7 oktober 2023: lees ook dit artikel: https://kanker-actueel.nl/ctdna-analyse-bij-patienten-met-hrher2-gevorderde-borstkanker-behandeld-in-de-monaleesa-studies-met-ribociclib-plus-endocriene-therapie-toont-specifieke-genmutaties-die-positief-en-negatief-reageerden-op-ribociclib.html

8 april 2023: zie ook dit artikel: https://kanker-actueel.nl/ctdna-een-bloedtest-op-circulerend-dna-geeft-98-procent-betrouwbaarheid-bij-borstkankerpatienten-en-bewijst-effectiviteit-van-gebruik-in-de-klinische-praktijk-bij-studie-met-350-patienten.html

8 april 2023: Bron: N Engl J Med 2013; 368:1199-1209

Al in 2013 werd deze studie gepubliceerd. Dus tien jaar 
geleden bewees het meten van Circulerend tumor-DNA (ctDNA) al bij borstkankerpatiënten of een behandeling effectief was of niet. En nog steeds wordt dit niet algemeen gedaan bij kankerpatiënten terwijl dit een manier van meten is die weinig belastend is voor kankerpatiënten. Wel zijn er inmiddels Liquid biopsie centra / laboratoria in Nederland en België in nagenoeg alle academische ziekenhuizen.  Een van de bekendste is in het Erasmus Rotterdam. Of in Amsterdam.

In een kleinschalige studie werd Circulerend tumor-DNA (ctDNA) met succes gedetecteerd bij 29 van de 30 vrouwen (97%) bij wie somatische genomische veranderingen werden geïdentificeerd; CA 15-3 en circulerende tumorcellen werden gedetecteerd bij respectievelijk 21 van de 27 vrouwen (78%) en 26 van de 30 vrouwen (87%).

Circulerende tumor-DNA-waarden vertoonden een groter dynamisch bereik en een grotere correlatie met veranderingen in tumorbelasting dan CA 15-3 of circulerende tumorcellen.de geteste maatregelen leverde circulerend tumor-DNA het eerste meting resultaat voor de respons op de behandeling bij 10 van de 19 vrouwen (53%).

Circulerende DNA-fragmenten met tumorspecifieke sequentieveranderingen (circulerend tumor-DNA) worden aangetroffen in de celvrije fractie van bloed, die een variabel en over het algemeen klein deel van het totale circulerende DNA vertegenwoordigen. (ref. 11,12). 
Vooruitgang in sequentietechnologieën heeft de snelle identificatie mogelijk gemaakt van somatische genomische veranderingen in individuele tumoren en deze kunnen worden gebruikt om gepersonaliseerde assays te ontwerpen voor het monitoren van circulerend tumor-DNA. Studies hebben de haalbaarheid aangetoond van het gebruik van circulerend tumor-DNA om de tumordynamiek te monitoren bij een beperkt aantal patiënten met diverse solide kankers, maar er zijn weinig gevallen van borstkanker geanalyseerd. (ref. 13-20 ).

In een kleinschalige studie geven de onderzoekers een directe vergelijking tussen circulerend tumor-DNA en andere circulerende biomarkers (CA 15-3 en circulerende tumorcellen) en medische beeldvorming voor de niet-invasieve monitoring van uitgezaaide borstkanker.




Figure 1. Enrollment of Patients and Collection of Clinical Samples.

In the 30 women who were found to have somatic mutations, structural variants (SVs), or both, the genomic alterations were determined through targeted deep sequencing or whole-genome paired-end sequencing of tumor-tissue specimens and matched normal-tissue specimens. CA 15-3 denotes cancer antigen 15-3.

En in deze grafiek zie je de effecten van de ctDNA meting op de behandeling:




Figure 4. Comparison of Circulating Biomarkers to Monitor Tumor Dynamics and Predict Survival.

