Aan dit artikel is enkele uren gewerkt. Mocht u onze informatie op de website waarderen dan wilt u misschien ons helpen met een donatie. Direct een donatie geven kan via ons rekeningnummer  NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel in Terneuzen. BIC/SWIFTCODE RABONL2U. Elk bedrag is welkom

13 november 2023: Bron:  2023 Jul;5(4):e22015

Theranostiek, een vorm van radiotherapie waarbij een specifiek stofje wordt ingebracht dat alleen de tumorcellen opzoekt en vernietigt en de gezonde cellen ongemoeid laat wordt al succesvol toegepast bij prostaatkanker via lutetium 177 en schildklierkanker via radioactief jodium, maar wordt nu ook onderzocht om te gebruiken als behandeling bij borstkankerpatiënten met uitzaaiingen.

Bij theranostiek wordt een stofje radioactief gemaakt een zogeheten radiotracer. De radiotracers worden in het lichaam ingebracht en hechten zich aan specifieke eiwitten die alleen voorkomen op kankercellen. Die radiotracer is als het ware een specifieke sleutel die alleen past op die eiwitten aan de buitenkant van de kankercellen.
Deze radiotracers met hun radioactieve materiaal vernietigen de kankercellen maar sparen de gezonde cellen die onaangetast blijven.

Zie dit schema in Figure 1:

Radionuclide therapy schematic. A radionuclide held in a chelator or cage
or bound covalently is attached to a vector by a linker molecule. The vector
binds to a molecular target to enable visualization of the target for diagnostic
or treatment purposes and selective delivery of radiation therapy to the target.
Alternatively, a free radionuclide ion can, in some circumstances, be used to
target tumors or cancer cells, as with iodine 131, alastine 211, and radium 223.
Created with BioRender.com.
 

Radionuclide therapy schematic. A radionuclide held in a chelator or cage or bound covalently is attached to a vector by a linker molecule. The vector binds to a molecular target to enable visualization of the target for diagnostic or treatment purposes and selective delivery of radiation therapy to the target. Alternatively, a free radionuclide ion can, in some circumstances, be used to target tumors or cancer cells, as with iodine 131, alastine 211, and radium 223. Created with BioRender.com.


Een theranostieke behandeling heeft dus veel minder bijwerkingen in vergelijking met chemotherapie en gewone radiotherapie / bestraling. Met theranostiek kunnen onderzoekers dus ook de kankercellen detecteren, specifiek bestralen en achteraf controleren of de behandeling effectief was. Maar dan hebben ze wel de specifieke eiwitten nodig van de buitenkant van de tumorcellen. Volgens prof. dr. Dalm van het Erasmus MC hebben vormen van borstkanker enkele van die specifieke eiwitten en dus zouden die geschikt zijn voor theranostiek. Zij heeft ook voor theranostiek bij prostaatkanker een prijs gewonnen en al veel onderzoek gedaan naar met name theranostiek, zie deze studies

O.a. deze studie is interessant: 

Combination Therapy, a Promising Approach to Enhance the Efficacy of Radionuclide and Targeted Radionuclide Therapy of Prostate and Breast Cancer


Er wordt ook al onderzoek gedaan met theranostiek met nanodeeltjes dat doordringt tot de DNA van de tumorcel in bv Leuven, zie deze studieopzetMatthias D'Huyvetter heeft ook al verschillende studies gedaan met theranostiek, zie deze studies onder publicaties. 

Zie ook dit schema van theranostiek met nanodeeltjes in Figure 2:

Targeted  -particle therapy schematic. The radionuclide therapy
is intravenously infused and binds to the tumor through a vector linked to
the radionuclide. While bound to the tumor,  -particle emission
occurs, selectively delivering radiation to the tumor.   Particles
are more cytotoxic than   particles because they cause irreparable
double-strand DNA breaks, resulting in cell death. Created with
BioRender.com.


Targeted α-particle therapy schematic. The radionuclide therapy is intravenously infused and binds to the tumor through a vector linked to the radionuclide. While bound to the tumor, α-particle emission occurs, selectively delivering radiation to the tumor. α Particles are more cytotoxic than β particles because they cause irreparable double-strand DNA breaks, resulting in cell death. Created with BioRender.com.



Een reviewstudie uit juli 2023 over theranostiek is deze onderstaande reviewstudie uit juli 2023 en is als volledig studierapport gratis in te zien of te downloaden. Het studierapport beschrijft de belangrijkste vormen van theranostiek bij verschillende vormen van kanker met ook een interessante referentielijst van 94 studies en vooral ook mooie grafieken hoe een en ander in zijn werk gaat:

Abstract

Theranostics is the combination of two approaches—diagnostics and therapeutics—applied for decades in cancer imaging using radiopharmaceuticals or paired radiopharmaceuticals to image and selectively treat various cancers. The clinical use of theranostics has increased in recent years, with U.S. Food and Drug Administration (FDA) approval of lutetium 177 (177Lu) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) and 177Lu–prostate-specific membrane antigen vector-based radionuclide therapies. The field of theranostics has imminent potential for emerging clinical applications. This article reviews critical areas of active clinical advancement in theranostics, including forthcoming clinical trials advancing FDA-approved and emerging radiopharmaceuticals, approaches to dosimetry calculations, imaging of different radionuclide therapies, expanded indications for currently used theranostic agents to treat a broader array of cancers, and emerging ideas in the field.

