Disclosures provided by the authors and data availability statement (if applicable) are available with this article at DOI https://doi.org/10.1200/EDBK_350946.

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc.

Employment: Ascend Imaging (I)

Consulting or Advisory Role: AIM Specialty Health; Syncona; Progenics; Global Medical Solutions

Research Funding: Blue Earth Diagnostics (Inst); Nihon Medi-Physics (Inst); Advanced Accelerator Applications (Inst); Telix Pharmaceuticals (Inst); FUJIFILM (Inst); Amgen (Inst)

Patents, Royalties, Other Intellectual Property: Inventor(s): Miller, Matthew (Oxford, GB), Gauden, David (Oxford, GB), Schuster, David (Atlanta, GA), Fanti, Stefano (Bologna, IT), Nanni, Cristina (Bologna, IT), Zanoni, Lucia (Bologna, IT), Willoch, Frode (Oslo, NO), Bogsrud, Trond Velde (Oslo, NO), Bach-Gansmo, Tore (Oslo, NO), Musto, Title: Imaging of metastatic or recurrent cancer Publication Number: US 20200316228 A1 Assignee: Blue Earth Diagnostics Limited (Oxford, GB) Filing Date: June 22, 2020 Granted: April 6, 2021

Honoraria: Radiomedix; Progenics; Advanced Accelerator Applications; EXINI Diagnostics

Consulting or Advisory Role: Blue Earth Diagnostics; Janssen; Progenics; Curium Pharma; GE Healthcare; Telix Pharmaceuticals; POINT Biopharma; Lantheus Medical Imaging

Speakers' Bureau: Telix Pharmaceuticals; IBA RadioPharma Solutions

Research Funding: Progenics

Consulting or Advisory Role: Endocyte; Janssen; POINT Biopharma

Speakers' Bureau: Janssen; Mundipharma; Astellas Pharma; AstraZeneca

Research Funding: Endocyte (Inst); Advanced Accelerator Applications/Novartis (Inst)

Travel, Accommodations, Expenses: Ipsen; Genzyme; Janssen

No other potential conflicts of interest were reported.

