Kanker Actueel maakt gebruik van cookies om ons websiteverkeer te analyseren om u een optimale bezoekerservaring te bieden. Bovendien plaatsen adverteerders tracking cookies om u gepersonaliseerde advertenties te tonen. Door op [OK] te klikken gaat u hiermee akkoord.
In 2020 en mei 2024 verschenen er nieuwe overzichtstudies (meta-analyses) die de waarde van vaccins gemaakt van het Newcastle Disease virus aantonen bij kankerpatiënten met verschillende vormen van vooral solide tumoren.
Het werkingsmechanisme van het Newcastle Disease virus is in feite redelijk eenvoudig. Het Newcastle Disease virus infecteert alleen kankercellen, dupliceert zichzelf daarna binnenin de kankercellen tot deze openbreken, zich in het lichaam verspreiden en de hoop is dan dat deze kankercellen aangepakt worden door het immuunsysteem.
Zie deze twee afbeeldingen hoe dit vaccin te werk gaat:
Newcastle disease virus (NDV) is een RNA-virus dat behoort tot de familie Paramyxoviridae. In de natuur infecteert NDV voornamelijk vogels, maar vormt het geen bedreiging voor de gezondheid van de mens. Meerdere onderzoeken hebben aangetoond dat NDV oncolytisch potentieel heeft vanwege zijn voorkeur voor infectie en replicatie in menselijke kankercellen, terwijl normale cellen worden gespaard. Naast zijn directe lytische effecten, triggert het virus zowel aangeboren als adaptieve immuunreacties. In diermodellen is aangetoond dat injectie van NDV in een tumor resulteert in een lokale ontsteking en de rekrutering van tumorspecifieke T-cellen, een effect dat verder kan worden versterkt door het gebruik van virussen die coderen voor immuunmodulerende liganden en door combinaties met anti-PD medicijnen. Eerste klinische onderzoeken met natuurlijk voorkomend NDV dat intraveneus wordt toegediend, toonden duurzame reacties aan bij een aantal soorten kanker. Voor abstract zie verderop in dit artikel.
The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy.
is nog specifieker over het Newcastle Disease virus en de mogelijkheden van een vaccin binnen immuuntherapie. Zij schrijven over de v oordelen van het NDV virus het volgende o.a.:
Vergeleken met andere oncolytische virussen heeft NDV de volgende kenmerken:
(1) NDV bestaat uit een enkele negatieve streng die repliceert in het cytoplasma, en er is geen DNA-stadium in het replicatieproces. Cytoplasmatische replicatie betekent dat het virus onafhankelijk is van het DNA-replicatiemechanisme van de gastheercel, niet kan integreren met het gastheergenoom en niet recombineert met menselijke virussen.
(2) NDV heeft lage productiekosten, kan via verschillende routes worden toegediend en heeft weinig bijwerkingen.
(3) NDV kan worden geselecteerd om efficiënt te repliceren in tumoren en repliceert niet efficiënt in normale cellen van niet-aviaire gastheren. NDV-replicatie in tumorstamcellen en slapende tumorcellen wordt mogelijk niet beïnvloed door radiotherapie of chemotherapie omdat NDV-replicatie onafhankelijk is van celproliferatie .
(4) Naast het spelen van een directe oncolytische rol, kan NDV ook de activering van het immuunsysteem bevorderen en antitumoractiviteit uitoefenen.
In de publicaties van de verschillende genoemde studies staat nog heel veel meer maar is teveel om dat allemaal te vertalen.
Hier achtereenvolgens de abstracten van genoemde studies:
Newcastle Disease Virus at the Forefront of Cancer Immunotherapy
Newcastle disease virus (NDV) is an RNA virus belonging to the Paramyxoviridae family. In nature, NDV primarily infects birds, but poses no threat to human health. Multiple studies have demonstrated that NDV caries oncolytic potential due to its predilection for infection and replication in human cancer cells while sparing normal cells. In addition to its direct lytic effects, the virus triggers both innate and adaptive immune responses. In animal models, NDV injection into a tumor has been demonstrated to result in local inflammation and the recruitment of tumor-specific T cells, an effect that can be further potentiated through the use of viruses encoding immunomodulatory ligands and through combinations with immune checkpoint blockade. Initial clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across a number of cancer types. Clinical studies utilizing recombinant NDV in combination with immune checkpoint inhibitors are ongoing.
Abstract
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Engineering Newcastle Disease Virus as an Oncolytic Vector for Intratumoral Delivery of Immune Checkpoint Inhibitors and Immunocytokines
Newcastle disease virus (NDV) is an attractive candidate for oncolytic immunotherapy due to its ability to replicate in tumor cells and potentially to overcome the inherently immunosuppressive nature of the tumor microenvironment. The advent of checkpoint blockade immunotherapy over the past few years represents a paradigm shift in cancer therapy. However, the prevalence of severe immune-related adverse events with CTLA4 and PD1 pathway blockade in clinical studies, especially in combination therapy groups, is a cause for concern. Immunotherapies with cytokines have also been extensively explored, but they have been associated with adverse events in clinical trials. Oncolytic vectors engineered to express checkpoint blockade antibodies and cytokines could provide an avenue for reducing the clinical toxicity associated with systemic therapy by concentrating the immunomodulatory payload at the site of disease. In this study, we engineered six different recombinant viruses: NDVs expressing checkpoint inhibitors (rNDV–anti-PD1 and rNDV–anti-PDL1); superagonists (rNDV–anti-CD28); and immunocytokines, where the antibodies are fused to an immunostimulatory cytokine, such as interleukin 12 (IL-12) (rNDV–anti-CD28–murine IL-12 [mIL-12], rNDV–anti-PD1–mIL-12, and rNDV–anti-PDL1–mIL-12). These six engineered viruses induced tumor control and survival benefits in both highly aggressive unilateral and bilateral B16-F10 murine melanoma models, indicative of an abscopal effect. The data represent a strong proof of concept on which further clinical evaluation could build.