Summary

Emerging approaches to theranostics, including investigational radiopharmaceuticals, expanded indications for current radionuclide therapies, and posttreatment imaging, are active areas of innovation with potential to transform clinical practice.

Essentials

  • ■ Theranostics is a concept related to radionuclide therapy that specifically refers to the use of a pair of radiopharmaceutical agents containing radionuclides used for imaging (diagnostics) and/or therapy (therapeutics).
  • ■ α Particles have high linear energy transfer and enable increased precision in radiation delivery, which theoretically decreases collateral damage to adjacent healthy tissues and may facilitate more focused targeting of small tumors and micrometastasis relative to the same dose of β-particle emitters required to achieve similar cytotoxic effects.
  • ■ The imaging of theranostic agents can potentially serve multiple independent purposes, including patient selection for therapy, confirmation of delivery to tumors, dosimetry calculation, and treatment response assessment.
  • ■ Both tetraazacyclododecane tetraacetic acid octreotate (or, DOTATATE)– and prostate-specific membrane antigen–coupled agents that now have regulatory approval for clinical use in neuroendocrine tumors and prostate cancer, respectively, are being investigated for expanded indications in other tumor classes.

Conclusion

In this review, we summarized various theranostic radiopharmaceuticals and their clinical use against a variety of cancers. Overall, theranostics for cancer imaging and treatment is rapidly evolving. Various emerging molecular targets and radiopharmaceuticals with different forms of radiation emission, such as α-emitting therapies, have a high potential to emerge as next-generation theranostics. Current and continued efforts to better estimate the dosimetry of therapeutic radiopharmaceuticals and quantify and monitor treatment response are necessary steps in the direction of individualized precision medicine for theranostics. Additional work will be needed to refine the role of radionuclide therapy in combination with other modalities of cancer treatment.

Authors declared no funding for this work.

Disclosures of conflicts of interest: B.J.B. Member of Radiology: Imaging Cancer trainee editorial board. D.J.B. Patent pending for a radiopharmaceutical for imaging and therapy. P.W.M. No relevant relationships. A.R.L. No relevant relationships. D.R.J. No relevant relationships. K.B. No relevant relationships. M.K.P. Multiple patents issued related to isotope production and application, as well as a patent pending for theranostics, no payments received to date. A.T.P. No relevant relationships. T.R.H. Research support to author’s institution from Ipsen and Advanced Accelerator Applications (a Novartis company); consulting fees from Ipsen and Advanced Accelerator Applications, paid to author’s institution; vice-president of the North American Neuroendocrine Tumor Society (NANETS), unpaid position; consultant to TerSera Therapeutics (personal payment). C.B.H. No relevant relationships. G.B.J. Grants or contracts from Pfizer, Novartis, MedTrace Pharma, Clarity Pharmaceuticals, Clovis Oncology, Viewpoint Molecular Targeting, and SOFIE, all paid to author’s institution; consulting fees from Pfizer, Novartis, Curium Pharma, Blue Earth Diagnostics, AstraZeneca, Siemens, and Morphimmune, paid to author’s institution; payment or honoraria from Prostate Cancer Research Institute (PCRI) for urology grand rounds; support from the Society of Nuclear Medicine and Molecular Imaging (SNMMI) for attending Gordon Research Conferences and Mayo CME courses; patents planned, issued, or pending for CRISMA PET, Alpha-PET theranostic platform, targeting meningiomas for PET imaging and therapy, cardiac PYP score; participation on a data safety monitoring board or advisory board for the SECuRE trial for Clarity Pharmaceuticals, the Targeted Imaging of Melanoma for Alpha-Particle Radiotherapy (TIMAR1) trial for Viewpoint Molecular Targeting, Pfizer, AstraZeneca, Novartis, and Siemens, all payments to author’s institution; chief scientific advisor for Nucleus RadioPharma. A.T.K. Primary investigator for Mayo Clinic Rochester for phase 3 VISION trial assessing LuPSMA therapy in patients with metastatic castration-resistant prostate cancer, sponsored by Novartis; consulting fees from Novartis for assessment of future LuPSMA therapy research; payment or honoraria for PSMA imaging presentation, an online education CME presentation sponsored by AXIS Medical Education.