1. Silver DAPellicer IFair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81-85MedlineGoogle Scholar
2. Eiber MFendler WPRowe SP, et al. Prostate-specific membrane antigen ligands for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):67S-76SCrossrefMedlineGoogle Scholar
3. Fendler WPCalais JEiber M, et al. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 2019;5:856-863CrossrefMedlineGoogle Scholar
4. Morris MJRowe SPGorin MA, et al; CONDOR Study Group. Diagnostic performance of 18F-DCFPyL-PET/CT in men with biochemically recurrent prostate cancer: results from the CONDOR phase III, multicenter study. Clin Cancer Res. 2021;27:3674-3682CrossrefMedlineGoogle Scholar
5. Sartor Ode Bono JChi KN, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091-1103CrossrefMedlineGoogle Scholar
6. Chi KNMetser UCzernin J, et al. Study evaluating metastatic castrate resistant prostate cancer (mCRPC) treatment using 177Lu-PNT2002 PSMA therapy after second-line hormonal treatment (SPLASH) - Trial in progress. Clin Cancer Res. 2021;27:8s (suppl; abstr PO-077)CrossrefMedlineGoogle Scholar
7. Tagawa STMilowsky MIMorris M, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182-5191CrossrefMedlineGoogle Scholar
8. Tagawa STOsborne JNiaz MJ, et al. Dose-escalation results of a phase I study of 225Ac-J591 for progressive metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2020;38:6s (suppl; abstr 114). Google Scholar
9. Hofman MSEmmett LSandhu S, et al; TheraP Trial Investigators and the Australian and New Zealand Urogenital and Prostate Cancer Trials Group. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397:797-804CrossrefMedlineGoogle Scholar
10. U.S. Food and Drug Administration. FDA approves Pluvicto for metastatic castration-resistant prostate cancerhttps://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pluvicto-metastatic-castration-resistant-prostate-cancer. Accessed March 23, 2022. Google Scholar
11. Manafi-Farid RHarsini SSaidi B, et al. Factors predicting biochemical response and survival benefits following radioligand therapy with [177Lu]Lu-PSMA in metastatic castrate-resistant prostate cancer: a review. Eur J Nucl Med Mol Imaging. 2021;48:4028-4041CrossrefMedlineGoogle Scholar
12. Gafita ACalais JGrogan TR, et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 2021;22:1115-1125CrossrefMedlineGoogle Scholar
13. Gafita AHeck MMRauscher I, et al. Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2020;61:1476-1483CrossrefMedlineGoogle Scholar
14. Barber TWSingh AKulkarni HR, et al. Clinical outcomes of 177Lu-PSMA radioligand therapy in earlier and later phases of metastatic castration-resistant prostate cancer grouped by previous taxane chemotherapy. J Nucl Med. 2019;60:955-962CrossrefMedlineGoogle Scholar
15. Kessel KSeifert RSchäfers M, et al. Second line chemotherapy and visceral metastases are associated with poor survival in patients with mCRPC receiving 177Lu-PSMA-617. Theranostics. 2019;9:4841-4848CrossrefMedlineGoogle Scholar
16. Ahmadzadehfar HRahbar KBaum RP, et al. Prior therapies as prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients treated with [177Lu]Lu-PSMA-617. A WARMTH multicenter study (the 617 trial). Eur J Nucl Med Mol Imaging. 2021;48:113-122CrossrefMedlineGoogle Scholar
17. Yadav MPBallal SBal C, et al. Efficacy and safety of 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer patients. Clin Nucl Med. 2020;45:19-31CrossrefMedlineGoogle Scholar
18. Derlin TSommerlath Sohns JMSchmuck S, et al. Influence of short-term dexamethasone on the efficacy of 177 Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Prostate. 2020;80:619-631CrossrefMedlineGoogle Scholar
19. Suman SParghane RVJoshi A, et al. Therapeutic efficacy, prognostic variables and clinical outcome of 177Lu-PSMA-617 PRLT in progressive mCRPC following multiple lines of treatment: prognostic implications of high FDG uptake on dual tracer PET-CT vis-à-vis Gleason score in such cohort. Br J Radiol. 2019;92:20190380CrossrefMedlineGoogle Scholar
20. Gadot MDavidson TAharon M, et al. Clinical variables associated with PSA response to lutetium-177-PSMA ([177Lu]-PSMA-617) radionuclide treatment in men with metastatic castration-resistant prostate cancer. Cancers (Basel). 2020;12:1078CrossrefGoogle Scholar
21. Ferdinandus JEppard EGaertner FC, et al. Predictors of response to radioligand therapy of metastatic castrate-resistant prostate cancer with 177Lu-PSMA-617. J Nucl Med. 2017;58:312-319CrossrefMedlineGoogle Scholar
22. Ahmadzadehfar HSchlolaut SFimmers R, et al. Predictors of overall survival in metastatic castration-resistant prostate cancer patients receiving [177Lu]Lu-PSMA-617 radioligand therapy. Oncotarget. 2017;8:103108-103116CrossrefMedlineGoogle Scholar