IMPORTANCE Checkpoint inhibitor therapy has shown tremendous efficacy, but also frequent and often severe side effects—especially when multiple drugs of the class are used simultaneously. Similarly, many investigational immunotherapy agents, which have shown promise in animal models, have failed in clinical trials due to dose-limiting toxicity when administered systemically. This study utilized a murine melanoma model to evaluate the efficacy of intratumoral injections of recombinant NDVs engineered to express multiple immunotherapeutic proteins with well-documented side effects in humans. Our results indicate that intratumoral administration of these recombinant NDVs, particularly when combined with systemic CTLA4 checkpoint inhibition, exerts a robust effect in treated and nontreated tumors, indicative of a systemic antitumoral response. The intratumoral delivery of rNDVs expressing immunotherapeutic proteins may be an effective method of targeting the immune cell populations most relevant for antitumoral immunity and allowing us to restrict the use of systemic immunotherapy agents.
The Application of Newcastle Disease Virus (NDV): Vaccine Vectors and Tumor Therapy
Share this article Share with emailShare with twitterShare with linkedinShare with facebook
Abstract
Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.
This work was supported by the 2115 Talent Development Program of China Agricultural University.
Author Contributions
Conceptualization, H.Y. and G.Z.; methodology, H.Y.; software, J.T.; validation, H.Y., J.Z. and G.Z.; formal analysis, H.Y. and J.T.; resources, G.Z.; writing—original draft preparation, H.Y., J.Z. and Y.Z.; writing—review and editing, H.Y., Y.Z. and G.Z.; funding acquisition, G.Z. All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflicts of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
1. Ganar K., Das M., Sinha S., Kumar S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014;184:71–81. 10.1016/j.virusres.2014.02.016.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
2. Burman B., Pesci G., Zamarin D. Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers. 2020;12:3552. 10.3390/cancers12123552.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
3. Cuadrado-Castano S., Sanchez-Aparicio M.T., Garcia-Sastre A., Villar E. The therapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus Res. 2015;209:56–66. 10.1016/j.virusres.2015.07.001.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
4. Kan X., Yin Y., Song C., Tan L., Qiu X., Liao Y., Liu W., Meng S., Sun Y., Ding C. Newcastle disease virus induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells. iScience. 2021;24:102837. 10.1016/j.isci.2021.102837.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
5. Zhan Y., Yu S., Yang S., Qiu X., Meng C., Tan L., Song C., Liao Y., Liu W., Sun Y., et al. Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathog. 2020;16:e1008610. 10.1371/journal.ppat.1008610.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
6. Burke S., Shergold A., Elder M.J., Whitworth J., Cheng X., Jin H., Wilkinson R.W., Harper J., Carroll D.K. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol. Immunother. 2020;69:1015–1027. 10.1007/s00262-020-02495-x.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
7. Peeters B.P., de Leeuw O.S., Koch G., Gielkens A.L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999;73:5001–5009. 10.1128/JVI.73.6.5001-5009.1999.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
8. Krishnamurthy S., Huang Z., Samal S.K. Recovery of a virulent strain of newcastle disease virus from cloned cDNA: Expression of a foreign gene results in growth retardation and attenuation. Virology. 2000;278:168–182. 10.1006/viro.2000.0618. [Abstract] [CrossRef] [Google Scholar]
9. Jadhav A., Zhao L., Ledda A., Liu W., Ding C., Nair V.A.-O.X., Ferretti L. Patterns of RNA Editing in Newcastle Disease Virus Infections. Viruses. 2020;12:1249. 10.3390/v12111249.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
10. Huang Z., Krishnamurthy S., Panda A., Samal S.K. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 2003;77:8676–8685. 10.1128/JVI.77.16.8676-8685.2003.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
11. Park M.S., Garcia-Sastre A., Cros J.F., Basler C.F., Palese P. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 2003;77:9522–9532. 10.1128/JVI.77.17.9522-9532.2003.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
12. Nan F.L., Zhang H., Nan W.L., Xie C.Z., Ha Z., Chen X., Xu X.H., Qian J., Qiu X.S., Ge J.Y., et al. Lentogenic NDV V protein inhibits IFN responses and represses cell apoptosis. Vet. Microbiol. 2021;261:109181. 10.1016/j.vetmic.2021.109181. [Abstract] [CrossRef] [Google Scholar]
13. Yang Y., Xue J., Teng Q., Li X., Bu Y., Zhang G. Mechanisms and consequences of Newcastle disease virus W protein subcellular localization in the nucleus or mitochondria. J. Virol. 2021;95:e02087-20. 10.1128/JVI.02087-20.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
14. Tan L., Zhang Y., Zhan Y., Yuan Y., Sun Y., Qiu X., Meng C., Song C., Liao Y., Ding C. Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells. Oncotarget. 2016;7:86117–86133. 10.18632/oncotarget.13345.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
15. El-Sayed A., Harashima H. Endocytosis of gene delivery vectors: From clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther. 2013;21:1118–1130. 10.1038/mt.2013.54.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
16. Iorio R.M., Field G.M., Sauvron J.M., Mirza A.M., Deng R., Mahon P.J., Langedijk J.P. Structural and functional relationship between the receptor recognition and neuraminidase activities of the Newcastle disease virus hemagglutinin-neuraminidase protein: Receptor recognition is dependent on neuraminidase activity. J. Virol. 2001;75:1918–1927. 10.1128/JVI.75.4.1918-1927.2001.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