Figures

Radionuclide therapy schematic. A radionuclide held in a chelator or cage
or bound covalently is attached to a vector by a linker molecule. The vector
binds to a molecular target to enable visualization of the target for diagnostic
or treatment purposes and selective delivery of radiation therapy to the target.
Alternatively, a free radionuclide ion can, in some circumstances, be used to
target tumors or cancer cells, as with iodine 131, alastine 211, and radium 223.
Created with BioRender.com.
 
Targeted α-particle therapy schematic. The radionuclide therapy
is intravenously infused and binds to the tumor through a vector linked to
the radionuclide. While bound to the tumor, α-particle emission
occurs, selectively delivering radiation to the tumor. α Particles
are more cytotoxic than β particles because they cause irreparable
double-strand DNA breaks, resulting in cell death. Created with
BioRender.com.
 
Targeted β-particle therapy schematic. While bound to the
tumor, β-particle emission occurs, selectively delivering radiation
to the tumor. β Particles exert therapeutic effects through reactive
oxygen species, causing DNA damage via single-strand DNA breaks that may
result in cell death if not repaired via DNA repair mechanisms. Created with
BioRender.com.
 
Targeted α-particle and β-particle therapy comparison.
Illustration shows the characteristic features of α and β
particles. α Particles are positively charged particles composed of
two protons and two neutrons, essentially the nucleus of a helium atom, and
β particles are negatively charged particles, essentially electrons.
α Particles have much greater mass, higher linear energy transfer
(LET), travel a much shorter distance in tissue, and are more cytotoxic than
β particles. The illustration includes specific values of these
characteristics for reference but is not to scale. Created with
BioRender.com.
 
Targeted α-particle therapy: radium 223 dichloride (223RaCl2)
followed by actinium 225 (225Ac) prostate-specific membrane antigent
(PSMA)–617. Images in a 66-year-old man with widely metastatic
prostate cancer, with a Gleason score of 8 (4 + 4), that progressed
following androgen deprivation, chemotherapy, and pelvic radiation. (A)
Baseline gallium 68 (68Ga) PSMA-11 PET/CT image demonstrates intense PSMA
uptake in numerous metastatic lesions (blue arrows indicate examples in the
right scapula and both femurs). (B) 68Ga-PSMA-11 PET/CT image following
three cycles of 223RaCl2 (a targeted α-particle therapy that
incorporates within osteoblastic lesions but does not directly bind to
cancer cells) shows progression of many osseous metastases (blue arrows),
and the prostate-specific antigen (PSA) value increased. (C) Lutetium 177
(177Lu) PSMA-617 and 225Ac-PSMA-617 were both considered as treatment
options. Following multidisciplinary discussion and shared decision-making
with the patient, four cycles of 225Ac-PSMA-617 (a targeted
α-particle therapy with affinity for PSMA) were administered 6 weeks
apart, demonstrating dramatic response in the metastatic lesions, with near
resolution of PSMA uptake at 68Ga-PSMA-11 PET/CT (blue arrows in the
location of previous lesions) and a corresponding dramatic reduction in
PSA.
 
Posttherapy monitoring of index lesions with SPECT/CT imaging. Fused
SPECT/CT sagittal images in a 56-year-old man with prostate-specific
membrane antigen (PSMA)–avid metastatic prostate cancer undergoing
lutetium 177 (177Lu) PSMA-617 therapy. (A) Baseline fluorine 18 (18F)
carboxy-fluoro-pyridine-carbonyl-amino-pentyl-ureido-pentanedioic acid
(DCFPyL) PET/CT image demonstrates intense PSMA uptake in nodal, osseous,
and hepatic metastases (arrows). (B–E) Posttherapy SPECT/CT image
with 177Lu-PSMA-617 was performed approximately 24 hours after infusion of
the therapeutic radiotracer after each of four cycles administered 6 weeks
apart, demonstrating localization of the therapeutic radiopharmaceutical to
the metastases. Index lesions in lymph node, bone, and liver (arrows)
demonstrate decreased intensity of uptake with each cycle of therapy. (C)
After cycle 2, the hepatic and nodal metastases were no longer conspicuous,
and (E) after cycle 4, the spine metastasis was no longer conspicuous.
Imaging the therapeutic radionuclide enables confirmation of effective
delivery to the sites of cancer and detection of treatment response over the
course of therapy, demonstrated by the changes in the imaged index lesions
over time.