23. Gafita AFendler WPHui W, et al. Efficacy and safety of 177Lu-labeled prostate-specific membrane antigen radionuclide treatment in patients with diffuse bone marrow involvement: a multicenter retrospective study. Eur Urol. 2020;78:148-154CrossrefMedlineGoogle Scholar
24. Khreish FGhazal ZMarlowe RJ, et al. 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: initial 254-patient results from a prospective registry (REALITY Study). Eur J Nucl Med Mol Imaging. 2022;49:1075-1085CrossrefMedlineGoogle Scholar
25. Yordanova ALinden PHauser S, et al. The value of tumor markers in men with metastatic prostate cancer undergoing [177Lu]Lu-PSMA therapy. Prostate. 2020;80:17-27CrossrefMedlineGoogle Scholar
26. Heck MMTauber RSchwaiger S, et al. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur Urol. 2019;75:920-926CrossrefMedlineGoogle Scholar
27. Violet JSandhu SIravani A, et al. Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase II prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer. J Nucl Med. 2020;61:857-865CrossrefMedlineGoogle Scholar
28. Rathke HHolland-Letz TMier W, et al. Response prediction of 177Lu-PSMA-617 radioligand therapy using prostate-specific antigen, chromogranin A, and lactate dehydrogenase. J Nucl Med. 2020;61:689-695CrossrefMedlineGoogle Scholar
29. Grubmüller BSenn DKramer G, et al. Response assessment using 68Ga-PSMA ligand PET in patients undergoing 177Lu-PSMA radioligand therapy for metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1063-1072CrossrefMedlineGoogle Scholar
30. Kuo PHBenson TMessmann R, et al. Why we did what we did: PSMA-PET/CT selection criteria for the VISION trial. J Nucl Med. Epub 2022 Jan 27. Google Scholar
31. Barrington SFKluge R. FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):97-110CrossrefMedlineGoogle Scholar
32. Schwartz LHLitière Sde Vries E, et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132-137CrossrefMedlineGoogle Scholar
33. Nyberg KVISION: implementation of lutetium-177-PSMA-617 in metastatic castration-resistant prostate cancer approaches reality. ASCO Daily News. https://dailynews.ascopubs.org/do/10.1200/ADN.21.200630/full. Published June 9, 2021. Accessed October 26, 2021. Google Scholar
34. Hotta MGafita AMurthy V, et al. Predicting the outcome of mCPRC patients after Lu-177 PSMA therapy using semi-quantitative and visual criteria in baseline PSMA PET: an international multicenter retrospective study. J Clin Oncol. 2022;40:6s (suppl; abstr 32). LinkGoogle Scholar
35. Milowsky MINanus DMKostakoglu L, et al. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22:2522-2531LinkGoogle Scholar
36. Bander NHMilowsky MINanus DM, et al. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23:4591-4601LinkGoogle Scholar
37. Tagawa STVallabhajosula SChristos PJ, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125:2561-2569CrossrefMedlineGoogle Scholar
38. Niaz MJBatra JSWalsh RD, et al. Pilot study of hyperfractionated dosing of lutetium-177-labeled antiprostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Oncologist. 2020;25:477-e895CrossrefMedlineGoogle Scholar
39. Vlachostergios PJNiaz MJSkafida M, et al. Imaging expression of prostate-specific membrane antigen and response to PSMA-targeted β-emitting radionuclide therapies in metastatic castration-resistant prostate cancer. Prostate. 2021;81:279-285CrossrefMedlineGoogle Scholar
40. Seifert RHerrmann KKleesiek J, et al. Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer. J Nucl Med. 2020;61:1786-1792CrossrefMedlineGoogle Scholar
41. Seifert RSeitzer KHerrmann K, et al. Analysis of PSMA expression and outcome in patients with advanced prostate cancer receiving 177Lu-PSMA-617 radioligand therapy. Theranostics. 2020;10:7812-7820CrossrefMedlineGoogle Scholar
42. Seifert RKessel KSchlack K, et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving [177Lu]Lu-PSMA-617 radioligand therapy in a bicentric analysis. Eur J Nucl Med Mol Imaging. 2021;48:1200-1210CrossrefMedlineGoogle Scholar
43. Khreish FRibbat KBartholomä M, et al. Value of combined PET IMAGING WITH [18F]FDG and [68Ga]Ga-PSMA-11 in mCRPC patients with worsening disease during [177Lu]Lu-PSMA-617 RLT. Cancers (Basel). 2021;13:4134CrossrefMedlineGoogle Scholar
44. Buteau JPMartin AJEmmett L, et al. PSMA PET and FDG PET as predictors of response and prognosis in a randomized phase 2 trial of 177Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic, castration-resistant prostate cancer (mCRPC) progressing after docetaxel (TheraP ANZUP 1603). J Clin Oncol. 2022;40:6s(suppl; abstr 10). Google Scholar