17. Dimitrov K.M., Abolnik C., Afonso C.L., Albina E., Bahl J., Berg M., Briand F.X., Brown I.H., Choi K.S., Chvala I., et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019;74:103917. 10.1016/j.meegid.2019.103917.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
18. de Leeuw O.S., Koch G., Hartog L., Ravenshorst N., Peeters B.P.H. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J. Gen. Virol. 2005;86:1759–1769. 10.1099/vir.0.80822-0. [Abstract] [CrossRef] [Google Scholar]
19. Panda A., Huang Z., Elankumaran S., Rockemann D.D., Samal S.K. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb. Pathog. 2004;36:1–10. 10.1016/j.micpath.2003.07.003.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
20. Wang Y., Yu W., Huo N., Wang W., Guo Y., Wei Q., Wang X., Zhang S., Yang Z., Xiao S.A.-O. Comprehensive analysis of amino acid sequence diversity at the F protein cleavage site of Newcastle disease virus in fusogenic activity. PLoS ONE. 2017;12:e0183923. 10.1371/journal.pone.0183923.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
21. de Leeuw O.S., Hartog L., Koch G., Peeters B.P.H. Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: Non-virulent cleavage site mutants revert to virulence after one passage in chicken brain. J. Gen. Virol. 2003;84:475–484. 10.1099/vir.0.18714-0. [Abstract] [CrossRef] [Google Scholar]
22. Schirrmacher V. Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate! Biomedicines. 2016;4:16. 10.3390/biomedicines4030016.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
23. Cassel W.F., Garrett R.E. Newcastle disease virus as an antineoplastic agent. Cancer. 1965;18:863–868. 10.1002/1097-0142(196507)18:7<863::AID-CNCR2820180714>3.0.CO;2-V. [Abstract] [CrossRef] [Google Scholar]
24. Huang F., Dai C., Zhang Y., Zhao Y., Wang Y., Ru G. Development of Molecular Mechanisms and Their Application on Oncolytic Newcastle Disease Virus in Cancer Therapy. Front. Mol. Biosci. 2022;9:889403. 10.3389/fmolb.2022.889403.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
25. Al-Ziaydi A.G., Al-Shammari A.M., Hamzah M.I., Kadhim H.S., Jabir M.S. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic newcastle disease virus-mediated killing of breast cancer cells. Cancer Cell Int. 2020;20:420. 10.1186/s12935-020-01514-2.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
26. Al-Shammari A.M., Abdullah A.H., Allami Z.M., Yaseen N.Y. 2-Deoxyglucose and Newcastle Disease Virus Synergize to Kill Breast Cancer Cells by Inhibition of Glycolysis Pathway Through Glyceraldehyde3-Phosphate Downregulation. Front. Mol. Biosci. 2019;6:90. 10.3389/fmolb.2019.00090.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
27. Reichard K.W., Lorence R.M., Cascino C.J., Peeples M.E., Walter R.J., Fernando M.B., Reyes H.M., Greager J.A. Newcastle disease virus selectively kills human tumor cells. J. Surg. Res. 1992;52:448–453. 10.1016/0022-4804(92)90310-V. [Abstract] [CrossRef] [Google Scholar]
28. Garcia-Romero N., Palacin-Aliana I., Esteban-Rubio S., Madurga R., Rius-Rocabert S., Carrion-Navarro J., Presa J., Cuadrado-Castano S., Sanchez-Gomez P., Garcia-Sastre A., et al. Newcastle Disease Virus (NDV) Oncolytic Activity in Human Glioma Tumors Is Dependent on CDKN2A-Type I IFN Gene Cluster Codeletion. Cells. 2020;9:1405. 10.3390/cells9061405.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
29. Krishnamurthy S., Takimoto T., Scroggs R.A., Portner A. Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J. Virol. 2006;80:5145–5155. 10.1128/JVI.02618-05.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
30. Fiola C., Peeters B., Fournier P., Arnold A., Bucur M., Schirrmacher V. Tumor selective replication of Newcastle disease virus: Association with defects of tumor cells in antiviral defence. Int. J. Cancer. 2006;119:328–338. 10.1002/ijc.21821. [Abstract] [CrossRef] [Google Scholar]
31. Schirrmacher V. Molecular Mechanisms of Anti-Neoplastic and Immune Stimulatory Properties of Oncolytic Newcastle Disease Virus. Biomedicines. 2022;10:562. 10.3390/biomedicines10030562.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
32. Schirrmacher V., van Gool S., Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines. 2019;7:66. 10.3390/biomedicines7030066.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
33. Fournier P., Wilden H., Schirrmacher V. Importance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int. J. Oncol. 2012;40:287–298. [Abstract] [Google Scholar]
34. Wilden H., Fournier P., Zawatzky R., Schirrmacher V. Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Int. J. Oncol. 2009;34:971–982. [Abstract] [Google Scholar]
35. Washburn B., Schirrmacher V. Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int. J. Oncol. 2002;21:85–93. 10.3892/ijo.21.1.85. [Abstract] [CrossRef] [Google Scholar]
36. Lenza M.P., Atxabal U., Oyenarte I., Jiménez-Barbero J., Ereño-Orbea J. Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells. 2020;9:2691. 10.3390/cells9122691.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
37. Mansour M., Palese P., Zamarin D. Oncolytic specificity of Newcastle disease virus is mediated by selectivity for apoptosis-resistant cells. J. Virol. 2011;85:6015–6023. 10.1128/JVI.01537-10.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
38. Lazar I., Yaacov B., Shiloach T., Eliahoo E., Kadouri L., Lotem M., Perlman R., Zakay-Rones Z., Panet A., Ben-Yehuda D. The oncolytic activity of Newcastle disease virus NDV-HUJ on chemoresistant primary melanoma cells is dependent on the proapoptotic activity of the inhibitor of apoptosis protein Livin. J. Virol. 2010;84:639–646. 10.1128/JVI.00401-09.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