References

1. Bannik K , Madas B , Jarzombek M , et al. . Radiobiological effects of the alpha emitter Ra-223 on tumor cells . Sci Rep 2019. ; 9 ( 1 ): 18489 . [PMC free article] [PubMed[]
2. Kendi AT , Halfdanarson TR , Packard A , Dundar A , Subramaniam RM . Therapy with 177Lu-DOTATATE: clinical implementation and impact on care of patients with neuroendocrine tumors . AJR Am J Roentgenol 2019. ; 213 ( 2 ): 309 – 317 . [PubMed[]
3. Modoni S , Frangos S , Iakovou I , Boero M , Mansi L . Theragnostics before we found its name . Q J Nucl Med Mol Imaging 2021. ; 65 ( 4 ): 299 – 305 . [PubMed[]
4. Chapman EM . History of the discovery and early use of radioactive iodine . JAMA 1983. ; 250 ( 15 ): 2042 – 2044 . [PubMed[]
5. Kassis AI , Adelstein SJ . Radiobiologic principles in radionuclide therapy . J Nucl Med 2005. ; 46 ( Suppl 1 ): 4S – 12S . [PubMed[]
6. Parker C , Lewington V , Shore N , et al. . Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: a review . JAMA Oncol 2018. ; 4 ( 12 ): 1765 – 1772 . [PubMed[]
7. Bushnell DL , Madsen MT , O’cdorisio T , et al. . Feasibility and advantage of adding (131)I-MIBG to (90)Y-DOTATOC for treatment of patients with advanced stage neuroendocrine tumors . EJNMMI Res 2014. ; 4 ( 1 ): 38 . [PMC free article] [PubMed[]
8. Li M , Liu D , Lee D , et al. . Targeted alpha-particle radiotherapy and immune checkpoint inhibitors induces cooperative inhibition on tumor growth of malignant melanoma . Cancers (Basel) 2021. ; 13 ( 15 ): 3676 . [PMC free article] [PubMed[]
9. Ku A , Facca VJ , Cai Z , Reilly RM . Auger electrons for cancer therapy - a review . EJNMMI Radiopharm Chem 2019. ; 4 ( 1 ): 27 . [PMC free article] [PubMed[]
10. Lawhn-Heath C , Hope TA , Martinez J , et al. . Dosimetry in radionuclide therapy: the clinical role of measuring radiation dose . Lancet Oncol 2022. ; 23 ( 2 ): e75 – e87 . [PubMed[]
11. Wessels BW , Konijnenberg MW , Dale RG , et al. . MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response--implications for radionuclide therapy . J Nucl Med 2008. ; 49 ( 11 ): 1884 – 1899 . [PubMed[]
12. Maxon HR , Thomas SR , Hertzberg VS , et al. . Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer . N Engl J Med 1983. ; 309 ( 16 ): 937 – 941 . [PubMed[]
13. Van Nostrand D , Atkins F , Yeganeh F , Acio E , Bursaw R , Wartofsky L . Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma . Thyroid 2002. ; 12 ( 2 ): 121 – 134 . [PubMed[]
14. Jungels C , Karfis I . 131I-metaiodobenzylguanidine and peptide receptor radionuclide therapy in pheochromocytoma and paraganglioma . Curr Opin Oncol 2021. ; 33 ( 1 ): 33 – 39 . [PubMed[]
15. Sundlöv A , Sjögreen-Gleisner K , Svensson J , et al. . Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry . Eur J Nucl Med Mol Imaging 2017. ; 44 ( 9 ): 1480 – 1489 . [PMC free article] [PubMed[]
16. Ciarallo A , Rivera J . Radioactive iodine therapy in differentiated thyroid cancer: 2020 update . AJR Am J Roentgenol 2020. ; 215 ( 2 ): 285 – 291 . [PubMed[]
17. Fischer M , Kampen WU . Radionuclide therapy of bone metastases . Breast Care (Basel) 2012. ; 7 ( 2 ): 100 – 107 . [PMC free article] [PubMed[]
18. Grünwald F , Ezziddin S . 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors . Semin Nucl Med 2010. ; 40 ( 2 ): 153 – 163 . [PubMed[]
19. Parker C , Nilsson S , Heinrich D , et al.; ALSYMPCA Investigators . Alpha emitter radium-223 and survival in metastatic prostate cancer . N Engl J Med 2013. ; 369 ( 3 ): 213 – 223 . [PubMed[]
20. Suominen MI , Fagerlund KM , Rissanen JP , et al. . Radium-223 inhibits osseous prostate cancer growth by dual targeting of cancer cells and bone microenvironment in mouse models . Clin Cancer Res 2017. ; 23 ( 15 ): 4335 – 4346 . [PMC free article] [PubMed[]
21. Burkett BJ , Dundar A , Young JR , et al. . How we do it: a multidisciplinary approach to 177Lu DOTATATE peptide receptor radionuclide therapy . Radiology 2021. ; 298 ( 2 ): 261 – 274 . [PubMed[]