45. Nickols NAnand AJohnsson K, et al. aPROMISE: a novel automated PROMISE platform to standardize evaluation of tumor burden in 18F-DCFPyL images of veterans with prostate cancer. J Nucl Med. 2022;63:233-239CrossrefMedlineGoogle Scholar
46. Gafita ABieth MKrönke M, et al. qPSMA: semiautomatic software for whole-body tumor burden assessment in prostate cancer using 68Ga-PSMA11 PET/CT. J Nucl Med. 2019;60:1277-1283CrossrefMedlineGoogle Scholar
47. Capobianco NGafita APlatsch G, et al. Transfer learning of AI-based uptake classification from 18F-FDG PET/CT to 68Ga-PSMA-11 PET/CT for whole-body tumor burden assessment. J Nucl Med. 2020;61:s1 (supp; abstr 1411). Google Scholar
48. Eiber MHerrmann KCalais J, et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 2018;59:469-478CrossrefMedlineGoogle Scholar
49. Hofman MSViolet JHicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825-833CrossrefMedlineGoogle Scholar
50. Calais JCzernin J. PSMA expression assessed by PET imaging is a required biomarker for selecting patients for any PSMA-targeted therapy. J Nucl Med. 2021;62:1489-1491CrossrefMedlineGoogle Scholar
51. Sandach PKersting DWeber M, et al. PSMA- and FDG-PET mismatch assessment for optimized selection of PSMA radioligand therapy candidates. Nucl Med (Stuttg). 2021;60:48Google Scholar
52. Thang SPViolet JSandhu S, et al. Poor outcomes for patients with metastatic castration-resistant prostate cancer with low prostate-specific membrane antigen (PSMA) expression deemed ineligible for 177Lu-labelled PSMA radioligand therapy. Eur Urol Oncol. 2019;2:670-676CrossrefMedlineGoogle Scholar
53. Michalski KRuf JGoetz C, et al. Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy. Eur J Nucl Med Mol Imaging. 2021;48:2024-2030CrossrefMedlineGoogle Scholar
54. Jadvar H. The VISION forward: recognition and implication of PSMA−/FDG+ mCRPC. J Nucl Med. Epub 2021 Dec 21. Google Scholar
55. Parker CFinkelstein SEMichalski JM, et al. Efficacy and safety of radium-223 dichloride in symptomatic castration-resistant prostate cancer patients with or without baseline opioid use from the phase 3 ALSYMPCA trial. Eur Urol. 2016;70:875-883CrossrefMedlineGoogle Scholar
56. Kratochwil CGiesel FLBruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41:2106-2119CrossrefMedlineGoogle Scholar
57. Haberkorn UGiesel FMorgenstern A, et al. The future of radioligand therapy: α, β, or both? J Nucl Med. 2017;58:1017-1018CrossrefMedlineGoogle Scholar
58. Lee H. Relative efficacy of 225Ac-PSMA-617 and 177Lu-PSMA-617 in prostate cancer based on subcellular dosimetry. Mol Imaging Radionucl Ther. 2022;31:1-6CrossrefMedlineGoogle Scholar
59. Poty SFrancesconi LCMcDevitt MR, et al. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J Nucl Med. 2018;59:878-884CrossrefMedlineGoogle Scholar
60. Gorin JBMénager JGouard S, et al. Antitumor immunity induced after α irradiation. Neoplasia. 2014;16:319-328CrossrefMedlineGoogle Scholar
61. Violet JJackson PFerdinandus J, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60:517-523CrossrefMedlineGoogle Scholar
62. Sgouros GRoeske JCMcDevitt MR, et al; SNM MIRD Committee. MIRD pamphlet no. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med. 2010;51:311-328CrossrefMedlineGoogle Scholar
63. Emmett LWillowson KViolet J, et al. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. J Med Radiat Sci. 2017;64:52-60CrossrefMedlineGoogle Scholar
64. Tolkach YKristiansen G. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85:108-116CrossrefMedlineGoogle Scholar
65. Haffner MCZwart WRoudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18:79-92CrossrefMedlineGoogle Scholar
66. Bakht MKDerecichei ILi Y, et al. Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer. 2019;26:131-146CrossrefMedlineGoogle Scholar
67. Wang HTYao YHLi BG, et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis—a systematic review and pooled analysis. J Clin Oncol. 2014;32:3383-3390LinkGoogle Scholar
68. Lee JKBangayan NJChai T, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci USA. 2018;115:E4473-E4482CrossrefMedlineGoogle Scholar
69. Bernhardt PForssell-Aronsson EJacobsson L, et al. Low-energy electron emitters for targeted radiotherapy of small tumours. Acta Oncol. 2001;40:602-608CrossrefMedlineGoogle Scholar
70. Hindié EZanotti-Fregonara PQuinto MA, et al. Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy. J Nucl Med. 2016;57:759-764CrossrefMedlineGoogle Scholar
71. Smith-Jones PMVallabahajosula SGoldsmith SJ, et al. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000;60:5237-5243MedlineGoogle Scholar
