;22:1115-1125. Crossref, Medline, Google Scholar |
13. | Gafita A, Heck MM, Rauscher I, et al. Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2020;61:1476-1483. Crossref, Medline, Google Scholar |
14. | Barber TW, Singh A, Kulkarni HR, et al. Clinical outcomes of 177Lu-PSMA radioligand therapy in earlier and later phases of metastatic castration-resistant prostate cancer grouped by previous taxane chemotherapy. J Nucl Med. 2019;60:955-962. Crossref, Medline, Google Scholar |
15. | Kessel K, Seifert R, Schäfers M, et al. Second line chemotherapy and visceral metastases are associated with poor survival in patients with mCRPC receiving 177Lu-PSMA-617. Theranostics. 2019;9:4841-4848. Crossref, Medline, Google Scholar |
16. | Ahmadzadehfar H, Rahbar K, Baum RP, et al. Prior therapies as prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients treated with [177Lu]Lu-PSMA-617. A WARMTH multicenter study (the 617 trial). Eur J Nucl Med Mol Imaging. 2021;48:113-122. Crossref, Medline, Google Scholar |
17. | Yadav MP, Ballal S, Bal C, et al. Efficacy and safety of 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer patients. Clin Nucl Med. 2020;45:19-31. Crossref, Medline, Google Scholar |
18. | Derlin T, Sommerlath Sohns JM, Schmuck S, et al. Influence of short-term dexamethasone on the efficacy of 177 Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Prostate. 2020;80:619-631. Crossref, Medline, Google Scholar |
19. | Suman S, Parghane RV, Joshi A, et al. Therapeutic efficacy, prognostic variables and clinical outcome of 177Lu-PSMA-617 PRLT in progressive mCRPC following multiple lines of treatment: prognostic implications of high FDG uptake on dual tracer PET-CT vis-à-vis Gleason score in such cohort. Br J Radiol. 2019;92:20190380. Crossref, Medline, Google Scholar |
20. | Gadot M, Davidson T, Aharon M, et al. Clinical variables associated with PSA response to lutetium-177-PSMA ([177Lu]-PSMA-617) radionuclide treatment in men with metastatic castration-resistant prostate cancer. Cancers (Basel). 2020;12:1078. Crossref, Google Scholar |
21. | Ferdinandus J, Eppard E, Gaertner FC, et al. Predictors of response to radioligand therapy of metastatic castrate-resistant prostate cancer with 177Lu-PSMA-617. J Nucl Med. 2017;58:312-319. Crossref, Medline, Google Scholar |
22. | Ahmadzadehfar H, Schlolaut S, Fimmers R, et al. Predictors of overall survival in metastatic castration-resistant prostate cancer patients receiving [177Lu]Lu-PSMA-617 radioligand therapy. Oncotarget. 2017;8:103108-103116. Crossref, Medline, Google Scholar |
23. | Gafita A, Fendler WP, Hui W, et al. Efficacy and safety of 177Lu-labeled prostate-specific membrane antigen radionuclide treatment in patients with diffuse bone marrow involvement: a multicenter retrospective study. Eur Urol. 2020;78:148-154. Crossref, Medline, Google Scholar |
24. | Khreish F, Ghazal Z, Marlowe RJ, et al. 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: initial 254-patient results from a prospective registry (REALITY Study). Eur J Nucl Med Mol Imaging. 2022;49:1075-1085. Crossref, Medline, Google Scholar |
25. | Yordanova A, Linden P, Hauser S, et al. The value of tumor markers in men with metastatic prostate cancer undergoing [177Lu]Lu-PSMA therapy. Prostate. 2020;80:17-27. Crossref, Medline, Google Scholar |
26. | Heck MM, Tauber R, Schwaiger S, et al. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur Urol. 2019;75:920-926. Crossref, Medline, Google Scholar |
27. | Violet J, Sandhu S, Iravani A, et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J Nucl Med. 2020;61:857-865. Crossref, Medline, Google Scholar |
28. | Rathke H, Holland-Letz T, Mier W, et al. Response prediction of 177Lu-PSMA-617 radioligand therapy using prostate-specific antigen, chromogranin A, and lactate dehydrogenase. J Nucl Med. 2020;61:689-695. Crossref, Medline, Google Scholar |