22. Strosberg J , El-Haddad G , Wolin E , et al.; NETTER-1 trial investigators . phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors . N Engl J Med 2017. ; 376 ( 2 ): 125 – 135 . [PMC free article] [PubMed[]
23. Strosberg JR , Caplin ME , Kunz PL , et al.; NETTER-1 investigators . 177Lu-Dotatate plus long-acting octreotide versus highdose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial . Lancet Oncol 2021. ; 22 ( 12 ): 1752 – 1763 . [Published correction appears in Lancet Oncol 2022;23(2):e59.] [PubMed[]
24. Fani M , Nicolas GP , Wild D . Somatostatin receptor antagonists for imaging and therapy . J Nucl Med 2017. ; 58 ( Suppl 2 ): 61S – 66S . [PubMed[]
25. Nicolas G , Mansi R , Vomstein S , et al. . Wider safety window with radiolabeled somatostatin receptor antagonists over agonists . J Nucl Med 2015. ; 56 ( Supplement 3 ): 335 – 335 . []
26. Study to Evaluate the Efficacy and Safety of Lutathera in Patients With Grade 2 and Grade 3 Advanced GEP-NET (NETTER-2) . National Institute of Health U.S. National Library of Medicine; . https://clinicaltrials.gov/ct2/show/NCT03972488. Posted June 3, 2019. Updated May 24, 2023. Accessed November 1, 2022. []
27. Hofman MS , Emmett L , Violet J , et al.; ANZUP TheraP team . TheraP: a randomized phase 2 trial of 177 Lu-PSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603) . BJU Int 2019. ; 124 ( Suppl 1 ): 5 – 13 . [PubMed[]
28. Sartor O , de Bono J , Chi KN , et al.; VISION Investigators . Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer . N Engl J Med 2021. ; 385 ( 12 ): 1091 – 1103 . [PMC free article] [PubMed[]
29. Emmett L , Willowson K , Violet J , Shin J , Blanksby A , Lee J . Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy . J Med Radiat Sci 2017. ; 64 ( 1 ): 52 – 60 . [PMC free article] [PubMed[]
30. Mullard A . FDA approves first PSMA-targeted radiopharmaceutical . Nat Rev Drug Discov 2022. ; 21 ( 5 ): 327 . [PubMed[]
31. Kratochwil C , Bruchertseifer F , Giesel FL , et al. . 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer . J Nucl Med 2016. ; 57 ( 12 ): 1941 – 1944 . [PubMed[]
32. Satapathy S , Sood A , Das CK , Mittal BR . Evolving role of 225Ac-PSMA radioligand therapy in metastatic castration-resistant prostate cancer-a systematic review and meta-analysis . Prostate Cancer Prostatic Dis 2021. ; 24 ( 3 ): 880 – 890 . [PubMed[]
33. Sundlöv A , Sjögreen-Gleisner K . Peptide receptor radionuclide therapy - prospects for personalised treatment . Clin Oncol (R Coll Radiol) 2021. ; 33 ( 2 ): 92 – 97 . [PubMed[]
34. Krenning EP , Bakker WH , Breeman WA , et al. . Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin . Lancet 1989. ; 1 ( 8632 ): 242 – 244 . [PubMed[]
35. Fendler WP , Eiber M , Beheshti M , et al. . PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0 . Eur J Nucl Med Mol Imaging 2023. ; 50 ( 5 ): 1466 – 1486 . [PMC free article] [PubMed[]
36. Hope TA , Abbott A , Colucci K , et al. . NANETS/SNMMI procedure standard for somatostatin receptor-based peptide receptor radionuclide therapy with 177Lu-DOTATATE . J Nucl Med 2019. ; 60 ( 7 ): 937 – 943 . [PubMed[]
37. Fanti S , Briganti A , Emmett L , et al. . EAU-EANM consensus statements on the role of prostate-specific membrane antigen positron emission tomography/computed tomography in patients with prostate cancer and with respect to [177Lu]Lu-PSMA radioligand therapy . Eur Urol Oncol 2022. ; 5 ( 5 ): 530 – 536 . [PubMed[]
38. Hope TA , Allen-Auerbach M , Bodei L , et al. . SNMMI Procedure Standard/EANM Practice Guideline for SSTR PET: Imaging Neuroendocrine Tumors . J Nucl Med 2023. ; 64 ( 2 ): 204 – 210 . [PubMed[]
39. Kratochwil C , Fendler WP , Eiber M , et al. . EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT) . Eur J Nucl Med Mol Imaging 2019. ; 46 ( 12 ): 2536 – 2544 . [PubMed[]
40. Pathmanandavel S , Crumbaker M , Ho B , et al. . Evaluation of 177 Lu-PSMA-617 SPECT/CT quantitation as a response biomarker within a prospective 177 Lu-PSMA-617 and NOX66 combination trial (LuPIN) . J Nucl Med 2022. ; 64 ( 2 ): 221 – 226 . [PMC free article] [PubMed[]