Panels A, B, C, and D show serial circulating tumor DNA (ctDNA) levels (number of copies per milliliter of plasma), circulating tumor cell (CTC) numbers (per 7.5 ml of whole blood), CA 15-3 levels (U per milliliter), and disease status as ascertained on computed tomography (vertical dashed lines) for four patients (one in each panel). Details of endocrine or cytotoxic therapy are indicated by colored shading. The orange dashed line indicates the threshold of 5 CTCs per 7.5 ml of whole blood. The green dashed line indicates the CA 15-3 threshold of 32.4 U per milliliter. ND denotes not detected, PD progressive disease, PR partial response, and SD stable disease. Panel E shows the results of a Cox regression model, which identified an inverse relationship between quantiles (quant.) of ctDNA (indicated in copies per milliliter of plasma) and overall survival, with increasing levels significantly associated with poor overall survival (P<0.001). At 200, 400, and 600 days, a total of 23, 8, and 3 patients were at risk, respectively. Panel F shows that increasing ctDNA levels (copies per milliliter), as indicated on the bottom x axis, and increasing numbers of CTCs (per 7.5 ml of whole blood), as indicated on the top x axis, were associated with an increased log e relative hazard. The prognostic discrimination power of circulating tumor DNA level was greatest with levels up to 2000 copies per milliliter. Patients with levels of more than 2000 copies per milliliter were uniformly found to have the worst prognosis. The prognostic power of CTCs increased according to the number of cells. Dashed lines represent 95% confidence intervals.


Het volledige studieverslag is gratis in te zien of te downloaden. Klik daarvoor op de titel van het abstract:

Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer

List of authors.
  • Sarah-Jane Dawson, F.R.A.C.P., Ph.D., 
  • Dana W.Y. Tsui, Ph.D., 
  • Muhammed Murtaza, M.B., B.S., 
  • Heather Biggs, M.A., 
  • Oscar M. Rueda, Ph.D., 
  • Suet-Feung Chin, Ph.D., 
  • Mark J. Dunning, Ph.D., 
  • Davina Gale, B.Sc., 
  • Tim Forshew, Ph.D., 
  • Betania Mahler-Araujo, M.D., 
  • Sabrina Rajan, M.D., 
  • Sean Humphray, B.Sc., 
March 28, 2013
N Engl J Med 2013; 368:1199-1209
DOI: 10.1056/NEJMoa1213261

Abstract

BACKGROUND

The management of metastatic breast cancer requires monitoring of the tumor burden to determine the response to treatment, and improved biomarkers are needed. Biomarkers such as cancer antigen 15-3 (CA 15-3) and circulating tumor cells have been widely studied. However, circulating cell-free DNA carrying tumor-specific alterations (circulating tumor DNA) has not been extensively investigated or compared with other circulating biomarkers in breast cancer.

METHODS

We compared the radiographic imaging of tumors with the assay of circulating tumor DNA, CA 15-3, and circulating tumor cells in 30 women with metastatic breast cancer who were receiving systemic therapy. We used targeted or whole-genome sequencing to identify somatic genomic alterations and designed personalized assays to quantify circulating tumor DNA in serially collected plasma specimens. CA 15-3 levels and numbers of circulating tumor cells were measured at identical time points.

RESULTS

Circulating tumor DNA was successfully detected in 29 of the 30 women (97%) in whom somatic genomic alterations were identified; CA 15-3 and circulating tumor cells were detected in 21 of 27 women (78%) and 26 of 30 women (87%), respectively. Circulating tumor DNA levels showed a greater dynamic range, and greater correlation with changes in tumor burden, than did CA 15-3 or circulating tumor cells. Among the measures tested, circulating tumor DNA provided the earliest measure of treatment response in 10 of 19 women (53%).

CONCLUSIONS

This proof-of-concept analysis showed that circulating tumor DNA is an informative, inherently specific, and highly sensitive biomarker of metastatic breast cancer. (Funded by Cancer Research UK and others.)

Discussion

In the detection of metastatic breast cancer, circulating tumor DNA shows superior sensitivity to that of other circulating biomarkers and has a greater dynamic range that correlates with changes in tumor burden. Circulating tumor DNA often provides the earliest measure of treatment response, as has been supported by recent analyses of circulating tumor DNA in other solid cancers.20,32