29. | Grubmüller B, Senn D, Kramer G, et al. Response assessment using 68Ga-PSMA ligand PET in patients undergoing 177Lu-PSMA radioligand therapy for metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1063-1072. Crossref, Medline, Google Scholar |
30. | Kuo PH, Benson T, Messmann R, et al. Why we did what we did: PSMA-PET/CT selection criteria for the VISION trial. J Nucl Med. Epub 2022 Jan 27. Google Scholar |
31. | Barrington SF, Kluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97-110. Crossref, Medline, Google Scholar |
32. | Schwartz LH, Litière S, de Vries E, et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132-137. Crossref, Medline, Google Scholar |
33. | Nyberg K. VISION: implementation of lutetium-177-PSMA-617 in metastatic castration-resistant prostate cancer approaches reality. ASCO Daily News. https://dailynews.ascopubs.org/do/10.1200/ADN.21.200630/full. Published June 9, 2021. Accessed October 26, 2021. Google Scholar |
34. | Hotta M, Gafita A, Murthy V, et al. Predicting the outcome of mCPRC patients after Lu-177 PSMA therapy using semi-quantitative and visual criteria in baseline PSMA PET: an international multicenter retrospective study. J Clin Oncol. 2022;40:6s (suppl; abstr 32). Link, Google Scholar |
35. | Milowsky MI, Nanus DM, Kostakoglu L, et al. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522-2531. Link, Google Scholar |
36. | Bander NH, Milowsky MI, Nanus DM, et al. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591-4601. Link, Google Scholar |
37. | Tagawa ST, Vallabhajosula S, Christos PJ, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125:2561-2569. Crossref, Medline, Google Scholar |
38. | Niaz MJ, Batra JS, Walsh RD, et al. Pilot study of hyperfractionated dosing of lutetium-177-labeled antiprostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Oncologist. 2020;25:477-e895. Crossref, Medline, Google Scholar |
39. | Vlachostergios PJ, Niaz MJ, Skafida M, et al. Imaging expression of prostate-specific membrane antigen and response to PSMA-targeted β-emitting radionuclide therapies in metastatic castration-resistant prostate cancer. Prostate. 2021;81:279-285. Crossref, Medline, Google Scholar |
40. | Seifert R, Herrmann K, Kleesiek J, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61:1786-1792. Crossref, Medline, Google Scholar |
41. | Seifert R, Seitzer K, Herrmann K, et al. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving 177Lu-PSMA-617 radioligand therapy. Theranostics. 2020;10:7812-7820. Crossref, Medline, Google Scholar |
42. | Seifert R, Kessel K, Schlack K, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200-1210. Crossref, Medline, Google Scholar |
43. | Khreish F, Ribbat K, Bartholomä M, et al. Value of combined PET IMAGING WITH [18F]FDG and [68Ga]Ga-PSMA-11 in mCRPC patients with worsening disease during [177Lu]Lu-PSMA-617 RLT. Cancers (Basel). 2021;13:4134. Crossref, Medline, Google Scholar |
44. | Buteau JP, Martin AJ, Emmett L, et al. PSMA PET and FDG PET as predictors of response and prognosis in a randomized phase 2 trial of 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic, castration-resistant prostate cancer (mCRPC) progressing after docetaxel (TheraP ANZUP 1603). J Clin Oncol. 2022;40:6s(suppl; abstr 10). Google Scholar |
45. | Nickols N, Anand A, Johnsson K, et al. aPROMISE: a novel automated PROMISE platform to standardize evaluation of tumor burden in 18F-DCFPyL images of veterans with prostate cancer. J Nucl Med. 2022;63:233-239. Crossref, Medline, Google Scholar |
46. | Gafita A, Bieth M, Krönke M, et al. qPSMA: semiautomatic software for whole-body tumor burden assessment in prostate cancer using 68Ga-PSMA11 PET/CT. J Nucl Med. 2019;60:1277-1283. Crossref, Medline, Google Scholar |