39. Puhlmann J., Puehler F., Mumberg D., Boukamp P., Beier R. Rac1 is required for oncolytic NDV replication in human cancer cells and establishes a link between tumorigenesis and sensitivity to oncolytic virus. Oncogene. 2010;29:2205–2216. 10.1038/onc.2009.507. [Abstract] [CrossRef] [Google Scholar]
40. Mustafa Z., Shamsuddin H.S., Ideris A., Ibrahim R., Jaafar H., Ali A.M., Abdullah J.M. Viability reduction and Rac1 gene downregulation of heterogeneous ex-vivo glioma acute slice infected by the oncolytic Newcastle disease virus strain V4UPM. Biomed. Res. Int. 2013;2013:248507. 10.1155/2013/248507.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
41. Kent L.N., Leone G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer. 2019;19:326–338. 10.1038/s41568-019-0143-7. [Abstract] [CrossRef] [Google Scholar]
42. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019;43:582–592. 10.1002/cbin.11137. [Abstract] [CrossRef] [Google Scholar]
43. Shalini S., Dorstyn L., Dawar S., Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–539. 10.1038/cdd.2014.216.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
44. Kaloni D., Diepstraten S.T., Strasser A., Kelly G.L. BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis. 2023;28:20–38. 10.1007/s10495-022-01780-7.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
46. Molouki A., Hsu Y.T., Jahanshiri F., Abdullah S., Rosli R., Yusoff K. The matrix (M) protein of Newcastle disease virus binds to human bax through its BH3 domain. Virol. J. 2011;8:385. 10.1186/1743-422X-8-385.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
47. Cuadrado-Castano S., Ayllon J., Mansour M., de la Iglesia-Vicente J., Jordan S., Tripathi S., García-Sastre A., Villar E. Enhancement of the proapoptotic properties of newcastle disease virus promotes tumor remission in syngeneic murine cancer models. Mol. Cancer Ther. 2015;14:1247–1258. 10.1158/1535-7163.MCT-14-0913.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
48. Bai F.L., Yu Y.H., Tian H., Ren G.P., Wang H., Zhou B., Han X.H., Yu Q.Z., Li D.S. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biol. Ther. 2014;15:1226–1238. 10.4161/cbt.29686.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
49. Kazimirsky G., Jiang W., Slavin S., Ziv-Av A., Brodie C. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res. Ther. 2016;7:149. 10.1186/s13287-016-0414-0.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
50. Ch’ng W.C., Abd-Aziz N., Ong M.H., Stanbridge E.J., Shafee N. Human renal carcinoma cells respond to Newcastle disease virus infection through activation of the p38 MAPK/NF-κB/IκBα pathway. Cell. Oncol. 2015;38:279–288. 10.1007/s13402-015-0229-5. [Abstract] [CrossRef] [Google Scholar]
51. Li Y., Jiang W., Niu Q., Sun Y., Meng C., Tan L., Song C., Qiu X., Liao Y., Ding C. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis. 2019;10:891. 10.1038/s41419-019-2128-6.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
52. Elankumaran S., Rockemann D., Samal S.K. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J. Virol. 2006;80:7522–7534. 10.1128/JVI.00241-06.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
53. Zeng J., Fournier P., Schirrmacher V. Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology. 2002;297:19–30. 10.1006/viro.2002.1413. [Abstract] [CrossRef] [Google Scholar]
54. Liao Y., Wang H.X., Mao X., Fang H., Wang H., Li Y., Sun Y., Meng C., Tan L., Song C., et al. RIP1 is a central signaling protein in regulation of TNF-α/TRAIL mediated apoptosis and necroptosis during Newcastle disease virus infection. Oncotarget. 2017;8:43201–43217. 10.18632/oncotarget.17970.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
55. Ghrici M., El Zowalaty M., Omar A.R., Ideris A. Newcastle disease virus Malaysian strain AF2240 induces apoptosis in MCF-7 human breast carcinoma cells at an early stage of the virus life cycle. Int. J. Mol. Med. 2013;31:525–532. 10.3892/ijmm.2013.1244. [Abstract] [CrossRef] [Google Scholar]
56. He D., Sun L., Li C., Hu N., Sheng Y., Chen Z., Li X., Chi B., Jin N. Anti-tumor effects of an oncolytic adenovirus expressing hemagglutinin-neuraminidase of Newcastle disease virus in vitro and in vivo. Viruses. 2014;6:856–874. 10.3390/v6020856.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
57. Molouki A., Yusoff K. NDV-induced apoptosis in absence of Bax; evidence of involvement of apoptotic proteins upstream of mitochondria. Virol. J. 2012;9:179. 10.1186/1743-422X-9-179.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
58. Shan P., Tang B., Xie S., Zhang Z., Fan J., Wei Z., Song C. NDV-D90 inhibits 17β-estradiol-mediated resistance to apoptosis by differentially modulating classic and nonclassic estrogen receptors in breast cancer cells. J. Cell Biochem. 2021;122:3–15. 10.1002/jcb.28118. [Abstract] [CrossRef] [Google Scholar]
59. Fan X., Lu H., Cui Y., Hou X., Huang C., Liu G. Overexpression of p53 delivered using recombinant NDV induces apoptosis in glioma cells by regulating the apoptotic signaling pathway. Exp. Ther. Med. 2018;15:4522–4530. 10.3892/etm.2018.5935.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
60. Li X., Jia Y., Liu H., Wang X., Chu Z., Hu R., Ren J., Xiao S., Zhang S., Wang X., et al. High level expression of ISG12(1) promotes cell apoptosis via mitochondrial-dependent pathway and so as to hinder Newcastle disease virus replication. Vet. Microbiol. 2019;228:147–156. 10.1016/j.vetmic.2018.11.017. [Abstract] [CrossRef] [Google Scholar]
61. Wang C., Chu Z., Liu W., Pang Y., Gao X., Tang Q., Ma J., Lu K., Adam F.E.A., Dang R., et al. Newcastle disease virus V protein inhibits apoptosis in DF-1 cells by downregulating TXNL1. Vet. Res. 2018;49:102. 10.1186/s13567-018-0599-6.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
62. Peker N., Gozuacik D. Autophagy as a Cellular Stress Response Mechanism in the Nervous System. J. Mol. Biol. 2020;432:2560–2588. 10.1016/j.jmb.2020.01.017. [Abstract] [CrossRef] [Google Scholar]