41. Helgebostad R , Revheim ME , Johnsrud K , Amlie K , Alavi A , Connelly JP . Clinical applications of somatostatin receptor (agonist) PET tracers beyond neuroendocrine tumors . Diagnostics (Basel) 2022. ; 12 ( 2 ): 528 . [PMC free article] [PubMed[]
42. Kong G , Grozinsky-Glasberg S , Hofman MS , et al. . Efficacy of peptide receptor radionuclide therapy for functional metastatic paraganglioma and pheochromocytoma . J Clin Endocrinol Metab 2017. ; 102 ( 9 ): 3278 – 3287 . [PubMed[]
43. Kolasinska-Ćwikła A , Pęczkowska M , Ćwikła JB , et al. . A clinical efficacy of PRRT in patients with advanced, nonresectable, paraganglioma-pheochromocytoma, related to SDHx gene mutation . J Clin Med 2019. ; 8 ( 7 ): 952 . [PMC free article] [PubMed[]
44. Forrer F , Riedweg I , Maecke HR , Mueller-Brand J . Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma . Q J Nucl Med Mol Imaging 2008. ; 52 ( 4 ): 334 – 340 . [PubMed[]
45. Pinato DJ , Black JR , Ramaswami R , Tan TM , Adjogatse D , Sharma R . Peptide receptor radionuclide therapy for metastatic paragangliomas . Med Oncol 2016. ; 33 ( 5 ): 47 . [PubMed[]
46. Puranik AD , Kulkarni HR , Singh A , Baum RP . Peptide receptor radionuclide therapy with (90)Y/ (177)Lu-labelled peptides for inoperable head and neck paragangliomas (glomus tumours) . Eur J Nucl Med Mol Imaging 2015. ; 42 ( 8 ): 1223 – 1230 . [PubMed[]
47. van Essen M , Krenning EP , Kooij PP , et al. . Effects of therapy with [177Lu-DOTA0, Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma . J Nucl Med 2006. ; 47 ( 10 ): 1599 – 1606 . [PubMed[]
48. Zovato S , Kumanova A , Demattè S , et al. . Peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE in individuals with neck or mediastinal paraganglioma (PGL) . Horm Metab Res 2012. ; 44 ( 5 ): 411 – 414 . [PubMed[]
49. Shah MH , Goldner WS , Halfdanarson TR , et al. . NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2.2018 . J Natl Compr Canc Netw 2018. ; 16 ( 6 ): 693 – 702 . [PubMed[]
50. Kong G , Callahan J , Hofman MS , et al. . High clinical and morphologic response using 90Y-DOTA-octreotate sequenced with 177Lu-DOTA-octreotate induction peptide receptor chemoradionuclide therapy (PRCRT) for bulky neuroendocrine tumours . Eur J Nucl Med Mol Imaging 2017. ; 44 ( 3 ): 476 – 489 . [PubMed[]
51. Jha A , Taïeb D , Carrasquillo JA , et al. . High-specific-activity-131I-MIBG versus 177Lu-DOTATATE targeted radionuclide therapy for metastatic pheochromocytoma and paraganglioma . Clin Cancer Res 2021. ; 27 ( 11 ): 2989 – 2995 . [PMC free article] [PubMed[]
52. Bartolomei M , Bodei L , De Cicco C , et al. . Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma . Eur J Nucl Med Mol Imaging 2009. ; 36 ( 9 ): 1407 – 1416 . [PubMed[]
53. Seystahl K , Stoecklein V , Schüller U , et al. . Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake . Neuro-oncol 2016. ; 18 ( 11 ): 1538 – 1547 . [PMC free article] [PubMed[]
54. Zahid A , Johnson DR , Kizilbash SH . Efficacy of 177Lu-Dotatate therapy in the treatment of recurrent meningioma . Mayo Clin Proc Innov Qual Outcomes 2021. ; 5 ( 1 ): 236 – 240 . [PMC free article] [PubMed[]
55. Van de Wiele C , Sathekge M , de Spiegeleer B , et al. . PSMA expression on neovasculature of solid tumors . Histol Histopathol 2020. ; 35 ( 9 ): 919 – 927 . [PubMed[]
56. Uijen MJM , Derks YHW , Merkx RIJ , et al. . PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports . Eur J Nucl Med Mol Imaging 2021. ; 48 ( 13 ): 4350 – 4368 . [PMC free article] [PubMed[]
57. Kunikowska J , Charzyńska I , Kuliński R , Pawlak D , Maurin M , Królicki L . Tumor uptake in glioblastoma multiforme after IV injection of [177Lu]Lu-PSMA-617 . Eur J Nucl Med Mol Imaging 2020. ; 47 ( 6 ): 1605 – 1606 . [PMC free article] [PubMed[]
58. Kumar A , Ballal S , Yadav MP , et al. . 177Lu-/68Ga-PSMA theranostics in recurrent glioblastoma multiforme: proof of concept . Clin Nucl Med 2020. ; 45 ( 12 ): e512 – e513 . [PubMed[]