47. | Capobianco N, Gafita A, Platsch G, et al. Transfer learning of AI-based uptake classification from 18F-FDG PET/CT to 68Ga-PSMA-11 PET/CT for whole-body tumor burden assessment. J Nucl Med. 2020;61:s1 (supp; abstr 1411). Google Scholar |
48. | Eiber M, Herrmann K, Calais J, et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469-478. Crossref, Medline, Google Scholar |
49. | Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825-833. Crossref, Medline, Google Scholar |
50. | Calais J, Czernin J. PSMA expression assessed by PET imaging is a required biomarker for selecting patients for any PSMA-targeted therapy. J Nucl Med. 2021;62:1489-1491. Crossref, Medline, Google Scholar |
51. | Sandach P, Kersting D, Weber M, et al. PSMA- and FDG-PET mismatch assessment for optimized selection of PSMA radioligand therapy candidates. Nucl Med (Stuttg). 2021;60:48. Google Scholar |
52. | Thang SP, Violet J, Sandhu S, et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2019;2:670-676. Crossref, Medline, Google Scholar |
53. | Michalski K, Ruf J, Goetz C, et al. Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy. Eur J Nucl Med Mol Imaging. 2021;48:2024-2030. Crossref, Medline, Google Scholar |
54. | Jadvar H. The VISION forward: recognition and implication of PSMA−/FDG+ mCRPC. J Nucl Med. Epub 2021 Dec 21. Google Scholar |
55. | Parker C, Finkelstein SE, Michalski JM, et al. Efficacy and safety of radium-223 dichloride in symptomatic castration-resistant prostate cancer patients with or without baseline opioid use from the phase 3 ALSYMPCA trial. Eur Urol. 2016;70:875-883. Crossref, Medline, Google Scholar |
56. | Kratochwil C, Giesel FL, Bruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41:2106-2119. Crossref, Medline, Google Scholar |
57. | Haberkorn U, Giesel F, Morgenstern A, et al. The future of radioligand therapy: α, β, or both? J Nucl Med. 2017;58:1017-1018. Crossref, Medline, Google Scholar |
58. | Lee H. Relative efficacy of 225Ac-PSMA-617 and 177Lu-PSMA-617 in prostate cancer based on subcellular dosimetry. Mol Imaging Radionucl Ther. 2022;31:1-6. Crossref, Medline, Google Scholar |
59. | Poty S, Francesconi LC, McDevitt MR, et al. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J Nucl Med. 2018;59:878-884. Crossref, Medline, Google Scholar |
60. | Gorin JB, Ménager J, Gouard S, et al. Antitumor immunity induced after α irradiation. Neoplasia. 2014;16:319-328. Crossref, Medline, Google Scholar |
61. | Violet J, Jackson P, Ferdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60:517-523. Crossref, Medline, Google Scholar |
62. | Sgouros G, Roeske JC, McDevitt MR, et al; SNM MIRD Committee. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311-328. Crossref, Medline, Google Scholar |
63. | Emmett L, Willowson K, Violet J, et al. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64:52-60. Crossref, Medline, Google Scholar |
64. | Tolkach Y, Kristiansen G. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85:108-116. Crossref, Medline, Google Scholar |
65. | Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18:79-92. Crossref, Medline, Google Scholar |
66. | Bakht MK, Derecichei I, Li Y, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 2019;26:131-146. Crossref, Medline, Google Scholar |
67. | Wang HT, Yao YH, Li BG, et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383-3390. Link, Google Scholar |
68. | Lee JK, Bangayan NJ, Chai T, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci USA. 2018;115:E4473-E4482. Crossref, Medline, Google Scholar |
69. | Bernhardt P, Forssell-Aronsson E, Jacobsson L, et al. Low-energy electron emitters for targeted radiotherapy of small tumours. Acta Oncol. 2001;40:602-608. Crossref, Medline, Google Scholar |
70. | Hindié E, Zanotti-Fregonara P, Quinto MA, et al. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759-764. Crossref, Medline, Google Scholar |
71. | Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000;60:5237-5243. Medline, Google Scholar |
72. | Behr TM, Béhé M, Stabin MG, et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab′ fragments in a human colonic cancer model. Cancer Res. 1999;59:2635-2643. Medline, Google Scholar |
73. | Henriksen G, Fisher DR, Roeske JC, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252-259. Medline, Google Scholar |
74. | Li Y, Russell PJ, Allen BJ. Targeted alpha-therapy for control of micrometastatic prostate cancer. Expert Rev Anticancer Ther. 2004;4:459-468. Crossref, Medline, Google Scholar |
75. | Ritter MA, Cleaver JE, Tobias CA. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature. 1977;266:653-655. Crossref, Medline, Google Scholar |
76. | Kulkarni H, Singh A, Baum R. Response assessment to treatment with Lu-177 labeled PSMA inhibitor in patients with metastatic castration-resistant prostate cancer: differential response of bone versus lymph node lesions. J Nucl Med. 2016;57:s2 (suppl; abstr 1547). Google Scholar |
77. | Satapathy S, Mittal BR, Sood A. Visceral metastases as predictors of response and survival outcomes in patients of castration-resistant prostate cancer treated with 177Lu-labeled prostate-specific membrane antigen radioligand therapy: a systematic review and meta-analysis. Clin Nucl Med. 2020;45:935-942. Crossref, Medline, Google Scholar |
78. | Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469-478. Crossref, Medline, Google Scholar |
79. | Zhang J, Kulkarni HR, Singh A, et al. Complete regression of lung metastases in a patient with metastatic castration-resistant prostate cancer using 177Lu-PSMA radioligand therapy. Clin Nucl Med. 2020;45:e48-e50. Crossref, Medline, Google Scholar |
80. | Brady L, Kriner M, Coleman I, et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun. 2021;12:1426. Crossref, Medline, Google Scholar |
81. | Pond GR, Sonpavde G, de Wit R, et al. The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:3-6. Crossref, Medline, Google Scholar |
82. | Colletier PJ, Ashoori F, Cowen D, et al. Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation. Int J Radiat Oncol Biol Phys. 2000;48:1507-1512. Crossref, Medline, Google Scholar |
83. | Stuparu AD, Capri JR, Meyer CAL, et al. Mechanisms of resistance to prostate-specific membrane antigen-targeted radioligand therapy in a mouse model of prostate cancer. J Nucl Med. 2021;62:989-995. Crossref, Medline, Google Scholar |
84. | Kratochwil C, Giesel FL, Heussel CP, et al. Patients resistant against PSMA-targeting α-radiation therapy often harbor mutations in DNA damage-repair-associated genes. J Nucl Med. 2020;61:683-688. Crossref, Medline, Google Scholar |
85. | de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091-2102. Crossref, Medline, Google Scholar |
86. | Ravi Kumar AS, Hofman MS. Mechanistic insights for optimizing PSMA radioligand therapy. Clin Cancer Res. 2020;26:2774-2776. Crossref, Medline, Google Scholar |
87. | Kiniwa Y, Miyahara Y, Wang HY, et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 2007;13:6947-6958. Crossref, Medline, Google Scholar |
88. | Miller AM, Lundberg K, Ozenci V, et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398-7405. Crossref, Medline, Google Scholar |
89. | May KF Jr, Gulley JL, Drake CG, et al. Prostate cancer immunotherapy. Clin Cancer Res. 2011;17:5233-5238. Crossref, Medline, Google Scholar |
90. | Sharma P, Pachynski RK, Narayan V, et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 2020;38:489-499.e3. Crossref, Medline, Google Scholar |
91. | Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35:40-47. Link, Google Scholar |
92. | Kwon ED, Drake CG, Scher HI, et al; CA184-043 Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700-712. Crossref, Medline, Google Scholar |
93. | Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454. Crossref, Medline, Google Scholar |
94. | Hansen AR, Massard C, Ott PA, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018;29:1807-1813. Crossref, Medline, Google Scholar |
95. | Keam SP, Halse H, Nguyen T, et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J Immunother Cancer. 2020;8:e000792. Crossref, Medline, Google Scholar |
96. | Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259-1271. Crossref, Medline, Google Scholar |
97. | Brown JS, Sundar R, Lopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer. 2018;118:312-324. Crossref, Medline, Google Scholar |
98. | Kwan EM, Spain L, Anton A, et al. Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: the phase 2 ICE-PAC clinical trial. Eur Urol. 2022;81:253-262. Crossref, Medline, Google Scholar |
99. | Aggarwal RR, Sam SL, Koshkin VS, et al. Immunogenic priming with 177Lu-PSMA-617 plus pembrolizumab in metastatic castration resistant prostate cancer (mCRPC): a phase 1b study. J Clin Oncol. 2021;39:15s (suppl; abstr 5053). Link, Google Scholar |
100. | Sandhu SK, Joshua AM, Emmett L, et al. PRINCE: interim analysis of the phase Ib study of 177Lu-PSMA-617 in combination with pembrolizumab for metastatic castration resistant prostate cancer (mCRPC). Ann Oncol. 2021;32:s5(suppl; abstr 577O). Medline, Google Scholar |
101. | Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287-294. Crossref, Medline, Google Scholar |
102. | Purohit NK, Shah RG, Adant S, et al. Potentiation of 177Lu-octreotate peptide receptor radionuclide therapy of human neuroendocrine tumor cells by PARP inhibitor. Oncotarget. 2018;9:24693-24706. Crossref, Medline, Google Scholar |
103. | Nonnekens J, van Kranenburg M, Beerens CE, et al. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib. Theranostics. 2016;6:1821-1832. Crossref, Medline, Google Scholar |
104. | Cullinane C, Waldeck K, Kirby L, et al. Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP. Sci Rep. 2020;10:10196. Crossref, Medline, Google Scholar |
105. | Yang Y, Luo J, Chen X, et al. CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. J Exp Clin Cancer Res. 2020;39:188. Crossref, Medline, Google Scholar |
106. | Crumbaker M, Pathmanandavel S, Yam AO, et al. Phase I/II trial of the combination of 177lutetium prostate specific membrane antigen 617 and idronoxil (NOX66) in men with end-stage metastatic castration-resistant prostate cancer (LuPIN). Eur Urol Oncol. 2021;4:963-970. Crossref, Medline, Google Scholar |
107. | Chan TG, O’Neill E, Habjan C, et al. Combination strategies to improve targeted radionuclide therapy. J Nucl Med. 2020;61:1544-1552. Crossref, Medline, Google Scholar |
108. | Yordanova A, Ahrens H, Feldmann G, et al. Peptide receptor radionuclide therapy combined with chemotherapy in patients with neuroendocrine tumors. Clin Nucl Med. 2019;44:e329-e335. Crossref, Medline, Google Scholar |
109. | Rohrer Bley C, Furmanova P, Orlowski K, et al. Microtubule stabilising agents and ionising radiation: multiple exploitable mechanisms for combined treatment. Eur J Cancer. 2013;49:245-253. Crossref, Medline, Google Scholar |
110. | Golden EB, Formenti SC, Schiff PB. Taxanes as radiosensitizers. Anticancer Drugs. 2014;25:502-511. Crossref, Medline, Google Scholar |
111. | Kelly MP, Lee ST, Lee FT, et al. Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate. 2009;69:92-104. Crossref, Medline, Google Scholar |
112. | Batra JS, Niaz MJ, Whang YE, et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Urol Oncol. 2020;38:848.e9-848.e16. Crossref, Google Scholar |
113. | Meller B, Bremmer F, Sahlmann CO, et al. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 2015;5:66. Crossref, Medline, Google Scholar |
114. | Evans MJ, Smith-Jones PM, Wongvipat J, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA. 2011;108:9578-9582. Crossref, Medline, Google Scholar |