64. Meng C., Zhou Z., Jiang K., Yu S., Jia L., Wu Y., Liu Y., Meng S., Ding C. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch. Virol. 2012;157:1011–1018. 10.1007/s00705-012-1270-6.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
65. Koks C.A., Garg A.D., Ehrhardt M., Riva M., Vandenberk L., Boon L., De Vleeschouwer S., Agostinis P., Graf N., Van Gool S.W. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int. J. Cancer. 2015;136:E313–E325. 10.1002/ijc.29202. [Abstract] [CrossRef] [Google Scholar]
66. Sun Y., Yu S., Ding N., Meng C., Meng S., Zhang S., Zhan Y., Qiu X., Tan L., Chen H., et al. Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J. Virol. 2014;88:525–537. 10.1128/JVI.01849-13.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
67. Cheng J.H., Sun Y.J., Zhang F.Q., Zhang X.R., Qiu X.S., Yu L.P., Wu Y.T., Ding C. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci. Rep. 2016;6:24721. 10.1038/srep24721.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
68. Ren S., Rehman Z.U., Shi M., Yang B., Qu Y., Yang X.F., Shao Q., Meng C., Yang Z., Gao X., et al. Syncytia generated by hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus induce complete autophagy by activating AMPK-mTORC1-ULK1 signaling. Vet. Microbiol. 2019;230:283–290. 10.1016/j.vetmic.2019.01.002. [Abstract] [CrossRef] [Google Scholar]
69. Bu X., Zhao Y., Zhang Z., Wang M., Li M., Yan Y. Recombinant Newcastle disease virus (rL-RVG) triggers autophagy and apoptosis in gastric carcinoma cells by inducing ER stress. Am. J. Cancer Res. 2016;6:924–936.[Europe PMC free article] [Abstract] [Google Scholar]
70. Yan Y., Shao X., Gu W., Zhang A., Bu X., Liang B. Recombinant virus expressing hIFN-λ1 (rL-hIFN-λ1) has important effects on endoplasmic reticulum stress, autophagy and apoptosis in small cell lung cancer. Transl. Cancer Res. 2020;9:5209–5217. 10.21037/tcr-20-1205.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
71. Chen X., Cubillos-Ruiz J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer. 2021;21:71–88. 10.1038/s41568-020-00312-2.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
72. Jiang P., Mizushima N. LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods. 2015;75:13–18. 10.1016/j.ymeth.2014.11.021. [Abstract] [CrossRef] [Google Scholar]
73. Gong Y., Tang N., Liu P., Sun Y., Lu S., Liu W., Tan L., Song C., Qiu X., Liao Y., et al. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells. Autophagy. 2022;18:1503–1521. 10.1080/15548627.2021.1990515.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
74. Meng S., Zhou Z., Chen F., Kong X., Liu H., Jiang K., Liu W., Hu M., Zhang X., Ding C., et al. Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo. Cancer Lett. 2012;317:56–64. 10.1016/j.canlet.2011.11.008. [Abstract] [CrossRef] [Google Scholar]
75. Kang Y., Yuan R., Xiang B., Zhao X., Gao P., Dai X., Liao M., Ren T. Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses in vitro and in vivo. Oncotarget. 2017;8:73981–73993. 10.18632/oncotarget.18169.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
77. Jarahian M., Watzl C., Fournier P., Arnold A., Djandji D., Zahedi S., Cerwenka A., Paschen A., Schirrmacher V., Momburg F. Activation of natural killer cells by newcastle disease virus hemagglutinin-neuraminidase. J. Virol. 2009;83:8108–8121. 10.1128/JVI.00211-09.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
78. Washburn B., Weigand M.A., Grosse-Wilde A., Janke M., Stahl H., Rieser E., Sprick M.R., Schirrmacher V., Walczak H. TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J. Immunol. 2003;170:1814–1821. 10.4049/jimmunol.170.4.1814. [Abstract] [CrossRef] [Google Scholar]
79. Schirrmacher V., Bai L., Umansky V., Yu L., Xing Y., Qian Z. Newcastle disease virus activates macrophages for anti-tumor activity. Int. J. Oncol. 2000;16:363–373. 10.3892/ijo.16.2.363. [Abstract] [CrossRef] [Google Scholar]
80. Zhao L., Niu C., Shi X., Xu D., Li M., Cui J., Li W., Xu J., Jin H. Dendritic cells loaded with the lysate of tumor cells infected with Newcastle Disease Virus trigger potent anti-tumor immunity by promoting the secretion of IFN-γ and IL-2 from T cells. Oncol. Lett. 2018;16:1180–1188. 10.3892/ol.2018.8785.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
81. Elankumaran S., Chavan V., Qiao D., Shobana R., Moorkanat G., Biswas M., Samal S.K. Type I interferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. J. Virol. 2010;84:3835–3844. 10.1128/JVI.01553-09.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
82. Shortman K., Heath W.R. The CD8+ dendritic cell subset. Immunol. Rev. 2010;234:18–31. 10.1111/j.0105-2896.2009.00870.x. [Abstract] [CrossRef] [Google Scholar]
83. Fuertes M.B., Kacha A.K., Kline J., Woo S.R., Kranz D.M., Murphy K.M., Gajewski T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 2011;208:2005–2016. 10.1084/jem.20101159.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
84. Buijs P.R., van Eijck C.H., Hofland L.J., Fouchier R.A., van den Hoogen B.G. Different responses of human pancreatic adenocarcinoma cell lines to oncolytic Newcastle disease virus infection. Cancer Gene Ther. 2014;21:24–30. 10.1038/cgt.2013.78. [Abstract] [CrossRef] [Google Scholar]
85. Hu Z., Ni J., Cao Y., Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines. 2020;8:222. 10.3390/vaccines8020222.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
87. Fulber J.P.C., Kamen A.A. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses. 2022;14:975. 10.3390/v14050975.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
88. Bello M.B., Yusoff K., Ideris A., Hair-Bejo M., Jibril A.H., Peeters B.P.H., Omar A.R. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses. 2020;12:451. 10.3390/v12040451.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