72. Behr TMBéhé MStabin MG, et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab′ fragments in a human colonic cancer model. Cancer Res. 1999;59:2635-2643MedlineGoogle Scholar
73. Henriksen GFisher DRRoeske JC, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252-259MedlineGoogle Scholar
74. Li YRussell PJAllen BJ. Targeted alpha-therapy for control of micrometastatic prostate cancer. Expert Rev Anticancer Ther. 2004;4:459-468CrossrefMedlineGoogle Scholar
75. Ritter MACleaver JETobias CA. High-LET radiations induce a large proportion of non-rejoining DNA breaks. Nature. 1977;266:653-655CrossrefMedlineGoogle Scholar
76. Kulkarni HSingh ABaum R. Response assessment to treatment with Lu-177 labeled PSMA inhibitor in patients with metastatic castration-resistant prostate cancer: differential response of bone versus lymph node lesions. J Nucl Med. 2016;57:s2 (suppl; abstr 1547). Google Scholar
77. Satapathy SMittal BRSood A. Visceral metastases as predictors of response and survival outcomes in patients of castration-resistant prostate cancer treated with 177Lu-labeled prostate-specific membrane antigen radioligand therapy: a systematic review and meta-analysis. Clin Nucl Med. 2020;45:935-942CrossrefMedlineGoogle Scholar
78. Paschalis ASheehan BRiisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469-478CrossrefMedlineGoogle Scholar
79. Zhang JKulkarni HRSingh A, et al. Complete regression of lung metastases in a patient with metastatic castration-resistant prostate cancer using 177Lu-PSMA radioligand therapy. Clin Nucl Med. 2020;45:e48-e50CrossrefMedlineGoogle Scholar
80. Brady LKriner MColeman I, et al. Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun. 2021;12:1426CrossrefMedlineGoogle Scholar
81. Pond GRSonpavde Gde Wit R, et al. The prognostic importance of metastatic site in men with metastatic castration-resistant prostate cancer. Eur Urol. 2014;65:3-6CrossrefMedlineGoogle Scholar
82. Colletier PJAshoori FCowen D, et al. Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation. Int J Radiat Oncol Biol Phys. 2000;48:1507-1512CrossrefMedlineGoogle Scholar
83. Stuparu ADCapri JRMeyer CAL, et al. Mechanisms of resistance to prostate-specific membrane antigen-targeted radioligand therapy in a mouse model of prostate cancer. J Nucl Med. 2021;62:989-995CrossrefMedlineGoogle Scholar
84. Kratochwil CGiesel FLHeussel CP, et al. Patients resistant against PSMA-targeting α-radiation therapy often harbor mutations in DNA damage-repair-associated genes. J Nucl Med. 2020;61:683-688CrossrefMedlineGoogle Scholar
85. de Bono JMateo JFizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091-2102CrossrefMedlineGoogle Scholar
86. Ravi Kumar ASHofman MS. Mechanistic insights for optimizing PSMA radioligand therapy. Clin Cancer Res. 2020;26:2774-2776CrossrefMedlineGoogle Scholar
87. Kiniwa YMiyahara YWang HY, et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 2007;13:6947-6958CrossrefMedlineGoogle Scholar
88. Miller AMLundberg KOzenci V, et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398-7405CrossrefMedlineGoogle Scholar
89. May KF JrGulley JLDrake CG, et al. Prostate cancer immunotherapy. Clin Cancer Res. 2011;17:5233-5238CrossrefMedlineGoogle Scholar
90. Sharma PPachynski RKNarayan V, et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 2020;38:489-499.e3CrossrefMedlineGoogle Scholar
91. Beer TMKwon EDDrake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35:40-47LinkGoogle Scholar
92. Kwon EDDrake CGScher HI, et al; CA184-043 Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700-712CrossrefMedlineGoogle Scholar
93. Topalian SLHodi FSBrahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454CrossrefMedlineGoogle Scholar
94. Hansen ARMassard COtt PA, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study. Ann Oncol. 2018;29:1807-1813CrossrefMedlineGoogle Scholar
95. Keam SPHalse HNguyen T, et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J Immunother Cancer. 2020;8:e000792CrossrefMedlineGoogle Scholar
96. Reits EAHodge JWHerberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259-1271CrossrefMedlineGoogle Scholar
97. Brown JSSundar RLopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer. 2018;118:312-324CrossrefMedlineGoogle Scholar
98. Kwan EMSpain LAnton A, et al. Avelumab combined with stereotactic ablative body radiotherapy in metastatic castration-resistant prostate cancer: the phase 2 ICE-PAC clinical trial. Eur Urol. 2022;81:253-262CrossrefMedlineGoogle Scholar
99. Aggarwal RRSam SLKoshkin VS, et al. Immunogenic priming with 177Lu-PSMA-617 plus pembrolizumab in metastatic castration resistant prostate cancer (mCRPC): a phase 1b study. J Clin Oncol. 2021;39:15s (suppl; abstr 5053). LinkGoogle Scholar