115. | Hope TA, Truillet C, Ehman EC, et al. 68Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. J Nucl Med. 2017;58:81-84. Crossref, Medline, Google Scholar |
116. | Emmett L, Yin C, Crumbaker M, et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J Nucl Med. 2019;60:950-954. Crossref, Medline, Google Scholar |
117. | Staniszewska M, Fragoso Costa P, Eiber M, et al. Enzalutamide enhances PSMA expression of PSMA-low prostate cancer. Int J Mol Sci. 2021;22:7431. Crossref, Medline, Google Scholar |
118. | Suman S, Parghane RV, Joshi A, et al. Combined 177Lu-PSMA-617 PRLT and abiraterone acetate versus 177Lu-PSMA-617 PRLT monotherapy in metastatic castration-resistant prostate cancer: an observational study comparing the response and durability. Prostate. 2021;81:1225-1234. Crossref, Medline, Google Scholar |
119. | Emmett L, Subramaniam S, Zhang AY, et al. ENZA-p: a randomized phase II trial using PSMA as a therapeutic agent and prognostic indicator in men with metastatic castration-resistant prostate cancer treated with enzalutamide (ANZUP 1901). J Clin Oncol. 2021;39:6s (suppl; abstr TPS177). Link, Google Scholar |
120. | Dhiantravan N, Violet J, Eapen R, et al. Clinical trial protocol for LuTectomy: a single-arm study of the dosimetry, safety, and potential benefit of 177Lu-PSMA-617 prior to prostatectomy. Eur Urol Focus. 2021;7:234-237. Crossref, Medline, Google Scholar |
121. | Dhiantravan N, Emmett L, Joshua AM, et al. UpFrontPSMA: a randomized phase 2 study of sequential 177Lu-PSMA-617 and docetaxel vs docetaxel in metastatic hormone-naïve prostate cancer (clinical trial protocol). BJU Int. 2021;128:331-342. Crossref, Medline, Google Scholar |
122. | Sartor AO, Tagawa ST, Saad F, et al. PSMAddition: a phase 3 trial to compare treatment with 177Lu-PSMA-617 plus standard of care (SOC) versus SOC alone in patients with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2022;40:6s (suppl; abstr TPS210). Google Scholar |
123. | Sartor AO, Morris MJ, Chi KN, et al. PSMAfore: a phase 3 study to compare 177Lu-PSMA-617 treatment with a change in androgen receptor pathway inhibitor in taxane-naïve patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2022;40:6s (suppl; abstr TPS211). Google Scholar |
124. | Sartor O, Fougère C, Essler M, et al. 177Lu-prostate-specific membrane antigen ligand after 223Ra treatment in men with bone-metastatic castration-resistant prostate cancer: real-world clinical experience. J Nucl Med. 2022;63:410-414. Crossref, Medline, Google Scholar |
125. | Calopedos RJS, Chalasani V, Asher R, et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20:352-360. Crossref, Medline, Google Scholar |
126. | Kratochwil C, Giesel FL, Stefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170-1176. Crossref, Medline, Google Scholar |
127. | Ahmadzadehfar H, Eppard E, Kürpig S, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7:12477-12488. Crossref, Medline, Google Scholar |
128. | Radchenko V, Morgenstern A, Jalilian AR, et al. Production and supply of α-particle-emitting radionuclides for targeted α-therapy. J Nucl Med. 2021;62:1495-1503. Crossref, Medline, Google Scholar |
129. | McDevitt MR, Ma D, Lai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537-1540. Crossref, Medline, Google Scholar |
130. | Robertson AKH, Ramogida CF, Schaffer P, et al. Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm. 2018;11:156-172. Crossref, Medline, Google Scholar |
131. | Yadav MP, Ballal S, Sahoo RK, et al. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant prostate cancer patients. Theranostics. 2020;10:9364-9377. Crossref, Medline, Google Scholar |
132. | Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58:1624-1631. Crossref, Medline, Google Scholar |