89. Saikia D.P., Yadav K., Pathak D.C., Ramamurthy N., D’Silva A.L., Marriappan A.K., Ramakrishnan S., Vakharia V.N., Chellappa M.M., Dey S. Recombinant Newcastle Disease Virus (NDV) Expressing Sigma C Protein of Avian Reovirus (ARV) Protects against Both ARV and NDV in Chickens. Pathogens. 2019;8:145. 10.3390/pathogens8030145.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
90. Abozeid H.H., Paldurai A., Varghese B.P., Khattar S.K., Afifi M.A., Zouelfakkar S., El-Deeb A.H., El-Kady M.F., Samal S.K. Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt. Vet. Res. 2019;50:12. 10.1186/s13567-019-0631-5.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
91. Shirvani E., Paldurai A., Manoharan V.K., Varghese B.P., Samal S.K. A Recombinant Newcastle Disease Virus (NDV) Expressing S Protein of Infectious Bronchitis Virus (IBV) Protects Chickens against IBV and NDV. Sci. Rep. 2018;8:11951. 10.1038/s41598-018-30356-2.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
92. Zeng Z., He Y., Wang Z., Yao L., Li L., Shang Y., Wang H., Zhang R., Shao H., Luo Q., et al. Characterization of a Recombinant Thermostable Newcastle Disease Virus (NDV) Expressing Glycoprotein gB of Infectious Laryngotracheitis Virus (ILTV) Protects Chickens against ILTV Challenge. Viruses. 2023;15:500. 10.3390/v15020500.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
93. Qiao Q., Song M., Song C., Zhang Y., Wang X., Huang Q., Wang B., Yang P., Zhao S., Li Y., et al. Single-Dose Vaccination of Recombinant Chimeric Newcastle Disease Virus (NDV) LaSota Vaccine Strain Expressing Infectious Bursal Disease Virus (IBDV) VP2 Gene Provides Full Protection against Genotype VII NDV and IBDV Challenge. Vaccines. 2021;9:1483. 10.3390/vaccines9121483.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
94. Sun W.Y., Cao X.L., Wang Y.X., Guo X.C., Liu J.M., Xue Z.Q., Li H.J., Wang W., Zhang T.T., Li Q., et al. Development and evaluation of a bivalent vaccine based on recombinant newcastle disease virus expressing infectious bursal disease virus VP2L-CH3-CH4 in SPF chickens. Vet. Microbiol. 2024;288:109950. 10.1016/j.vetmic.2023.109950. [Abstract] [CrossRef] [Google Scholar]
95. Tian K.Y., Guo H.F., Li N., Zhang Y.H., Wang Z., Wang B., Yang X., Li Y.T., Zhao J. Protection of chickens against hepatitis-hydropericardium syndrome and Newcastle disease with a recombinant Newcastle disease virus vaccine expressing the fowl adenovirus serotype 4 fiber-2 protein. Vaccine. 2020;38:1989–1997. 10.1016/j.vaccine.2020.01.006. [Abstract] [CrossRef] [Google Scholar]
96. Sun M., Dong J., Li L., Lin Q., Sun J., Liu Z., Shen H., Zhang J., Ren T., Zhang C. Recombinant Newcastle disease virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet. Microbiol. 2018;218:60–69. 10.1016/j.vetmic.2018.03.027.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
97. Wang J., Cong Y., Yin R., Feng N., Yang S., Xia X., Xiao Y., Wang W., Liu X., Hu S., et al. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Res. 2015;203:77–83. 10.1016/j.virusres.2015.04.006.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
98. Xu D., Li C., Liu G., Chen Z., Jia R. Generation and evaluation of a recombinant goose origin Newcastle disease virus expressing Cap protein of goose origin avastrovirus as a bivalent vaccine in goslings. Poult. Sci. 2019;98:4426–4432. 10.3382/ps/pez255. [Abstract] [CrossRef] [Google Scholar]
99. Kumar R., Kumar V., Kekungu P., Barman N.N., Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: A recombinant Newcastle disease virus approach. Arch. Virol. 2019;164:3007–3017. 10.1007/s00705-019-04425-4. [Abstract] [CrossRef] [Google Scholar]
100. Zhang H., Nan F., Li Z., Zhao G., Xie C., Ha Z., Zhang J., Han J., Xiao P., Zhuang X., et al. Construction and immunological evaluation of recombinant Newcastle disease virus vaccines expressing highly pathogenic porcine reproductive and respiratory syndrome virus GP3/GP5 proteins in pigs. Vet. Microbiol. 2019;239:108490. 10.1016/j.vetmic.2019.108490. [Abstract] [CrossRef] [Google Scholar]
101. Zhang M., Ge J., Wen Z., Chen W., Wang X., Liu R., Bu Z. Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch. Virol. 2017;162:359–367. 10.1007/s00705-016-3078-2.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
102. Ge J., Wang X., Tian M., Gao Y., Wen Z., Yu G., Zhou W., Zu S., Bu Z. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine. 2015;33:2457–2462. 10.1016/j.vaccine.2015.03.091. [Abstract] [CrossRef] [Google Scholar]
103. Ge J., Wang X., Tao L., Wen Z., Feng N., Yang S., Xia X., Yang C., Chen H., Bu Z. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J. Virol. 2011;85:8241–8252. 10.1128/JVI.00519-11.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
104. Tcheou J., Raskin A., Singh G., Kawabata H., Bielak D., Sun W., González-Domínguez I., Sather D.N., García-Sastre A., Palese P., et al. Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats. Front. Immunol. 2021;12:791764. 10.3389/fimmu.2021.791764.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
105. Jung B.K., An Y.H., Jang J.J., Jeon J.H., Jang S.H., Jang H. The human ACE-2 receptor binding domain of SARS-CoV-2 express on the viral surface of the Newcastle disease virus as a non-replicating viral vector vaccine candidate. PLoS ONE. 2022;17:e0263684. 10.1371/journal.pone.0263684.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
106. Zhao W., Zhang P., Bai S., Lv M., Wang J., Chen W., Yu Q., Wu J. Heterologous prime-boost regimens with HAdV-5 and NDV vectors elicit stronger immune responses to Ebola virus than homologous regimens in mice. Arch. Virol. 2021;166:3333–3341. 10.1007/s00705-021-05234-4.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
107. Khattar S.K., DeVico A.L., LaBranche C.C., Panda A., Montefiori D.C., Samal S.K. Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. J. Virol. 2016;90:1682–1686. 10.1128/JVI.02847-15.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