59. Assadi M , Ahmadzadehfar H . 177Lu-DOTATATE and 177Lu-prostate-specific membrane antigen therapy in a patient with advanced metastatic radioiodine-refractory differentiated thyroid cancer after failure of tyrosine kinase inhibitors treatment . World J Nucl Med 2019. ; 18 ( 4 ): 406 – 408 . [PMC free article] [PubMed[]
60. Hirmas N , Leyh C , Sraieb M , et al. . 68Ga-PSMA-11 PET/CT improves tumor detection and impacts management in patients with hepatocellular carcinoma . J Nucl Med 2021. ; 62 ( 9 ): 1235 – 1241 . [PMC free article] [PubMed[]
61. van Essen M , Krenning EP , Kam BL , de Herder WW , Feelders RA , Kwekkeboom DJ . Salvage therapy with (177)Lu-octreotate in patients with bronchial and gastroenteropancreatic neuroendocrine tumors . J Nucl Med 2010. ; 51 ( 3 ): 383 – 390 . [PubMed[]
62. Sabet A , Haslerud T , Pape U-F , et al. . Outcome and toxicity of salvage therapy with 177Lu-octreotate in patients with metastatic gastroenteropancreatic neuroendocrine tumours . Eur J Nucl Med Mol Imaging 2014. ; 41 ( 2 ): 205 – 210 . [PubMed[]
63. Hoe HJ , Wyld D . Salvage 177Lu-dotatate therapy in patients with progressive metastatic neuroendocrine tumors . J Clin Oncol 2022. ; 40 ( 16 Suppl ): e16212 . []
64. Zemczak A , Gut P , Pawlak D , et al. . The safety and efficacy of the repeated PRRT with [90Y]Y/[177Lu]Lu-DOTATATE in patients with NET . Int J Endocrinol 2021. ; 2021 : 6615511 . [PMC free article] [PubMed[]
65. Strosberg J , Leeuwenkamp O , Siddiqui MK . Peptide receptor radiotherapy re-treatment in patients with progressive neuroendocrine tumors: A systematic review and meta-analysis . Cancer Treat Rev 2021. ; 93 : 102141 . [Published correction appears in Cancer Treat Rev 2021;97:102203.] [PubMed[]
66. Violet J , Sandhu S , Iravani A , et al. . Long-term follow-up and outcomes of retreatment in an expanded 50-patient single-center phase ii prospective trial of 177Lu-PSMA-617 theranostics in metastatic castration-resistant prostate cancer . J Nucl Med 2020. ; 61 ( 6 ): 857 – 865 . [PMC free article] [PubMed[]
67. Ho AL , Grewal RK , Leboeuf R , et al. . Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer . N Engl J Med 2013. ; 368 ( 7 ): 623 – 632 . [PMC free article] [PubMed[]
68. Freudenberg LS , Jentzen W , Görges R , et al. . 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact . Nucl Med (Stuttg) 2007. ; 46 ( 4 ): 121 – 128 . [PubMed[]
69. Ilan E , Sandström M , Wassberg C , et al. . Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE . J Nucl Med 2015. ; 56 ( 2 ): 177 – 182 . [PubMed[]
70. Del Prete M , Buteau FA , Beauregard JM . Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study . Eur J Nucl Med Mol Imaging 2017. ; 44 ( 9 ): 1490 – 1500 . [PubMed[]
71. Garske-Román U , Sandström M , Fröss Baron K , et al. . Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity . Eur J Nucl Med Mol Imaging 2018. ; 45 ( 6 ): 970 – 988 . [PMC free article] [PubMed[]
72. Ljungberg M , Celler A , Konijnenberg MW , et al. . EANM Dosimetry Committee. MIRD pamphlet No. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy . J Nucl Med 2016. ; 57 ( 1 ): 151 – 162 . [PubMed[]
73. Macapinlac HA , Kemeny N , Daghighian F , et al. . Pilot clinical trial of 5-iodo-2′-deoxyuridine in the treatment of colorectal cancer metastatic to the liver . J Nucl Med 1996. ; 37 ( 4 Suppl ): 25S – 29S . [PubMed[]
74. Krenning EP , de Jong M , Kooij PP , et al. . Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy . Ann Oncol 1999. ; 10 ( Suppl 2 ): S23 – S29 . [PubMed[]
75. Valkema R , De Jong M , Bakker WH , et al. . Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience . Semin Nucl Med 2002. ; 32 ( 2 ): 110 – 122 . [PubMed[]
76. Vallis KA , Reilly RM , Scollard D , et al. . Phase I trial to evaluate the tumor and normal tissue uptake, radiation dosimetry and safety of (111)In-DTPA-human epidermal growth factor in patients with metastatic EGFR-positive breast cancer . Am J Nucl Med Mol Imaging 2014. ; 4 ( 2 ): 181 – 192 . [PMC free article] [PubMed[]
77. Li L , Quang TS , Gracely EJ , et al. . A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme . J Neurosurg 2010. ; 113 ( 2 ): 192 – 198 . [PubMed[]