133. | Sathekge M, Bruchertseifer F, Vorster M, et al. Predictors of overall and disease-free survival in metastatic castration-resistant prostate cancer patients receiving 225Ac-PSMA-617 radioligand therapy. J Nucl Med. 2020;61:62-69. Crossref, Medline, Google Scholar |
134. | Ballal S, Yadav MP, Sahoo RK, et al. 225Ac-PSMA-617-targeted alpha therapy for the treatment of metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate. 2021;81:580-591. Crossref, Medline, Google Scholar |
135. | van der Doelen MJ, Mehra N, van Oort IM, et al. Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urol Oncol. 2021;39:729.e7-729.e16. Crossref, Google Scholar |
136. | Feuerecker B, Tauber R, Knorr K, et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol. 2021;79:343-350. Crossref, Medline, Google Scholar |
137. | Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795-802. Crossref, Medline, Google Scholar |
138. | Rosar F, Hau F, Bartholomä M, et al. Molecular imaging and biochemical response assessment after a single cycle of Ac-PSMA-617/Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on Lu-PSMA-617 monotherapy. Theranostics. 2021;11:4050-4060. Crossref, Medline, Google Scholar |
139. | Khreish F, Ebert N, Ries M, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging. 2020;47:721-728. Crossref, Medline, Google Scholar |
140. | Kiess AP, Minn I, Vaidyanathan G, et al. (2S)-2-(3-(1-Carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid for PSMA-targeted α-particle radiopharmaceutical therapy. J Nucl Med. 2016;57:1569-1575. Crossref, Medline, Google Scholar |
141. | Banerjee SR, Minn I, Kumar V, et al. Preclinical evaluation of 203/212Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2020;61:80-88. Crossref, Medline, Google Scholar |
142. | Hammer S, Hagemann UB, Zitzmann-Kolbe S, et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer. Clin Cancer Res. 2020;26:1985-1996. Crossref, Medline, Google Scholar |
143. | Nonnekens J, Chatalic KL, Molkenboer-Kuenen JD, et al. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm. 2017;32:67-73. Crossref, Medline, Google Scholar |
144. | Alcocer-Ávila ME, Ferreira A, Quinto MA, et al. Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases. EJNMMI Phys. 2020;7:33. Crossref, Medline, Google Scholar |
145. | Müller C, Umbricht CA, Gracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1919-1930. Crossref, Medline, Google Scholar |
146. | Kiess AP, Minn I, Chen Y, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56:1401-1407. Crossref, Medline, Google Scholar |
147. | Shen CJ, Minn I, Hobbs RF, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer. Theranostics. 2020;10:2888-2896. Crossref, Medline, Google Scholar |
148. | Sandhu S, Guo C, Hofman MS. Radionuclide therapy in prostate cancer: from standalone to combination PSMA theranostics. J Nucl Med. 2021;62:1660-1668. Crossref, Google Scholar |
149. | Niaz MJ, Skafida M, Osborne J, et al. Comparison of prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy (TRT) with lutetium-177 (177LU) via antibody J591 vs small molecule ligand PSMA-617. J Urol. 2020;203(Suppl 4):e367 (suppl; abstr PD16-11). Google Scholar |
150. | McDevitt MR, Barendswaard E, Ma D, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000;60:6095-6100. Medline, Google Scholar |
151. | Benešová M, Umbricht CA, Schibli R, et al. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol Pharm. 2018;15:934-946. Crossref, Medline, Google Scholar |
152. | NCT05219500. Targeted Alpha Therapy With 225Actinium-PSMA-I&T of Castration-resISTant Prostate Cancer (TATCIST). https://clinicaltrials.gov/ct2/show/NCT05219500. Accessed April 21, 2022. Google Scholar |
153. | Weineisen M, Schottelius M, Simecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56:1169-1176. Crossref, Medline, Google Scholar |