The monitoring of circulating tumor DNA levels requires the identification of somatic alterations in individual patients. Future developments will reduce the cost of whole-genome paired-end sequencing, and targeted sequencing can be readily expanded to include other genes, in addition to PIK3CA and TP53, known to be recurrently mutated in breast cancer.33-35 Here we have demonstrated the use of two strategies to quantify circulating tumor DNA: digital PCR assay and targeted deep sequencing. Digital PCR assay provides high accuracy and sensitivity but requires the design of personalized assays, an expensive and rate-limiting step. Targeted deep sequencing of plasma DNA provides a cost-effective alternative for high-throughput analysis and may overcome limitations of initial tumor-tissue assessment by virtue of allowing for the direct identification of mutations in plasma.22 However, our findings on circulating tumor DNA are not limited to these molecular platforms. Other methods for the identification of somatic mutations (such as exome sequencing33) or for the quantification of circulating tumor DNA (e.g., BEAMing [beads, emulsions, amplification, and magnetics] technology13 or Safe-SeqS [Safe-Sequencing System]36) may be applied with even greater sensitivity. Recent studies have also shown the feasibility of performing genomewide analysis of tumor-associated copy-number changes and mutations in plasma.37-39

Our expanding knowledge of the genetic mechanisms underpinning breast cancer now provides a framework to better stratify patients.30,33-35,40,41 The analysis of circulating tumor DNA represents a unique opportunity to integrate this knowledge into the clinical arena. Although the acquisition of tumor-tissue specimens will continue to be important, the use of biopsy specimens is limited, since such material may not capture tumor heterogeneity; in addition, repeated biopsy is impractical. Circulating tumor DNA represents a “liquid biopsy” alternative, allowing for sensitive and specific serial sampling to be performed during the course of treatment.

Supported by grants from Cancer Research UK, and the Experimental Cancer Medicine Centre and National Institute for Health Research Cambridge Biomedical Research Centre, and by an Australian National Health and Medical Research Council–R.G. Menzies Early Career Fellowship (to Dr. Dawson).

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

Drs. Dawson and Tsui and Drs. Caldas and Rosenfeld contributed equally to this article.

This article was published on March 13, 2013, at NEJM.org.

We thank Linda Jones and Susan Richardson for recruiting patients into the study; all the medical and ancillary staff in the breast-cancer clinic and the patients for consenting to participate; Sonia Bradbury from the Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, for assistance with the CA 15-3 analysis; the Genomics, Histopathology, Bioinformatic, and Biorepository Core Facilities at the Cancer Research UK Cambridge Institute; the Addenbrooke's Human Research Tissue Bank (supported by the National Institute for Health Research Cambridge Biomedical Research Centre); and Sarah Dawson and Sarah Vowler for their contribution to the statistical analysis.

Author Affiliations

From the Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Institute, Li Ka Shing Centre (S.-J.D., D.W.Y.T., M.M., O.M.R., S.-F.C., M.J.D., D.G., T.F., C.C., N.R.), the Departments of Histopathology (B.M.-A.), Radiology (S.R., M.W.), and Clinical Biochemistry and Immunology (D.H.) and the Cambridge Breast Unit (S.-J.D., H.B., B.M.-A., S.R., M.W., C.C.), Addenbrooke's Hospital, Cambridge University Hospital National Health Service Foundation Trust and National Institute for Health Research Cambridge Biomedical Research Centre, and the Cambridge Experimental Cancer Medicine Centre (C.C.), Cambridge; and Illumina, Little Chesterford (S.H., J.B., D.B.) — all in the United Kingdom; and the Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia (S.-J.D.).

Address reprint requests to Dr. Rosenfeld or Dr. Caldas at Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom, or at .


References (41)

  1. 1.Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-2917

    Google Scholar. opens in new tab
  2. 2.Lauro S, Trasatti L, Bordin F, et al. Comparison of CEA, MCA, CA 15-3 and CA 27-29 in follow-up and monitoring therapeutic response in breast cancer patients. Anticancer Res 1999;19:3511-3515

    Google Scholar. opens in new tab
  3. 3.Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287-5312

    Google Scholar. opens in new tab
  4. 4.Duffy MJ, Evoy D, McDermott EW. CA 15-3: uses and limitation as a biomarker for breast cancer. Clin Chim Acta 2010;411:1869-1874

    Google Scholar. opens in new tab
  5. 5.Lianidou ES, Markou A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 2011;57:1242-1255

    Google Scholar. opens in new tab
  6. 6.Nagrath S, Sequist LV, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450:1235-1239

    Google Scholar. opens in new tab
  7. 7.Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008;8:329-340

    Google Scholar. opens in new tab
  8. 8.Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-791

    Google Scholar. opens in new tab
  9. 9.Mego M, De Giorgi U, Dawood S, et al. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer 2011;129:417-423

    Google Scholar. opens in new tab
  10. 10.Pierga JY, Hajage D, Bachelot T, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol 2012;23:618-624