108. Nath B., Vandna, Saini H.M., Prasad M., Kumar S. Evaluation of Japanese encephalitis virus E and NS1 proteins immunogenicity using a recombinant Newcastle disease virus in mice. Vaccine. 2020;38:1860–1868. 10.1016/j.vaccine.2019.11.088. [Abstract] [CrossRef] [Google Scholar]
109. Viktorova E.G., Khattar S.K., Kouiavskaia D., Laassri M., Zagorodnyaya T., Dragunsky E., Samal S., Chumakov K., Belov G.A. Newcastle Disease Virus-Based Vectored Vaccine against Poliomyelitis. J. Virol. 2018;92:e00976-18. 10.1128/JVI.00976-18.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
110. Song K.Y., Wong J., Gonzalez L., Sheng G., Zamarin D., Fong Y. Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. J. Mol. Med. 2010;88:589–596. 10.1007/s00109-010-0605-6.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
111. Bu X., Li M., Zhao Y., Liu S., Wang M., Ge J., Bu Z., Yan Y. Genetically engineered Newcastle disease virus expressing human interferon-λ1 induces apoptosis in gastric adenocarcinoma cells and modulates the Th1/Th2 immune response. Oncol. Rep. 2016;36:1393–1402. 10.3892/or.2016.4925. [Abstract] [CrossRef] [Google Scholar]
112. Yan Y., Liang B., Zhang J., Liu Y., Bu X. Apoptotic induction of lung adenocarcinoma A549 cells infected by recombinant RVG Newcastle disease virus (rL-RVG) in vitro. Mol. Med. Rep. 2015;11:317–326. 10.3892/mmr.2014.2657. [Abstract] [CrossRef] [Google Scholar]
113. Hu L., Sun S., Wang T., Li Y., Jiang K., Lin G., Ma Y., Barr M.P., Song F., Zhang G., et al. Oncolytic newcastle disease virus triggers cell death of lung cancer spheroids and is enhanced by pharmacological inhibition of autophagy. Am. J. Cancer Res. 2015;5:3612–3623.[Europe PMC free article] [Abstract] [Google Scholar]
114. Keshavarz M., Nejad A.S.M., Esghaei M., Bokharaei-Salim F., Dianat-Moghadam H., Keyvani H., Ghaemi A. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J. Biol. Sci. 2020;27:47–52. 10.1016/j.sjbs.2019.04.015.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
115. Wang X., Shao X., Gu L., Jiang K., Wang S., Chen J., Fang J., Guo X., Yuan M., Shi J., et al. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells. J. Cell Mol. Med. 2020;24:4286–4297. 10.1111/jcmm.15089.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
116. Song H., Zhong L.P., He J., Huang Y., Zhao Y.X. Application of Newcastle disease virus in the treatment of colorectal cancer. World J. Clin. Cases. 2019;7:2143–2154. 10.12998/wjcc.v7.i16.2143.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
117. Abdullah J.M., Mustafa Z., Ideris A. Newcastle disease virus interaction in targeted therapy against proliferation and invasion pathways of glioblastoma multiforme. Biomed. Res. Int. 2014;2014:386470. 10.1155/2014/386470.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
118. Wu Y.-Y., Sun T.-K., Chen M.-S., Munir M., Liu H.-J. Oncolytic viruses-modulated immunogenic cell death, apoptosis and autophagy linking to virotherapy and cancer immune response. Front. Cell. Infect. Microbiol. 2023;13:1142172. 10.3389/fcimb.2023.1142172.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
119. Csatary L.K., Moss R.W., Beuth J., Töröcsik B., Szeberenyi J., Bakacs T. Beneficial treatment of patients with advanced cancer using a Newcastle disease virus vaccine (MTH-68/H) Anticancer Res. 1999;19:635–638. [Abstract] [Google Scholar]
120. Pecora A.L., Rizvi N., Cohen G.I., Meropol N.J., Sterman D., Marshall J.L., Goldberg S., Gross P., O’Neil J.D., Groene W.S., et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol. 2002;20:2251–2266. 10.1200/JCO.2002.08.042. [Abstract] [CrossRef] [Google Scholar]
121. Yaacov B., Eliahoo E., Lazar I., Ben-Shlomo M., Greenbaum I., Panet A., Zakay-Rones Z. Selective oncolytic effect of an attenuated Newcastle disease virus (NDV-HUJ) in lung tumors. Cancer Gene Ther. 2008;15:795–807. 10.1038/cgt.2008.31. [Abstract] [CrossRef] [Google Scholar]
122. Schirrmacher V., Fournier P. Newcastle disease virus: A promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol. Biol. 2009;542:565–605.[Europe PMC free article] [Abstract] [Google Scholar]
123. Wheelock E.F., Dingle J.H. Observations on the repeated administration of viruses to a patient with acute leukemia. N. Engl. J. Med. 1964;24:645–651. 10.1056/NEJM196409242711302. [Abstract] [CrossRef] [Google Scholar]
124. Cassel W.A., Murray D.R. A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med. Oncol. Tumor Pharmacother. 1992;9:169–171. 10.1007/BF02987752. [Abstract] [CrossRef] [Google Scholar]
125. Batliwalla F.M., Bateman B.A., Serrano D., Murray D., Macphail S., Maino V.C., Ansel J.C., Gregersen P.K., Armstrong C.A. A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with Newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Mol. Med. 1998;4:783–794. 10.1007/BF03401771.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
126. Csatary L.K., Eckhardt S., Bukosza I., Czegledi F., Fenyvesi C., Gergely P., Bodey B., Csatary C.M. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect. Prev. 1993;17:619–627. [Abstract] [Google Scholar]
128. Lorence R.M., Pecora A.L., Major P.P., Hotte S.J., Laurie S.A., Roberts M.S., Groene W.S., Bamat M.K. Overview of phase I studies of intravenous administration of PV701, an oncolytic virus. Curr. Opin. Mol. Ther. 2003;5:618–624. [Abstract] [Google Scholar]
129. Freeman A.I., Zakay-Rones Z., Gomori J.M., Linetsky E., Rasooly L., Greenbaum E., Rozenman-Yair S., Panet A., Libson E., Irving C.S., et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Mol. Ther. 2006;13:221–228. 10.1016/j.ymthe.2005.08.016. [Abstract] [CrossRef] [Google Scholar]
130. Kalyanasundram J., Hamid A., Yusoff K., Chia S.L. Newcastle disease virus strain AF2240 as an oncolytic virus: A review. Acta Trop. 2018;183:126–133. 10.1016/j.actatropica.2018.04.007. [Abstract] [CrossRef] [Google Scholar]