154. | Yusufi N, Wurzer A, Herz M, et al. Comparative preclinical biodistribution, dosimetry, and endoradiotherapy in metastatic castration-resistant prostate cancer using 19F/177Lu-rhPSMA-7.3 and 177Lu-PSMA I&T. J Nucl Med. 2021;62:1106-1111. Crossref, Medline, Google Scholar |
155. | Banerjee SR, Lisok A, Minn I, et al. Preclinical evaluation of 213Bi- and 225Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2021;62:980-988. Crossref, Medline, Google Scholar |
156. | NCT03822871. A Trial of CTT1403 for Metastatic Castration Resistant Prostate Cancer. https://clinicaltrials.gov/ct2/show/NCT03822871. Accessed April 21, 2022. Google Scholar |
157. | NCT04509557. Ludotadipep Treatment in Patients With Metastatic Castration-resistant Prostate Cancer. https://clinicaltrials.gov/ct2/show/NCT04509557. Accessed April 21, 2022. Google Scholar |
158. | NCT03490838. 177Lu-PSMA-R2 in Patients With PSMA Positive Progressive, Metastatic, Castration Resistant Prostate Cancer (PROter). https://clinicaltrials.gov/ct2/show/NCT03490838. Accessed April 21, 2022. Google Scholar |
159. | NCT03780075. Lu177-EB-PSMA617 Radionuclide Treatment in Patients With Metastatic Castration-resistant Prostate Cancer. https://clinicaltrials.gov/ct2/show/NCT03780075. Accessed April 21, 2022. Google Scholar |
160. | NCT03276572. Phase I Trial of 225Ac-J591 in Patients With mCRPC. https://clinicaltrials.gov/ct2/show/NCT03276572. Accessed April 21, 2022. Google Scholar |
161. | NCT04506567. Fractionated and Multiple Dose 225Ac-J591 for Progressive mCRPC. https://clinicaltrials.gov/ct2/show/NCT04506567. Accessed April 21, 2022. Google Scholar |
162. | NCT04576871. Re-treatment 225Ac-J591 for mCRPC. https://clinicaltrials.gov/ct2/show/NCT04576871. Accessed April 21, 2022. Google Scholar |
163. | Feng T, Wang J, Cheng K, et al. IL13Rα1 prevents a castration resistant phenotype of prostate cancer by targeting hexokinase 2 for ubiquitin-mediated degradation. Cancer Biol Med. Epub 2021 Oct 18. Crossref, Google Scholar |
164. | Timmermand OV, Elgqvist J, Beattie KA, et al. Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics. Theranostics. 2019;9:2129-2142. Crossref, Medline, Google Scholar |
165. | Bicak M, Lückerath K, Kalidindi T, et al. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc Natl Acad Sci USA. 2020;117:15172-15181. Crossref, Medline, Google Scholar |
166. | Burnell SEA, Spencer-Harty S, Howarth S, et al. Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS One. 2019;14:e0220456. Crossref, Medline, Google Scholar |
167. | NCT01774071. Study of 89Zr-DFO-MSTP2109A in Patients With Prostate Cancer. https://clinicaltrials.gov/ct2/show/NCT01774071. Accessed April 21, 2022. Google Scholar |
168. | Beltran H, Tagawa ST, Park K, et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol. 2012;30:e386-e389. Link, Google Scholar |
169. | Korsen JA, Kalidindi TM, Khitrov S, et al. Molecular imaging of neuroendocrine prostate cancer by targeting delta-like ligand 3. J Nucl Med. Epub 2022 Jan 22. Crossref, Google Scholar |
170. | Liu C, Liu T, Zhang J, et al. Excellent response to 177Lu-DOTATATE peptide receptor radionuclide therapy in a patient with progressive metastatic castration-resistant prostate cancer with neuroendocrine differentiation after 177Lu-PSMA therapy. Clin Nucl Med. 2019;44:876-878. Crossref, Medline, Google Scholar |
171. | Gofrit ON, Frank S, Meirovitz A, et al. PET/CT with 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med. 2017;42:1-6. Crossref, Medline, Google Scholar |
172. | Usmani S, Ahmed N, Marafi F, et al. Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med. 2017;42:410-413. Crossref, Medline, Google Scholar |
Plaats een reactie ...
1 Reactie op "PSMA gerichte PET scan bij mannen met verhoogde PSA is effectieve manier in ontdekken van plaats van tumoren. Bij uitzaaiingen op afstand heeft bestralen van bekkengebied geen zin."