100. Sandhu SKJoshua AMEmmett L, et al. PRINCE: interim analysis of the phase Ib study of 177Lu-PSMA-617 in combination with pembrolizumab for metastatic castration resistant prostate cancer (mCRPC). Ann Oncol. 2021;32:s5(suppl; abstr 577O). MedlineGoogle Scholar
101. Lord CJAshworth A. The DNA damage response and cancer therapy. Nature. 2012;481:287-294CrossrefMedlineGoogle Scholar
102. Purohit NKShah RGAdant S, et al. Potentiation of 177Lu-octreotate peptide receptor radionuclide therapy of human neuroendocrine tumor cells by PARP inhibitor. Oncotarget. 2018;9:24693-24706CrossrefMedlineGoogle Scholar
103. Nonnekens Jvan Kranenburg MBeerens CE, et al. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor olaparib. Theranostics. 2016;6:1821-1832CrossrefMedlineGoogle Scholar
104. Cullinane CWaldeck KKirby L, et al. Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP. Sci Rep. 2020;10:10196CrossrefMedlineGoogle Scholar
105. Yang YLuo JChen X, et al. CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. J Exp Clin Cancer Res. 2020;39:188CrossrefMedlineGoogle Scholar
106. Crumbaker MPathmanandavel SYam AO, et al. Phase I/II trial of the combination of 177lutetium prostate specific membrane antigen 617 and idronoxil (NOX66) in men with end-stage metastatic castration-resistant prostate cancer (LuPIN). Eur Urol Oncol. 2021;4:963-970CrossrefMedlineGoogle Scholar
107. Chan TGO’Neill EHabjan C, et al. Combination strategies to improve targeted radionuclide therapy. J Nucl Med. 2020;61:1544-1552CrossrefMedlineGoogle Scholar
108. Yordanova AAhrens HFeldmann G, et al. Peptide receptor radionuclide therapy combined with chemotherapy in patients with neuroendocrine tumors. Clin Nucl Med. 2019;44:e329-e335CrossrefMedlineGoogle Scholar
109. Rohrer Bley CFurmanova POrlowski K, et al. Microtubule stabilising agents and ionising radiation: multiple exploitable mechanisms for combined treatment. Eur J Cancer. 2013;49:245-253CrossrefMedlineGoogle Scholar
110. Golden EBFormenti SCSchiff PB. Taxanes as radiosensitizers. Anticancer Drugs. 2014;25:502-511CrossrefMedlineGoogle Scholar
111. Kelly MPLee STLee FT, et al. Therapeutic efficacy of 177Lu-CHX-A″-DTPA-hu3S193 radioimmunotherapy in prostate cancer is enhanced by EGFR inhibition or docetaxel chemotherapy. Prostate. 2009;69:92-104CrossrefMedlineGoogle Scholar
112. Batra JSNiaz MJWhang YE, et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Urol Oncol. 2020;38:848.e9-848.e16CrossrefGoogle Scholar
113. Meller BBremmer FSahlmann CO, et al. Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res. 2015;5:66CrossrefMedlineGoogle Scholar
114. Evans MJSmith-Jones PMWongvipat J, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA. 2011;108:9578-9582CrossrefMedlineGoogle Scholar
115. Hope TATruillet CEhman EC, et al. 68Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. J Nucl Med. 2017;58:81-84CrossrefMedlineGoogle Scholar
116. Emmett LYin CCrumbaker M, et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J Nucl Med. 2019;60:950-954CrossrefMedlineGoogle Scholar
117. Staniszewska MFragoso Costa PEiber M, et al. Enzalutamide enhances PSMA expression of PSMA-low prostate cancer. Int J Mol Sci. 2021;22:7431CrossrefMedlineGoogle Scholar
118. Suman SParghane RVJoshi A, et al. Combined 177Lu-PSMA-617 PRLT and abiraterone acetate versus 177Lu-PSMA-617 PRLT monotherapy in metastatic castration-resistant prostate cancer: an observational study comparing the response and durability. Prostate. 2021;81:1225-1234CrossrefMedlineGoogle Scholar
119. Emmett LSubramaniam SZhang AY, et al. ENZA-p: a randomized phase II trial using PSMA as a therapeutic agent and prognostic indicator in men with metastatic castration-resistant prostate cancer treated with enzalutamide (ANZUP 1901). J Clin Oncol. 2021;39:6s (suppl; abstr TPS177). LinkGoogle Scholar
120. Dhiantravan NViolet JEapen R, et al. Clinical trial protocol for LuTectomy: a single-arm study of the dosimetry, safety, and potential benefit of 177Lu-PSMA-617 prior to prostatectomy. Eur Urol Focus. 2021;7:234-237CrossrefMedlineGoogle Scholar
121. Dhiantravan NEmmett LJoshua AM, et al. UpFrontPSMA: a randomized phase 2 study of sequential 177Lu-PSMA-617 and docetaxel vs docetaxel in metastatic hormone-naïve prostate cancer (clinical trial protocol). BJU Int. 2021;128:331-342CrossrefMedlineGoogle Scholar
122. Sartor AOTagawa STSaad F, et al. PSMAddition: a phase 3 trial to compare treatment with 177Lu-PSMA-617 plus standard of care (SOC) versus SOC alone in patients with metastatic hormone-sensitive prostate cancer. J Clin Oncol. 2022;40:6s (suppl; abstr TPS210). Google Scholar