131. Najmuddin S., Amin Z.M., Tan S.W., Yeap S.K., Kalyanasundram J., Ani M.A.C., Veerakumarasivam A., Chan S.C., Chia S.L., Yusoff K., et al. Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int. 2020;20:278. 10.1186/s12935-020-01372-y.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
132. Syed Najmuddin S.U.F., Amin Z.M., Tan S.W., Yeap S.K., Kalyanasundram J., Veerakumarasivam A., Chan S.C., Chia S.L., Yusoff K., Alitheen N.B. Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ. 2020;8:e9761. 10.7717/peerj.9761.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
133. Ahlert T., Sauerbrei W., Bastert G., Ruhland S., Bartik B., Simiantonaki N., Schumacher J., Häcker B., Schumacher M., Schirrmacher V. Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. J. Clin. Oncol. 1997;15:1354–1366. 10.1200/JCO.1997.15.4.1354. [Abstract] [CrossRef] [Google Scholar]
134. Kirchner H.H., Anton P., Atzpodien J. Adjuvant treatment of locally advanced renal cancer with autologous virus-modified tumor vaccines. World J. Urol. 1995;13:171–173. 10.1007/BF00184874. [Abstract] [CrossRef] [Google Scholar]
135. Karcher J., Dyckhoff G., Beckhove P., Reisser C., Brysch M., Ziouta Y., Helmke B.H., Weidauer H., Schirrmacher V., Herold-Mende C. Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Res. 2004;64:8057–8061. 10.1158/0008-5472.CAN-04-1545. [Abstract] [CrossRef] [Google Scholar]
136. Steiner H.H., Bonsanto M.M., Beckhove P., Brysch M., Geletneky K., Ahmadi R., Schuele-Freyer R., Kremer P., Ranaie G., Matejic D., et al. Antitumor vaccination of patients with glioblastoma multiforme: A pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 2004;22:4272–4281. 10.1200/JCO.2004.09.038. [Abstract] [CrossRef] [Google Scholar]
137. Ockert D., Schirrmacher V., Beck N., Stoelben E., Ahlert T., Flechtenmacher J., Hagmüller E., Buchcik R., Nagel M., Saeger H.D. Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin. Cancer Res. 1996;2:21–28. [Abstract] [Google Scholar]
138. Schulze T., Kemmner W., Weitz J., Wernecke K.D., Schirrmacher V., Schlag P.M. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: Results of a prospective randomized trial. Cancer Immunol. Immunother. 2009;58:61–69. 10.1007/s00262-008-0526-1.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
139. Liang W., Wang H., Sun T.M., Yao W.Q., Chen L.L., Jin Y., Li C.L., Meng F.J. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J. Gastroenterol. 2003;9:495–498. 10.3748/wjg.v9.i3.495.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
140. Schirrmacher V., Schlude C., Weitz J., Beckhove P. Strong T-cell costimulation can reactivate tumor antigen-specific T cells in late-stage metastasized colorectal carcinoma patients: Results from a phase I clinical study. Int. J. Oncol. 2015;46:71–77. 10.3892/ijo.2014.2692. [Abstract] [CrossRef] [Google Scholar]
141. Numpadit S., Ito C., Nakaya T., Hagiwara K. Investigation of oncolytic effect of recombinant Newcastle disease virus in primary and metastatic oral melanoma. Med. Oncol. 2023;40:138. 10.1007/s12032-023-02002-z.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
142. Ren G., Tian G., Liu Y., He J., Gao X., Yu Y., Liu X., Zhang X., Sun T., Liu S., et al. Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol. Cancer Res. Treat. 2016;15:Np83–Np94. 10.1177/1533034615601521. [Abstract] [CrossRef] [Google Scholar]
143. Xu X., Sun Q., Mei Y., Liu Y., Zhao L. Newcastle disease virus co-expressing interleukin 7 and interleukin 15 modified tumor cells as a vaccine for cancer immunotherapy. Cancer Sci. 2018;109:279–288. 10.1111/cas.13468.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
144. Xu X., Yi C., Yang X., Xu J., Sun Q., Liu Y., Zhao L. Tumor Cells Modified with Newcastle Disease Virus Expressing IL-24 as a Cancer Vaccine. Mol. Ther. Oncolytics. 2019;14:213–221. 10.1016/j.omto.2019.06.001.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
145. Huang F.Y., Wang J.Y., Dai S.Z., Lin Y.Y., Sun Y., Zhang L., Lu Z., Cao R., Tan G.H. A recombinant oncolytic Newcastle virus expressing MIP-3α promotes systemic antitumor immunity. J. Immunother. Cancer. 2020;8:e000330. 10.1136/jitc-2019-000330.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
146. Tian L., Liu T., Jiang S., Cao Y., Kang K., Su H., Ren G., Wang Z., Xiao W., Li D. Oncolytic Newcastle disease virus expressing the co-stimulator OX40L as immunopotentiator for colorectal cancer therapy. Gene Ther. 2023;30:64–74. 10.1038/s41434-021-00256-8. [Abstract] [CrossRef] [Google Scholar]
147. Nettelbeck D.M., Leber M.F., Altomonte J., Angelova A., Beil J., Berchtold S., Delic M., Eberle J., Ehrhardt A., Engeland C.E., et al. Virotherapy in Germany-Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses. 2021;13:1420. 10.3390/v13081420.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
148. Vijayakumar G., Palese P., Goff P.H. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine. 2019;49:96–105. 10.1016/j.ebiom.2019.10.032.[Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
149. Stewart R., Morrow M., Hammond S.A., Mulgrew K., Marcus D., Poon E., Watkins A., Mullins S., Chodorge M., Andrews J., et al. Identification and Characterization of MEDI4736, an Antagonistic Anti-PD-L1 Monoclonal Antibody. Cancer Immunol. Res. 2015;3:1052–1062. 10.1158/2326-6066.CIR-14-0191. [Abstract] [CrossRef] [Google Scholar]
Articles from Viruses are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)
Reageer op "Newcastle Disease virus vaccin in de behandeling van kankerpatienten geeft extra effectiviteit, blijkt uit verschillende overzichtstudies copy 1"
Plaats een reactie ...
Reageer op "Newcastle Disease virus vaccin in de behandeling van kankerpatienten geeft extra effectiviteit, blijkt uit verschillende overzichtstudies copy 1"