78. Nunes RF , Zuppani RMF , Coutinho AM , et al. . General concepts in theranostics . PET Clin 2021. ; 16 ( 3 ): 313 – 326 . [PubMed[]
79. Mansi R , Nock BA , Dalm SU , Busstra MB , van Weerden WM , Maina T . Radiolabeled bombesin analogs . Cancers (Basel) 2021. ; 13 ( 22 ): 5766 . [PMC free article] [PubMed[]
80. Kurth J , Krause BJ , Schwarzenböck SM , Bergner C , Hakenberg OW , Heuschkel M . First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer . Eur J Nucl Med Mol Imaging 2020. ; 47 ( 1 ): 123 – 135 . [PubMed[]
81. Dalm SU , Bakker IL , de Blois E , et al. . 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology . J Nucl Med 2017. ; 58 ( 2 ): 293 – 299 . [PubMed[]
82. Kratochwil C , Flechsig P , Lindner T , et al. . 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer . J Nucl Med 2019. ; 60 ( 6 ): 801 – 805 . [PMC free article] [PubMed[]
83. Lindner T , Loktev A , Altmann A , et al. . Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein . J Nucl Med 2018. ; 59 ( 9 ): 1415 – 1422 . [PubMed[]
84. Kuyumcu S , Sanli Y , Subramaniam RM . Fibroblast-activated protein inhibitor PET/CT: cancer diagnosis and management . Front Oncol 2021. ; 11 : 758958 . [PMC free article] [PubMed[]
85. Assadi M , Rekabpour SJ , Jafari E , et al. . Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: a preliminary study . Clin Nucl Med 2021. ; 46 ( 11 ): e523 – e530 . [PubMed[]
86. Baum RP , Schuchardt C , Singh A , et al. . Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results . J Nucl Med 2022. ; 63 ( 3 ): 415 – 423 . [PMC free article] [PubMed[]
87. Ferdinandus J , Costa PF , Kessler L , et al. . Initial clinical experience with 90Y-FAPI-46 Radioligand Therapy for Advanced-Stage Solid Tumors: A Case Series of 9 Patients . J Nucl Med 2022. ; 63 ( 5 ): 727 – 734 . [PMC free article] [PubMed[]
88. Loktev A , Lindner T , Burger EM , et al. . Development of fibroblast activation protein-targeted radiotracers with improved tumor retention . J Nucl Med 2019. ; 60 ( 10 ): 1421 – 1429 . [PMC free article] [PubMed[]
89. Ilhan H , Gosewisch A , Böning G , et al. . Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC . Eur J Nucl Med Mol Imaging 2021. ; 48 ( 4 ): 1262 – 1263 . [PMC free article] [PubMed[]
90. Bal C , Yadav M , Ballal S , Tripathi M . Safety and therapeutic efficacy of 225Ac-DOTATATE targeted alpha therapy in metastatic gastroenteropancreatic neuroendocrine tumors stable or refractory to 177Lu-DOTATATE PRRT . J Nucl Med 2020. ; 61 ( Supplement 1 ): 416 . [PubMed[]
91. Rahbar K , Essler M , Pabst KM , et al. . Safety and survival outcomes of lutetium-177-prostate-specific membrane antigen therapy in patients with metastatic castration-resistant prostate cancer with prior radium-223 treatment: the RALU study . J Nucl Med 2023. ; 64 ( 4 ): 574 – 578 . [PMC free article] [PubMed[]
92. Claringbold PG , Turner JH . Pancreatic neuroendocrine tumor control: durable objective response to combination 177Lu-octreotate-capecitabine-temozolomide radiopeptide chemotherapy . Neuroendocrinology 2016. ; 103 ( 5 ): 432 – 439 . [PubMed[]
93. Kesavan M , Grover P , Lam WS , Claringbold PG , Turner JH . Long-term hematologic toxicity of 177Lu-octreotate-capecitabine-temozolomide therapy of GEPNET . Endocr Relat Cancer 2021. ; 28 ( 7 ): 521 – 527 . [PubMed[]
94. Pavlakis N , Ransom DT , Wyld D , et al. . Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: 177Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) and capecitabine plus temozolomide (CAPTEM) for pancreas and midgut neuroendocrine tumours (pNETS, mNETS)—Final results . J Clin Oncol 2022. ; 40 ( 16 suppl ): 4122 . []

Articles from Radiology: Imaging Cancer are provided here courtesy of Radiological Society of North America







Plaats een reactie ...

Reageer op "Theranostiek, succesvol bij prostaatkanker en schildklierkanker lijkt ook interessante behandeling voor borstkanker te kunnen zijn, aldus prof. dr. Dalm uit Erasmus MC"


Gerelateerde artikelen