123. Sartor AOMorris MJChi KN, et al. PSMAfore: a phase 3 study to compare 177Lu-PSMA-617 treatment with a change in androgen receptor pathway inhibitor in taxane-naïve patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2022;40:6s (suppl; abstr TPS211). Google Scholar
124. Sartor OFougère CEssler M, et al. 177Lu-prostate-specific membrane antigen ligand after 223Ra treatment in men with bone-metastatic castration-resistant prostate cancer: real-world clinical experience. J Nucl Med. 2022;63:410-414CrossrefMedlineGoogle Scholar
125. Calopedos RJSChalasani VAsher R, et al. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20:352-360CrossrefMedlineGoogle Scholar
126. Kratochwil CGiesel FLStefanova M, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170-1176CrossrefMedlineGoogle Scholar
127. Ahmadzadehfar HEppard EKürpig S, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7:12477-12488CrossrefMedlineGoogle Scholar
128. Radchenko VMorgenstern AJalilian AR, et al. Production and supply of α-particle-emitting radionuclides for targeted α-therapy. J Nucl Med. 2021;62:1495-1503CrossrefMedlineGoogle Scholar
129. McDevitt MRMa DLai LT, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537-1540CrossrefMedlineGoogle Scholar
130. Robertson AKHRamogida CFSchaffer P, et al. Development of 225Ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm. 2018;11:156-172CrossrefMedlineGoogle Scholar
131. Yadav MPBallal SSahoo RK, et al. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant prostate cancer patients. Theranostics. 2020;10:9364-9377CrossrefMedlineGoogle Scholar
132. Kratochwil CBruchertseifer FRathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58:1624-1631CrossrefMedlineGoogle Scholar
133. Sathekge MBruchertseifer FVorster M, et al. Predictors of overall and disease-free survival in metastatic castration-resistant prostate cancer patients receiving 225Ac-PSMA-617 radioligand therapy. J Nucl Med. 2020;61:62-69CrossrefMedlineGoogle Scholar
134. Ballal SYadav MPSahoo RK, et al. 225Ac-PSMA-617-targeted alpha therapy for the treatment of metastatic castration-resistant prostate cancer: a systematic review and meta-analysis. Prostate. 2021;81:580-591CrossrefMedlineGoogle Scholar
135. van der Doelen MJMehra Nvan Oort IM, et al. Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urol Oncol. 2021;39:729.e7-729.e16CrossrefGoogle Scholar
136. Feuerecker BTauber RKnorr K, et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur Urol. 2021;79:343-350CrossrefMedlineGoogle Scholar
137. Kratochwil CBruchertseifer FRathke H, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59:795-802CrossrefMedlineGoogle Scholar
138. Rosar FHau FBartholomä M, et al. Molecular imaging and biochemical response assessment after a single cycle of Ac-PSMA-617/Lu-PSMA-617 tandem therapy in mCRPC patients who have progressed on Lu-PSMA-617 monotherapy. Theranostics. 2021;11:4050-4060CrossrefMedlineGoogle Scholar
139. Khreish FEbert NRies M, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging. 2020;47:721-728CrossrefMedlineGoogle Scholar
140. Kiess APMinn IVaidyanathan G, et al. (2S)-2-(3-(1-Carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid for PSMA-targeted α-particle radiopharmaceutical therapy. J Nucl Med. 2016;57:1569-1575CrossrefMedlineGoogle Scholar
141. Banerjee SRMinn IKumar V, et al. Preclinical evaluation of 203/212Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2020;61:80-88CrossrefMedlineGoogle Scholar
142. Hammer SHagemann UBZitzmann-Kolbe S, et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate (PSMA-TTC), a targeted alpha therapy for prostate cancer. Clin Cancer Res. 2020;26:1985-1996CrossrefMedlineGoogle Scholar
143. Nonnekens JChatalic KLMolkenboer-Kuenen JD, et al. 213Bi-labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts. Cancer Biother Radiopharm. 2017;32:67-73CrossrefMedlineGoogle Scholar
144. Alcocer-Ávila MEFerreira AQuinto MA, et al. Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases. EJNMMI Phys. 2020;7:33CrossrefMedlineGoogle Scholar
145. Müller CUmbricht CAGracheva N, et al. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:1919-1930CrossrefMedlineGoogle Scholar
146. Kiess APMinn IChen Y, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56:1401-1407CrossrefMedlineGoogle Scholar
147. Shen CJMinn IHobbs RF, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen in a micrometastatic model of prostate cancer. Theranostics. 2020;10:2888-2896CrossrefMedlineGoogle Scholar
148. Sandhu SGuo CHofman MS. Radionuclide therapy in prostate cancer: from standalone to combination PSMA theranostics. J Nucl Med. 2021;62:1660-1668CrossrefGoogle Scholar