    Google Scholar. opens in new tab
  11. 11.Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011;11:426-437

    Google Scholar. opens in new tab
  12. 12.Gormally E, Caboux E, Vineis P, Hainaut P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 2007;635:105-117

    Google Scholar. opens in new tab
  13. 13.Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14:985-990

    Google Scholar. opens in new tab
  14. 14.Leary RJ, Kinde I, Diehl F, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2010;2:20ra14-20ra14

    Google Scholar. opens in new tab
  15. 15.McBride DJ, Orpana AK, Sotiriou C, et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 2010;49:1062-1069

    Google Scholar. opens in new tab
  16. 16.Chen X, Bonnefoi H, Diebold-Berger S, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999;5:2297-2303

    Google Scholar. opens in new tab
  17. 17.Yung TK, Chan KC, Mok TS, Tong J, To KF, Lo YM. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 2009;15:2076-2084

    Google Scholar. opens in new tab
  18. 18.Nakamura T, Sueoka-Aragane N, Iwanaga K, et al. A noninvasive system for monitoring resistance to epidermal growth factor receptor tyrosine kinase inhibitors with plasma DNA. J Thorac Oncol 2011;6:1639-1648

    Google Scholar. opens in new tab
  19. 19.Otsuka J, Okuda T, Sekizawa A, et al. Detection of p53 mutations in the plasma DNA of patients with ovarian cancer. Int J Gynecol Cancer 2004;14:459-464

    Google Scholar. opens in new tab
  20. 20.Diaz LA Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486:537-540

    Google Scholar. opens in new tab
  21. 21.Eisenhauer EA, Therasse P, Bogaerts J, et al. New Response Evaluation Criteria in Solid Tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247

    Google Scholar. opens in new tab
  22. 22.Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012;4:136ra68-136ra68

    Google Scholar. opens in new tab
  23. 23.Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999;96:9236-9241

    Google Scholar. opens in new tab
  24. 24.Wang J, Ramakrishnan R, Tang Z, et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem 2010;56:623-632

    Google Scholar. opens in new tab
  25. 25.Lo YM, Lun FM, Chan KC, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci U S A 2007;104:13116-13121

    Google Scholar. opens in new tab
  26. 26.Efron B, Tibshirani R. An introduction to the bootstrap. London: Chapman & Hall/CRC, 1993.

    Google Scholar. opens in new tab
  27. 27.Andersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. Ann Stat 1982;10:1100-1120

    Google Scholar. opens in new tab
  28. 28.Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011;39:D945-D950

    Google Scholar. opens in new tab
  29. 29.Stephens PJ, McBride DJ, Lin ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009;462:1005-1010

    Google Scholar. opens in new tab
  30. 30.Shah SP, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 2012;486:395-399

    Google Scholar. opens in new tab
  31. 31.Higgins MJ, Jelovac D, Barnathan E, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res 2012;18:3462-3469

    Google Scholar. opens in new tab
  32. 32.Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486:532-536

    Google Scholar. opens in new tab
  33. 33.Stephens PJ, Tarpey PS, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012;486:400-404

    Google Scholar. opens in new tab
  34. 34.Banerji S, Cibulskis K, Rangel-Escareno C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012;486:405-409

    Google Scholar. opens in new tab
  35. 35.The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61-70

    Google Scholar. opens in new tab
  36. 36.Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011;108:9530-9535

    Google Scholar. opens in new tab
  37. 37.Chan KC, Jiang P, Zheng YW, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 2013;59:211-224

    Google Scholar. opens in new tab
  38. 38.Shaw JA, Page K, Blighe K, et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 2012;22:220-231

    Google Scholar. opens in new tab
  39. 39.Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 2012;4:162ra154-162ra154

    Google Scholar. opens in new tab
  40. 40.Ellis MJ, Ding L, Shen D, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012;486:353-360

    Google Scholar. opens in new tab
  41. 41.Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486:346-352

    Google Scholar



Plaats een reactie ...

Reageer op "circulerend tumor-DNA (ctDNA) is een informatieve, specifieke en zeer gevoelige biomarker van uitgezaaide borstkanker en geeft uitstekende informatie over effect van behandelingen"


Gerelateerde artikelen
 

Gerelateerde artikelen

Mutaties in ESR1- en PIK3-pathway-genen >> circulerend tumor-DNA (ctDNA) >> ctDNA, een bloedtest op circulerend >>