149. Niaz MJSkafida MOsborne J, et al. Comparison of prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy (TRT) with lutetium-177 (177LU) via antibody J591 vs small molecule ligand PSMA-617. J Urol. 2020;203(Suppl 4):e367 (suppl; abstr PD16-11). Google Scholar
150. McDevitt MRBarendswaard EMa D, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000;60:6095-6100MedlineGoogle Scholar
151. Benešová MUmbricht CASchibli R, et al. Albumin-binding PSMA ligands: optimization of the tissue distribution profile. Mol Pharm. 2018;15:934-946CrossrefMedlineGoogle Scholar
152. NCT05219500. Targeted Alpha Therapy With 225Actinium-PSMA-I&T of Castration-resISTant Prostate Cancer (TATCIST)https://clinicaltrials.gov/ct2/show/NCT05219500. Accessed April 21, 2022. Google Scholar
153. Weineisen MSchottelius MSimecek J, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56:1169-1176CrossrefMedlineGoogle Scholar
154. Yusufi NWurzer AHerz M, et al. Comparative preclinical biodistribution, dosimetry, and endoradiotherapy in metastatic castration-resistant prostate cancer using 19F/177Lu-rhPSMA-7.3 and 177Lu-PSMA I&T. J Nucl Med. 2021;62:1106-1111CrossrefMedlineGoogle Scholar
155. Banerjee SRLisok AMinn I, et al. Preclinical evaluation of 213Bi- and 225Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2021;62:980-988CrossrefMedlineGoogle Scholar
156. NCT03822871. A Trial of CTT1403 for Metastatic Castration Resistant Prostate Cancerhttps://clinicaltrials.gov/ct2/show/NCT03822871. Accessed April 21, 2022. Google Scholar
157. NCT04509557. Ludotadipep Treatment in Patients With Metastatic Castration-resistant Prostate Cancerhttps://clinicaltrials.gov/ct2/show/NCT04509557. Accessed April 21, 2022. Google Scholar
158. NCT03490838. 177Lu-PSMA-R2 in Patients With PSMA Positive Progressive, Metastatic, Castration Resistant Prostate Cancer (PROter)https://clinicaltrials.gov/ct2/show/NCT03490838. Accessed April 21, 2022. Google Scholar
159. NCT03780075. Lu177-EB-PSMA617 Radionuclide Treatment in Patients With Metastatic Castration-resistant Prostate Cancerhttps://clinicaltrials.gov/ct2/show/NCT03780075. Accessed April 21, 2022. Google Scholar
160. NCT03276572. Phase I Trial of 225Ac-J591 in Patients With mCRPChttps://clinicaltrials.gov/ct2/show/NCT03276572. Accessed April 21, 2022. Google Scholar
161. NCT04506567. Fractionated and Multiple Dose 225Ac-J591 for Progressive mCRPChttps://clinicaltrials.gov/ct2/show/NCT04506567. Accessed April 21, 2022. Google Scholar
162. NCT04576871. Re-treatment 225Ac-J591 for mCRPChttps://clinicaltrials.gov/ct2/show/NCT04576871. Accessed April 21, 2022. Google Scholar
163. Feng TWang  JCheng K, et al. IL13Rα1 prevents a castration resistant phenotype of prostate cancer by targeting hexokinase 2 for ubiquitin-mediated degradation. Cancer Biol Med. Epub 2021 Oct 18CrossrefGoogle Scholar
164. Timmermand OVElgqvist JBeattie KA, et al. Preclinical efficacy of hK2 targeted [177Lu]hu11B6 for prostate cancer theranostics. Theranostics. 2019;9:2129-2142CrossrefMedlineGoogle Scholar
165. Bicak MLückerath KKalidindi T, et al. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc Natl Acad Sci USA. 2020;117:15172-15181CrossrefMedlineGoogle Scholar
166. Burnell SEASpencer-Harty SHowarth S, et al. Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS One. 2019;14:e0220456CrossrefMedlineGoogle Scholar
167. NCT01774071. Study of 89Zr-DFO-MSTP2109A in Patients With Prostate Cancerhttps://clinicaltrials.gov/ct2/show/NCT01774071. Accessed April 21, 2022. Google Scholar
168. Beltran HTagawa STPark K, et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol. 2012;30:e386-e389LinkGoogle Scholar
169. Korsen JAKalidindi TMKhitrov S, et al. Molecular imaging of neuroendocrine prostate cancer by targeting delta-like ligand 3. J Nucl Med. Epub 2022 Jan 22. CrossrefGoogle Scholar
170. Liu CLiu TZhang J, et al. Excellent response to 177Lu-DOTATATE peptide receptor radionuclide therapy in a patient with progressive metastatic castration-resistant prostate cancer with neuroendocrine differentiation after 177Lu-PSMA therapy. Clin Nucl Med. 2019;44:876-878CrossrefMedlineGoogle Scholar
171. Gofrit ONFrank SMeirovitz A, et al. PET/CT with 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med. 2017;42:1-6CrossrefMedlineGoogle Scholar
172. Usmani SAhmed NMarafi F, et al. Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med. 2017;42:410-413CrossrefMedlineGoogle Scholar
Downloaded 3,846 times


DOI: 10.1200/EDBK_350946 American Society of Clinical Oncology Educational Book 42 (May 24, 2022) 366-382.

PMID: 35609224


No companion articles

ASCO Career Center